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Abstract

Positive- and negative-sequence equivalent-circuit
models are put forth to capture the operation
of grid-forming (GFM) inverters in unbalanced
steady-state operating conditions acknowledging
the impact of current limiting. The particular control
architecture examined adopts droop control (for primary
control), nested inner-current and outer-voltage control
(in the stationary reference frame), and it is adaptable to
two different types of current limiting (current-reference
saturation and virtual-impedance limiting). We
anticipate the proposed models to be of interest in
modeling, analysis, and simulation of GFM inverters
in unbalanced settings that may arise, e.g., in the
face of faults. Validation of the equivalent-circuit
models is pursued via comparison with full-order
electromagnetic-transient (EMT) simulations for
representative balanced and unbalanced faults.

Keywords: Equivalent-circuit models, fault analysis,
grid-forming inverters, power systems, unbalanced
faults.

1. Introduction

Grid-forming (GFM) controls for inverter-based
resources (IBRs) continue to garner sustained interest
across academia and industry worldwide. A variety
of issues currently dominate research and development
agendas, and of these, modeling, analysis, and control
of GFM IBRs during balanced and unbalanced faults
on the grid are particularly unsettled aspects [1,
2]. Driving convergent advances on these topics
requires synergizing (analytical and computational)
efforts across power electronics and power systems
domains. Taking a step in this direction, this paper puts

forth a framework to obtain equivalent-circuit models
for GFM IBRs that capture their steady-state operation
during unbalanced steady-state operating conditions that
may be brought on, e.g., by faults on the grid.

We illustrate the derivation of the equivalent-circuit
model for a stationary-frame control architecture
with droop control adopted for primary control and
proportional-resonant controllers for inner-current and
outer-voltage control [3]. Within this architecture, two
different types of current limiting—current-reference
saturation (SatLim) [4, 5, 6] and threshold virtual
impedance (VI-Lim) [7, 3, 8]—are examined. This is
one of several architectures [4, 5, 8] that have been
proposed for unbalanced operation in the literature (our
review of related efforts appears shortly). Nonetheless,
this specific instantiation provides a means to highlight
key ideas. The derivation of the equivalent circuit
model is presented in a systematic procedure that can
be applied to other control architectures (i.e., other
primary controls, reference frames for control, and types
of current limiters). We leverage a combination of
reference-frame transformations, the notion of dynamic
phasors, and theory of symmetrical components to arrive
at positive- and negative-sequence equivalent circuits
for the GFM IBRs. Notably, these equivalent circuits
capture the impact of current limiting (SatLim and
VI-Lim) and are applicable to unbalanced settings.

With regard to related prior art, we point to a
variety of recent efforts in synthesizing controllers for
GFM IBRs that are resilient to unbalanced settings
and faults, e.g., in [3, 4, 5, 8, 9, 10, 11, 12, 13, 14,
15]. While broad consensus on universal attributes has
not been achieved, we see several recurring elements
that are represented in the control architecture we
examine. For instance, current limiting via some form
of reference saturation [4, 5] or virtual impedance [3,

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

1



8] appears quite common. Similarly, nested voltage
and current control loops that are commonly deployed
in standard (i.e., balanced) operation carry over [3,
5]. These observations suggest that the approach
adopted for deriving the equivalent circuits in this
effort for our particular control architecture ought to
translate broadly. We also point to several efforts in
power-flow analysis of GFM IBRs in balanced [16,
17] and unbalanced settings [10, 18, 19] that our
models would find immediate applicability in. Finally,
equivalent-circuit models for IBRs have been put forth
for a variety of IBR control architectures, including for
GFM IBRs [6, 19, 20, 21, 22, 23]. Compared to these
prior works, our models are derived in a more detailed
and systematic way from the originating differential
equations describing the dynamics of control- and
physical-layer subsystems. This allows extrapolation to
other GFM control architectures. Crucially, our models
illustrate how various current-limiter designs can be
featured in the equivalent circuit, and in particular,
our proposed equivalent-circuit models for both current
limiting strategies offer a similar underlying structure.

