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Complexities of Thermal Runaway

Lithium-ion battery safety has become one of the most discussed 
topics in recent years, not only as a subject of debate but also as a 
mandatory requirement driven by industry standards for deploying 
high-reliability battery power systems across all market applications. 
As more batteries enter the market in various applications, there is a 
strong incentive to improve safety and to mitigate associated consumer 
concerns to accelerate the adoption of electric vehicles (EVs) and 
other devices. The cornerstone of battery safety lies in understanding 
and mitigating thermal runaway (TR)—a failure mode characterized 
by a rapid, self-heating, and uncontrollable increase in temperature 
and pressure within a battery cell. This can lead to the venting of 
toxic gases, fires, or explosions, posing severe risks to both users and 
manufacturers.1,2 Determining whether a Li-ion battery meets industry 
safety requirements, or assessing the severity of a TR event, requires 
advanced knowledge of TR phenomena and relevant experimentation.

Despite advances in battery technology, the chaotic nature of TR 
makes it a complex phenomenon to model and, more critically, to 
predict its impact on battery pack design. Variability in manufacturing 
processes, material properties, and usage conditions means that 
even cells from the same batch can exhibit significantly different 
characteristics during TR.3-6 This unpredictability is compounded by 
the fact that TR is influenced by a multitude of interconnected factors, 
including electrochemical reactions, thermal dynamics, electrical 
configuration, and mechanical stresses.

Understanding the complexity of TR requires sophisticated 
experimentation, empirical data, and robust modeling and simulation 
approaches that capture the phenomenon’s essential features. Physics-
based mathematical models are often indispensable for elucidating 
TR mechanisms. However, they must balance detailed accuracy with 
computational efficiency, often requiring assumptions, mathematical 
constructs, and simplifications, especially for battery packs. Cell-
level TR understanding is insufficient; as batteries scale to modules 
and packs, the risk of TR propagation escalates. Therefore, modeling 
must extend to the pack level, incorporating cell interactions and the 
overall thermal management system. Ensuring battery pack safety is 
critical, as a single cell failure can trigger a cascade of exothermic 
decomposition reactions, potentially leading to pack failure.

The most significant challenge, however, remains the accurate 
prediction of TR events both in single cells and battery packs. Future 
research must focus on refining these models and developing advanced 
predictive tools that integrate probabilistic methods. Machine learning 
(ML) and artificial intelligence (AI) also offer promising data-driven 
avenues for enhancing predictive capabilities.7 

This article discusses the dual challenges of modeling and 
predicting TR in li-ion batteries. It explores the current challenges of 
TR modeling, the methods for progressing from single cells to battery 
packs, and future directions involving the use of probabilistic methods 
and ML/AI to tackle this multifaceted issue. Accurate prediction of 
TR events remains a major challenge, especially because of the cell-
to-cell variability, but also due to parametrization, which requires 
complex experimentation or exhaustive experimental data for training 
data-driven ML models. Continued research and innovation in 
modeling and predictive techniques are essential for ensuring safer 
and more reliable battery systems.

Modeling of Li-ion Battery Thermal 
Runaway: Insights into Modeling  
and Prediction
by Paul T. Coman, Andrew Weng, Jason Ostanek, Eric Darcy, Donal P. Finegan, Ralph 
E. White

Physics-Based Modeling Approaches

TR models often include detailed representations of the battery’s 
internal reactions and structural changes in a full-order modeling 
(FOM) setting using different models, including mechanical models; 
electrochemical, electrical, thermal, and models that include TR 
propagation; fire propagation, reactive flow, pressure change models; 
mechanical response; and decomposition reactions.8 These reactions 
involve the decomposition of the SEI (solid-electrolyte interphase) 
layer, anode, cathode, electrolyte, salt, binder, and other materials 
within the battery which can react with the electrolyte or with the 
other gases generated during TR.9,10 These reactions can be modeled 
and used to calculate the thermal energy within a cell or pack, but 
such an approach often lacks mechanical or gas flow, for example. 
Some advanced models include thermodynamic equations to calculate 
the amount of gas vented from the cell and to measure the mass of 
each battery component to provide important parameters for analyzing 
TR numerically.11 High-speed tomography has shown that TR can 
lead to the collapse of the electrodes and the structure, as well as the 
melting of the current-collecting materials, which also indicates that 
mechanical effects need to be included.12 These insights are vital for 
creating accurate and representative numerical models. Accounting for 
all the reactions and phenomena in a model is an extremely complex 
process which is not practical with current computational capabilities. 
Such a model requires many measured parameters and knowledge 
of the reactions that occur for each chemistry of interest.13 A typical 
physics-based model used for predicting single-cell TR behavior can 
be described with the equations in Table I.