We anticipate these models being valuable to
practicing engineers and academic researchers for a
variety of applications. An immediate one is the
ability to compute steady-state inverter output signals
during normal and faulty operation which can aid power
system protection studies and the assessment of relay
functions such as fault-loop impedance computations.
Furthermore, the models can be incorporated into
power flow studies (involving other assets including
grid-following inverters and synchronous machines).
Finally, it is possible to derive power-angle curves of
GFM inverters with various current limiters and primary
controllers as well as compute stable and unstable
equilibrium operating points. These are essential
ingredients in large-signal stability analysis.

The remainder of this paper is organized as
follows. In Section 2, we outline the control
architecture for the GFM IBR built out with proportional
resonant controllers in the stationary reference frame.
Section 3 outlines the development of positive- and
negative-sequence equivalent circuits that describe the
steady-state operation of the GFM IBR. Simulation
results to validate the equivalent circuit are in Section 4.
Finally, we conclude with a few directions for future
work in Section 5.

Notation

We represent signals in the synchronous reference
frame as Xdq = [Xd, Xq]

⊤, in the stationary reference
frame as xαβ = [xα(t), xβ(t)]

⊤, and in the natural

reference frame as xabc = [xa(t), xb(t), xc(t)]
⊤.

Counter-clockwise rotation of a vector by angle θ in the
Euclidean space is captured by

Γ(θ) =

[
cos θ − sin θ
sin θ cos θ

]
.

In the time domain, we denote positive and negative
sequence signals as x+ and x−, respectively. In the dq
frame, we denote positive and negative sequence signals
asX+ andX−, respectively. Further, to conserve space,
we use the notation x±, X± to denote variables in
equations that apply to positive- and negative-sequence
signals. A balanced set of signals, i.e., signals with
the same amplitude and 2π

3 phase shifted in the natural
reference frame, can be represented as a dynamic
complex phasor [24, 25]. We denote complex phasors
by Xeȷωt, where the underscore denotes a complex
scalar, ȷ denotes the imaginary unit, and ω denotes the
angular speed of the dynamic phasor.

2. GFM Control Architecture

Figure 1 illustrates the three-phase three-wire GFM
control architecture that serves as the baseline for
this study. For better handling during unbalanced
conditions, the control system is built in the stationary
reference frame. The entire stationary-frame GFM
control structure in Fig. 1, along with tuning techniques
and current-limiter design is outlined in detail in [3].
For clarity, we briefly introduce the GFM controls. The
inverter-side current, iiabc, the capacitance voltage, eabc,
and the grid-side current, igabc, of the LCL-filter are
measured and transformed into the stationary reference
frame using Clark’s transformation. Based on the output
measurements, and the power setpoints, P ⋆, Q⋆, the
primary controller generates the reference voltage and
frequency/angle. From there, the reference voltage,
e⋆αβ , feeds into the voltage controller, which leverages
a proportional-resonant controller. The output of the
voltage controller drives the current controller, which in
turn, outputs the reference signals for the switches in the
H-bridge.

To curtail the output current during disturbances in
the grid, we consider two well-known current-limiting
concepts: the current-reference saturation limiter or
magnitude limiter (SatLim), illustrated in yellow
in Fig. 1, and the threshold virtual impedance limiter
(VI-Lim), illustrated in blue in Fig. 1. Initiating switch
S1 and S2 in Fig. 1 activates the VI-Lim and deactivates
the SatLim. Both of these limiters are designed in
the αβ-frame and limit the output current such that
none of the phase currents exceeds the threshold, even
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Figure 1. GFM control architecture with primary controller (droop control), inner-current, and outer-voltage

control loops. Current limiting is implemented via either saturation limiting (SatLim) or virtual-impedance

limiting (VI-Lim); initiating switch S1 and S2 activates the VI-Lim and deactivates the SatLim.

during unbalanced operating conditions. Dynamics of
the different subsystems are described next.

2.1. Output LCL Filter

The dynamics of the LCL filter are captured by:

Lg
d
dt i

g
abc = eabc − vabc −Rgi

g
abc, (1a)

C d
dteabc = iiabc − igabc, (1b)

Li
d
dt i

i
abc = uabc − eabc −Rii

i
abc, (1c)

where Lg and Rg denote the grid-side filter inductance
and resistance, respectively, C denotes the filter
capacitance, and Li andRi denote the inverter-side filter
inductance and resistance, respectively.

2.2. Current Controller

Below, we discuss the dynamics of the current
controller with saturation limiting and virtual impedance
limiting separately.
SatLim. The dynamics of the current controller with
SatLim are given by

1
ω2

0

d2

dt2 γ
c
αβ = kcr (ρi

i⋆
αβ − iiαβ)− γcαβ , (2a)

where γcαβ denotes an internal state variable of the
current controller, kcr denotes the resonant gain, and
ii⋆αβ denotes the reference signal for the inverter-side
filter current (for details on how this is determined,
see subsequent discussion on the voltage controller in
Section 2.3). The reference feeding into the current
controller is scaled by the saturation gain, ρ, which is
defined as:

ρ = min
(
1, Imax

∥Ii⋆
abc∥∞

)
, (2b)

where ∥I i⋆abc∥∞ denotes the infinity norm of the
reference currents generated by the voltage controller
in the natural reference frame. This way, the terminal
output currents are scaled relative to the highest
phase current to guarantee correct current limiting
during unbalanced conditions. This approach to
reference saturation is one of several suggested in
the literature. While specific implementations indeed
vary, the underlying principle of scaling the current
reference to curtail the output is a common theme. The
current controller generates the modulation signal for
the inverter switched terminals, uαβ :

uαβ = 1
ω0

d
dtγ

c
αβ + eαβ + kcp(ρi

i⋆
αβ − iiαβ), (2c)

where kcp denotes the proportional gain. (Since we use
averaged-value models, uαβ equals the reference signal
generated by the current controller.)
VI-Lim. When leveraging the VI-Lim, the current
controller dynamics are given by

1
ω2

0

d2

dt2 γ
c
αβ = kcr (i

i⋆
αβ − iiαβ)− γcαβ , (3a)

and the reference voltage is determined as

uαβ = 1
ω0

d
dtγ

c
αβ + eαβ + kcp(i

i⋆
αβ − iiαβ). (3b)

The lack of scaling of the current reference (by ρ) is the
only distinguishing attribute compared to the dynamics
of the SatLim discussed previously.

2.3. Voltage Controller

SatLim. The dynamics of the voltage controller when
leveraging the SatLim are

1
ω2

0

d2

dt2 γ
v
αβ = kvr (e

⋆
αβ−eαβ−kw(1−ρ)ii⋆αβ)−γvαβ , (4a)
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where γvαβ denotes an internal state variable of the
voltage controller, kvr denotes the resonant gain, kw is
the gain of the anti-windup controller, and e⋆αβ is the
voltage reference from the primary controller (discussed
in detail subsequently in Section 2.4). The reference for
the current controller, ii⋆αβ , is determined by the voltage
controller as

ii⋆αβ = 1
ω0

d
dtγ

v
αβ + igαβ + kvp(e

⋆
αβ − eαβ), (4b)

where kvp denotes the proportional gain in the controller.
VI-Lim. When leveraging the VI-Lim, the dynamics of
the voltage controller are given by

1
ω2

0

d2

dt2 γ
v
αβ = kvr (e

⋆
αβ − eαβ

− ψ(Lvi
d
dt i

i
αβ +Rvii

i
αβ))− γvαβ , (5a)

where Lvi and Rvi are the virtual-impedance’s
inductance and resistance, respectively, and ψ is a
threshold function that gradually enables the virtual
impedance, as a function of the output current, once
the current reaches the threshold, Ith. Using a
threshold function to enable the VI is common practice
for VI-current limiting concepts, though the particular
implementation may differ. In this work, we define the
threshold function as follows: [3]

ψ = max
(
0,

∥Ii⋆
abc∥∞−Ith
Imax−Ith

)
. (5b)