As can be seen from Table I, the model describes the reactions 
that occur inside a cell during TR, but even this basic model requires 
at least 15 parameters that require complex experimental data. For 
instance, accelerating rate calorimetry (ARC) or differential rate 
calorimetry (DSC) is needed to determine the activation energy (the 
E-terms in the Table) and pre-exponential factor (the A-terms) for each 
cell under different conditions. This comprehensive physics-based 
modeling can lead to accurate temperature predictions, but it lacks 
some critical phenomena that are essential for understanding the real 
dynamics of TR.

Another key aspect of TR that needs to be incorporated is the 
venting of gas and ejecta. Venting plays a significant role in the overall 
TR process, as it involves the release of gases and materials from the 
cell, impacting the thermal, electrical, and mechanical behavior of the 
battery, but, in this specific case, adds at least 12 extra parameters that 
need experimentation, as seen in Table II.

But venting is also a complex phenomenon, which can be divided 
into two assumptions: 1) considering vapor-liquid equilibrium (VLE) 
assumption,15 and 2) considering conditions of non-equilibrium. In 
the latter approach,16 a non-equilibrium model using porous drying 
theory can be introduced. This evaporation process is described by 
the constant rate drying period (CRDP) and the decaying rate drying 
period (DRDP). This is important because evaporative cooling affects 
the time between venting and thermal runaway.17 Gas is also generated 
from decomposition reactions. The gas generation rate can be modeled 
in several ways.  Simple constant rate assumptions are commonly 
employed, while other approaches include an analogy where heat 

(continued on next page)
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Table I. Set of equations describing the decomposition reactions modeled in typical physics-based models.10,11,14
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to downscale a model from a 3D to a 2D model. In Fig. 4, it can be seen 
that a 3D-2D reduced order model can still predict the temperature 
measured experimentally without much loss in terms of precision for 
a single cell. 

However, when scaling from cells to packs, additional parameters 
are added to the model, associated with the cell dimensions, heat 
transfer coefficients, and others, which adds more uncertainty in 

modeling. Using 3D or 2D FEA reduced models is the most desirable 
approach for analyzing battery packs, due to the presence of pack 
design piece-part electrical, mechanical, and thermal components, etc. 
However, a physics-based FOM is almost impossible because there 
are so many unknowns and because of cell-to-cell variability. A recent 
reducing order approach, where the 3D thermal model was reduced 
to a 2D model with a heat-generation profile generated by empirical 
observation (Fig. 5(a) and (b)) and combined with an efficiency factor.

Adding an efficiency factor is a good approach to assist the 
design of battery packs, as seen when comparing simulation with 
experimental data (Fig. 5(c)). Modeling TR in lithium-ion batteries 
can be approached through physics-based models, reduced-order 
models, or multi-scale models, each with its own set of advantages and 
challenges. Physics-based models provide a detailed understanding of 
the electrochemical and thermal processes involved, while reduced-
order models offer computational efficiency by simplifying complex 
interactions. Multi-scale models integrate phenomena across different 
scales to provide a comprehensive view of TR dynamics. 

Accurately Predicting TR:  
What’s Needed and Can AI Help?

Despite significant efforts in TR modeling, accurate TR predictions 
remain elusive. The main impediment to accurate predictions is 
the inherently stochastic nature of TR. Even cells from the same 
production batch from the same manufacturer with the same 
dimensions, same chemistry, and same capacities can exhibit different 
TR characteristics. For example, Fig. 6 shows the variability in total 
energy released through the cell casing for a variety of cell types. 

(continued on next page)

Table I. Set of equations describing the decomposition reactions modeled in typical physics-based models.10,11,14
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Table II. Equations describing the reactions modeled in a typical physics-based model with venting.10,11,14

EQUATION DESCRIPTION VARIABLES PARAMETERS
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Fig. 1. Comparison between modeling predictions using a comprehensive 
physics-based model and experimental data. Incorporating venting equa-
tions also captures the Joule-Thomson/evaporative cooling effect in the 
pre-onset phase.11

Fig. 2. Distribution of energy released during TR through the cell body vs. 
total, for the same type of 18650-format cells and chemistry calculated using 
a fractional thermal runaway calorimeter (FTRC).21 

Fig. 3. ROM by subtracting the energy due to venting of electrolyte and 
ejecta from the total electrochemical energy and introducing the efficiency 
factor (η).24

generation and gas generation are proportional. For example, in 
Refs.11,15 it was assumed that the electrolyte decomposition reaction 
rate is proportional to the rate of electrolyte evaporation. The authors 
in Ref.16 made a similar assumption for the vent gas mixture. 