The reference for the current controller, ii⋆αβ , is
determined by the voltage controller as

ii⋆αβ = 1
ω0

d
dtγ

v
αβ + igαβ + kvp(e

⋆
αβ − eαβ

+ ψ(Lvi
d
dt i

i
αβ +Rvii

i
αβ)). (5c)

2.4. Primary Control

In this work, we restrict ourselves to a droop primary
controller; however, all the analysis presented in this
work can be repeated with another primary controller
such as a virtual synchronous machine or virtual
oscillator controller. The droop controller dynamics are
captured by

d
dtθ = ω0 +mp(P

⋆ − P ), (6a)
E⋆ = E0 +mq(Q

⋆ −Q), (6b)

where θ denotes the reference angle of the GFM
controls; ω0 denotes the base frequency; mp and mq

denote the P − f and Q− V droop gains, respectively;
E⋆ denotes the reference voltage magnitude with E0

being the base value; P and Q denote the positive

sequence components of the output active and reactive
power. Positive-sequence voltage and current signals
are obtained by employing Park’s transformation and
filtering out the double line frequency ripple; P ⋆ and
Q⋆ denote the active and reactive output power set
points. Note that the reference signal feeding the voltage
controller, e⋆αβ (see (4a) and (5a)), is defined as

e⋆αβ = Γ(θ)[E⋆, 0]⊤.

3. Steady-state Equivalent Circuit

The equivalent circuit in steady state is represented
in a direct-quadrature reference frame for positive-
and negative-sequence domains. We next provide the
derivation of this circuit focusing on one sub-system at
a time. The level of detail is intentionally tapered off
given space constraints.

3.1. Output LCL Filter

Consider the originating differential equations for
the current in the grid-side inductance:

Lg
d
dt i

g
abc = eabc − vabc −Rgi

g
abc. (7)

Next, we will decompose each signal into positive- and
negative-sequence components, and thereby rewrite (7)
as:1

Lg
d
dt (i

g+
abc + ig−abc) = e+abc+e

−
abc − (v+abc+v

−
abc)

−Rg(i
g+
abc+i

g−
abc). (8)

We next separate the dynamics into positive- and
negative-sequence components:

Lg
d
dt (i

g+
abc) = e+abc − v+abc −Rgi

g+
abc,

Lg
d
dt (i

g−
abc) = e−abc − v−abc −Rgi

g−
abc.

(9)

Balanced three-phase signals can be represented
as rotating complex-valued dynamic phasors with
positive-sequence signals rotating counter-clockwise
and negative-sequence signals rotating clockwise.
Rewriting the differential equations above in a form
that invokes dynamic phasors of the involved variables
yields:

Lg
d
dt (I

g+eȷωt) = E+eȷωt − V +eȷωt −RgI
g+eȷωt,

Lg
d
dt (I

g−e−ȷωt) = E−e−ȷωt − V −e−ȷωt −RgI
g−e−ȷωt.

1In this work, we do not consider zero-sequence signals because
of the absence of a neutral line in the GFM architecture in Fig. 1. To
derive the model for a three-phase four-wire inverter, zero sequence
components must be added to the analysis.
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Simplifying the derivative terms above and applying
elementary algebraic manipulations yields

Lg(
d
dtI

g+ + ȷωIg+) = E+ − V + −RgI
g+,

Lg(
d
dtI

g− − ȷωIg−) = E− − V − −RgI
g−.

We can project complex-valued phasors onto a
dq-frame, with the d-axis representing the real axis,
and the q-axis, the imaginary one (without loss of
generality). Further, the imaginary unit, ȷ, denotes a
+90◦ rotation in the dq-plane. Notice that, for the
negative-sequence plane, ȷ means a −90◦ rotation in the
dq-plane. With these considerations, we have

Lg(
d
dtI

g+
dq + ωΓ(π2 )I

g+
dq ) = E+

dq − V +
dq −RgI

g+
dq ,

Lg(
d
dtI

g−
dq + ωΓ(π2 )I

g−
dq ) = E−

dq − V −
dq −RgI

g−
dq .

As soon as we transfer to a direct-quadrature frame, we
need to define a reference to which we relate the dq
components. All the control signals are defined in the
local dq frame, for which the primary-controller angle,
θ is the zero reference. The grid-side physical signals
are defined in the global DQ frame, for which the grid
voltage, Vg, is the zero reference. For convenience, we
transform all signals into the local dq frame, for which
we define V ±

dq = Γ(−δ)[V ±
DQ, 0]

⊤, where δ denotes the
angle difference between the local and global frame, and
E⋆±

dq = [E⋆±, 0]⊤. Since we are interested in capturing
steady-state operation, we move on to setting derivatives
to zero:

0 = E±
dq − V ±

dq − LgωΓ(
π
2 )I

g±
dq −RgI

g±
dq . (10)

In a similar fashion, we can derive the following
equations for the filter capacitor:

0 = I i±dq − Ig±dq − ωCΓ(π2 )E
±
dq, (11)

and the following ones for the inverter-side inductive
filter:

0 = U±
dq − E±

dq − LiωΓ(
π
2 )I

i±
dq −RiI

i±
dq . (12)

3.2. Current Controller

SatLim. Consider the dynamics for the current
controller with saturation limiting in (2). We can follow
along the same process as the dynamics of the grid-side
inductance in Section 3.1 to recover the following
algebraic equations that describe steady-state operation:

−ω2

ω2
0
γc±dq = kcr (ρI

i⋆±
dq − I i±dq )− γc±dq ,

ω
ω0

Γ(π2 )γ
c±
dq = U±

dq − E±
dq − kcp(ρI

i⋆±
dq − I i±dq ).

(13)

VI-Lim. In the case of the current controller
implemented with virtual impedance imiting (3), we get
the following algebraic equations in steady state:

−ω2

ω2
0
γc±dq = kcr (I

i⋆±
dq − I i±dq )− γc±dq ,

ω
ω0

Γ(π2 )γ
c±
dq = U±

dq − E±
dq − kcp(I

i⋆±
dq − I i±dq ).

(14)

3.3. Voltage Controller

SatLim. Next, we consider the dynamics for the
voltage controller with saturation limiting in (4). We
can follow along the same process as the dynamics
of the grid-side inductance outlined in Section 3.1 to
recover the following algebraic equations that describe
steady-state operation:

ω
ω0

Γ(π2 )γ
v±
dq = I i⋆±dq − Ig±dq − kvp(E

⋆±
dq − E±

dq), (15)

−ω2

ω2
0
γv±dq = kvr (E

⋆±
dq − E±

dq − kw(1− ρ)I i⋆±dq )− γv±dq .

VI-Lim. In the case of the voltage controller
implemented with virtual impedance limiting (5), we get
the following algebraic equations in steady state:

ω
ω0

Γ(π2 )γ
v±
dq = I i⋆±dq − Ig±dq − kvp(E

⋆±
dq − E±

dq

− ψ(LviωΓ(
π
2 )I

i±
dq +RviI

i±
dq )),

−ω2

ω2
0
γv±dq = −γv±dq + kvr (E

⋆±
dq − E±

dq

− ψ(LviωΓ(
π
2 )I

i±
dq +RviI

i±
dq )).

(16)

3.4. Synthesizing an Equivalent Circuit

We recognize that during steady-state ω ≈ ω0.
Applying this approximation to (13) and (15) yields:

0 = ρI i⋆±dq − I i±dq ,

0 = E⋆±
dq − E±

dq − kw(1− ρ)I i⋆±dq .
(17)

Similarly, applying it to (14) and (16) results in

0 = I i⋆±dq − I i±dq ,

0 = E⋆±
dq − E±

dq − ψ(LviωΓ(
π
2 )I

i±
dq +RviI

i±
dq ).

(18)

SatLim. Let us now focus on the derivation of
an equivalent-circuit model for the architecture with
saturation limiting. We can construct the following three
equations by manipulating (10), (11), and (17):

E⋆±
dq = E±

dq + ρI i⋆±dq · kw(1−ρ)
ρ , (19a)
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Figure 2. Positive- and negative-sequence

steady-state equivalent-circuit models with saturation

limiting.