Models can incorporate the venting of the electrolyte by setting 
up burst conditions for the trigger pressure of the battery relief 
mechanism, simulating venting. This approach includes the partial 
ejection of the jelly roll, where the amount of ejecta is measured and 
incorporated into the model. 

The processes involved in the electrolyte are complex and include 
evaporation, boiling, and venting, which can be accompanied by 
explosions of ejecta. In terms of boiling and evaporation, knowledge 
about the electrolyte composition is also required, because it influences 
the energy output. 

For modeling the electrolyte, mixtures with specific compositions 
need to be known, and venting is modeled by assuming the electrolyte 

behaves as an ideal gas flowing isentropically through an orifice, 
which opens at a critical pressure, but might be assumed to be a real 
gas during the VLE phase. The pressure and temperature during 
venting are defined by equations derived from the energy balance in 
a reversible system with compressible flow of an ideal gas passing 
through an orifice.

Additionally, another challenge is combustion outside the 
cell,18,19 which, in fact, can impact the TR behavior inside the 
cell. By incorporating gas venting, electrolyte thermodynamics, 
and combustion, the models can provide a more comprehensive 
understanding of TR and help identify critical areas for improving 
battery safety. An example of modeling prediction using a 
comprehensive physics-based model using the venting equations can 
be seen in Fig. 1.

Such a model can predict the heat dynamics that can be observed 
by measuring the temperature of the housing of a cell and can provide 
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Table I. Set of equations describing the decomposition reactions modeled in typical physics-based models.10,11,14
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Fig. 1. Comparison between modeling predictions using a comprehensive 
physics-based model and experimental data. Incorporating venting equa-
tions also captures the Joule-Thomson/evaporative cooling effect in the 
pre-onset phase.11

Fig. 2. Distribution of energy released during TR through the cell body vs. 
total, for the same type of 18650-format cells and chemistry calculated using 
a fractional thermal runaway calorimeter (FTRC).21 

Fig. 3. ROM by subtracting the energy due to venting of electrolyte and 
ejecta from the total electrochemical energy and introducing the efficiency 
factor (η).24

behaviors captured in multi-scale simulations while retaining the 
essential characteristics needed for accurate predictions. By reducing 
the number of parameters and computational requirements, ROMs 
provide a more efficient way to analyze TR and support the rapid 
prototyping and evaluation of battery systems, even when analyzing 
complex phenomena like the venting of gases and expansion.22 They 
are instrumental in making advanced modeling techniques accessible 
for real-world applications, ensuring timely and cost-effective safety 
assessments. Some of the most common reduced-order methods, 
especially for battery packs, is to consider either reducing the thermal 
model and coupling with the electrochemical model23 or reducing the 
number of equations by coupling decomposition reactions24 (Fig. 3).

In Fig. 3, it can be seen that some of the reactions can be nested 
into a so-called efficiency factor, which greatly reduces the number of 
parameters that need to be fitted, estimated (for example by knowing 
the cell capacity), or measured. Another common reduction method is 
to downscale a model from a 3D to a 2D model. In Fig. 4, it can be seen 
that a 3D-2D reduced order model can still predict the temperature 
measured experimentally without much loss in terms of precision for 
a single cell. 

However, when scaling from cells to packs, additional parameters 
are added to the model, associated with the cell dimensions, heat 
transfer coefficients, and others, which adds more uncertainty in 
modeling. Using 3D or 2D FEA reduced models is the most desirable 
approach for analyzing battery packs, due to the presence of pack 
design piece-part electrical, mechanical, and thermal components, etc. 
However, a physics-based FOM is almost impossible because there 
are so many unknowns and because of cell-to-cell variability. A recent 
reducing order approach, where the 3D thermal model was reduced 
to a 2D model with a heat-generation profile generated by empirical 
observation (Fig. 5(a) and (b)) and combined with an efficiency factor.

Adding an efficiency factor is a good approach to assist the 
design of battery packs, as seen when comparing simulation with 
experimental data (Fig. 5(c)). Modeling TR in lithium-ion batteries 
can be approached through physics-based models, reduced-order 
models, or multi-scale models, each with its own set of advantages and 
challenges. Physics-based models provide a detailed understanding of 
the electrochemical and thermal processes involved, while reduced-
order models offer computational efficiency by simplifying complex 
interactions. Multi-scale models integrate phenomena across different 
scales to provide a comprehensive view of TR dynamics. 

Accurately Predicting TR:  
What’s Needed and Can AI Help?

Despite significant efforts in TR modeling, accurate TR predictions 
remain elusive. The main impediment to accurate predictions is 
the inherently stochastic nature of TR. Even cells from the same 

the energy released during various exothermic and endothermic 
reactions, including the gas-throttling Joule-Thomson/evaporative 
cooling effect20 that might occur before the TR onset point. 