Figure 3. Positive- and negative-sequence

steady-state equivalent-circuit models with virtual

impedance limiting.

E±
dq = V ±

dq + LgωΓ(
π
2 )I

g±
dq +RgI

g±
dq , (19b)

ωCΓ(π2 )E
±
dq = ρI i⋆±dq − Ig±dq . (19c)

We can map (19) to the equivalent circuits in Fig. 2,
with (19a) and (19b) capturing the KVL equations
around the two loops and (19c) capturing KCL at the
node with voltage E±

dq. Notice that the driving voltage

in the negative-sequence equivalent circuit, E⋆−
dq = 0

because the primary controller is operating only in the
positive sequence, i.e., the output-power feedback to the
primary controller is relayed to positive sequence only.
VI-Lim. Next, we focus on the derivation of
an equivalent-circuit model for the architecture with
virtual-impedance limiting. We can construct the
following three equations by manipulating (10), (11),
and (18):

E⋆±
dq = E±

dq + ψLviωΓ(
π
2 )I

i±
dq + I i±dq · ψRvi, (20a)

E±
dq = V ±

dq + LgωΓ(
π
2 )I

g±
dq +RgI

g±
dq , (20b)

ωCΓ(π2 )E
±
dq = I i±dq − Ig±dq . (20c)

We can map (20) to the equivalent circuits in Fig. 3,
with (20a) and (20b) capturing the KVL equations
around the two loops and (20c) capturing KCL at

the node with voltage E±
dq. As was the case with

the saturation limiting, the driving voltage in the
negative-sequence equivalent circuit, E⋆−

dq = 0.
Notice from (2b) and (5b) that ρ and ψ are piecewise

continuous functions. This aspect can challenge
implementation. To counter the computational
complexity, we adopt the following continuous
approximations

ρ′ = − 1
2

(
−1− Imax

∥Ii⋆
abc∥∞

+

√(
Imax

∥Ii⋆
abc∥∞

−1
)2)

, (21)

ψ′ = 1
2

(
∥Ii⋆

abc∥∞−Ith
Imax−Ith

+

√(
∥Ii⋆

abc∥∞−Ith
Imax−Ith

)2)
. (22)

Similarly, ∥I i⋆abc∥∞ in the expressions for ρ′ and ψ′ is
approximated with a continuous function. In particular,
instead of computing

∥I i⋆abc∥∞ = max(|I i⋆a |, |I i⋆b |, |I i⋆c |),

we adopt the following p-norm approximation (with
sufficiently high p):

∥I i⋆abc∥∞ ≈
(
|I i⋆a |p + |I i⋆b |p + |I i⋆c |p

) 1
p . (23)

The magnitudes of the phase-current references, |I i⋆n |,
can be computed via the theory of symmetrical
components and Fortescue’s transformation:

|I i⋆a | = |I i⋆+dq + I i⋆−dq |,

|I i⋆b | = |Γ( 4π3 )I i⋆+dq + Γ( 2π3 )I i⋆−dq |,

|I i⋆c | = |Γ( 2π3 )I i⋆+dq + Γ( 4π3 )I i⋆−dq |.

(24)

To solve the system of nonlinear algebraic equations,
we combine the equations (6a), (6b), (19), (21),
(23), and (24) for SatLim, or (6a), (6b), (20),
(22), (23), and (24) for VI-Lim, into a system
of 19 equations with 19 unknowns. Under
balanced conditions, the equivalent-circuit models to be
leveraged for steady-state analysis are the same as the
positive-sequence circuits in Fig. 2 and 3.

4. Simulation Results

In this section, we put our steady-state
equivalent-circuit GFM models to the test by
comparing their outputs with time-domain trajectories
resulting from full-order EMT simulations set up
in MATLAB-Simulink. We emulate faults —both
unbalanced and balanced—at the LCL-filter terminals
while leveraging either the SatLim or VI-Lim in the
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Figure 4. Comparative results for the unbalanced fault scenario between (a.1) the EMT simulations and (a.2)

the numerically computed phasors from the equivalent-circuit models.
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Figure 5. Comparative results for the balanced fault scenario between (b.1) the EMT simulations and (b.2) the

numerically computed phasors from the equivalent-circuit models.
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Table 1. Nominal Inverter Parameters & Inputs.

Parameter Value Unit Parameter Value Unit

ω0 2π60 rad
s kcp 0.9800 pu

ω0Li 0.0196 pu kcr 0.695 pu

Ri 0.0139 pu kvp 1.4480 pu

ω0C 0.1086 pu kvr 5.1484 pu

ω0Lg 0.0294 pu mp 1 %

Rg 0.0209 pu mq 4 %

Imax 1.2 pu kw (kvp)
−1 pu

ω0Lvi 0.5357 pu Ith 1 pu

Rvi 0.6384 pu

inverter controls. For the unbalanced fault, we apply
a 0.5-pu voltage drop/rise in the positive/negative
sequence grid voltage. This is a typical fault
characteristic of a severe line-to-line fault. For the
balanced fault, we apply a positive sequence voltage
drop to the grid voltage. We compute the steady-state
output voltage and current of the inverter pre-fault
and during the fault, and compare that with the
steady-state values obtained from the EMT simulation.
Complex steady-state voltage and current phasors are
extracted from the EMT simulation using discrete
Fourier transformations and separated into sequence
components by leveraging symmetrical components
theory. This process inherently creates some numerical
error in the signal processing stage, which translates into
a small mismatch between the EMT and numerically
obtained complex phasors (see results in Fig. 4 and
Fig. 5). For the EMT simulation, we use the GFM
control architecture in Fig. 1. The inverter parameters
are listed in Table 1.

Figure 4 collectively shows the results for the
unbalanced fault while using either (a) the SatLim or (b)
the VI-Lim in the inverter controls. The time-domain
signals illustrate the LCL capacitor voltage, and the
grid-side LCL current for the EMT simulation. At t =
−0.1 s, we apply a step change in the power set point
from P ⋆ = 0.4 pu to P ⋆ = 0.8 pu, which is noticeable
by the increase in output current. At t = 0 s, we apply
the unbalanced fault for a duration of 100ms. Notice
that the phase currents are scaled by the limiter such
that the highest phase current does not surpass the limit
of 1.2 pu. For the pre-fault period where P ⋆ = 0.4 pu
and P ⋆ = 0.8 pu, and during the fault, we compare the
steady-state attributes from the numerical computation
with the EMT simulation. We display the results in
the form of sequence voltage and current phasors, as
shown in Fig. 4(a.1), (b.1) for the EMT simulations
and Fig. 4(a.2), (b.2) for the numerical computation

leveraging the GFM equivalent-circuit models. We
observe a close match between the EMT simulation
and the equivalent-circuit models, both during pre-fault
balanced conditions, as well as during the unbalanced
fault. Further, notice that the pre-fault phasor plots are
identical for SatLim and VI-Lim because the limiter
is not engaging during normal operation; however, a
different behavior during fault conditions is noticeable
due to the actions of the limiter. The SatLim behaves
as a resistance while the virtual impedance has an
impedance angle set to 40◦.

To illustrate that the same equivalent GFM network
models can be leveraged for balanced faults, we present
balanced-fault results in Fig. 5.

5. Conclusions & Future Work

This paper presented a methodology to derive
steady-state GFM equivalent-circuit models under
unbalanced steady-state operating conditions. The
model derivation is outlined starting with the dynamic
state equations of a stationary-frame controlled
GFM inverter. The models include two well-known
current-limiting concepts; the current-reference
saturation and virtual impedance limiter, and are
extendable to other GFM control architectures. We
validate the models against full-order EMT simulations
and illustrate a tight match. Steady-state GFM models
hold much value in, e.g., power system protection
studies and design, large-signal stability analysis, or
power flow analyses, in power grids with a mix of IBRs.
We intend to pursue these applications as future work.
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