Although these FOMs offer a high fidelity in calculating 
temperatures and energy, they often require simplifications to manage 
computational efficiency while retaining essential details, while they 
also require a large number of parameters. Despite the complexity and 
the need for numerous parameters, these TR models can still be used 
to assist in the design of safe battery packs and to analyze various 
geometric designs. However, they cannot be used for prediction in 
their current form. Importantly, even when a physics-based model is 
set in place for a certain Li-ion chemistry, during TR, each cell yields 
different energy outputs even if they come from the same batch of 
cells. Consequently, there is a large distribution in terms of energy 
output during TR (Fig. 2). 

Given the importance of ensuring battery safety, especially at the 
pack level, continuous research and development in TR modeling is 
crucial. Experimental data is essential for validating these models and 
for ensuring that they accurately reflect real-world behavior. 

Reduced-order Thermal Runaway Models

One of the methods to model TR in battery packs is to find ways to 
reduce the computational burden. Reduced-order models (ROMs) are 
crucial for integrating detailed multi-scale simulations into practical 
engineering applications. These models aim to simplify the complex 

http://Q.ec
http://www.electrochem.org


66		  The Electrochemical Society Interface • Fall 2024 • www.electrochem.org

Fig. 4. A 3D-2D reduced-order model which can fit experimental data (temperature measured on the side of the 18650-format cell steel can and at the bottom) 
without the burden of an FOM.24

Coman et al.
(continued from previous page)

(a) (b)

production batch from the same manufacturer with the same 
dimensions, same chemistry, and same capacities can exhibit different 
TR characteristics. For example, Fig. 6 shows the variability in total 
energy released through the cell casing for a variety of cell types. 
For some cell types, the energy released can vary from 2% to 30%, 
highlighting the extremely stochastic nature of TR. This high degree 
of variability in TR propagation is an inherent attribute of the system 
which exhibits high sensitivity to initial conditions.

The stochastic nature of TR calls for the use of more probabilistic 
frameworks for TR prediction. Existing prediction methods tend to 
be deterministic and thus only predict a single TR outcome. This 
predicted outcome is not necessarily “wrong,” but it can represent 
only one outcome when a range of different outcomes are possible. 
For physics-based TR models, a future approach could be to combine 
existing deterministic simulations with Monte Carlo simulation 
approaches in which the model is repeatedly run to generate a 

Fig. 5. The results from the ROM depicting: (a) the empirically observed heat generation profile, (b) the thermal runaway energy (TR) released through the 
single-cell cans, and (c) left and right, the comparison between the modeling predictions and experimental data for a battery pack.25

(c)

(a) (b)
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(continued on next page)

Future research must continue to refine these models and 
explore the integration of probabilistic approaches and AI/ML to 
enhance predictive capabilities. These advanced techniques hold 
the potential to significantly improve battery safety and reliability. 
However, predicting the dynamics of TR in a battery pack from the 
beginning remains challenging and requires a large volume of data 
for both individual cells and packs. The continuous development 
of probabilistic approaches and AI/ML models, combined with 
comprehensive data collection and real-time monitoring, is essential 
for overcoming these challenges and ensuring the safe and efficient 
operation of lithium-ion batteries.			               
©The Electrochemical Society. DOI: 10.1149/2.F09243IF
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Fig. 6. Variability in total energy released through cell casing. Dataset 
adapted from the Battery Failure Databank (NREL).3 

distribution of outcomes. Within each run, model parameters, such 
as those listed in Table I and Table II, are randomly sampled based 
on distributions of values that are either measured or assumed. It is 
not yet clear how many runs are necessary to accurately capture the 
failure distributions of typical commercial cells. When computation 
time becomes a bottleneck, ROMs can be used in place of FOMs. 
Thus, fast and accurate ROMs of TR may play an important role in 
enabling stochastic TR predictions.

AI/ML models, specifically artificial neural network (ANN) 
models, may still play a role in enabling accurate TR predictions, 
though many challenges remain. ANN models provide some inherent 
representation of stochasticity since the nodes in the layer can be 
interpreted as a probability (e.g., of TR occurrence). ANN models are 
also fundamentally data-driven without requiring knowledge of the 
complex, often intractable, multi-domain physics of TR. Recently, 
physics-informed neural networks (PINNs)26 which combine the 
advantages of both types of models27,28 have also been proposed. As 
of today, the literature on ANN models for TR prediction applications 
focuses on prediction of battery heat generation,29 temperature 
estimation,30,31 and surrogate modeling for FEM simulations.32 These 
methods show the feasibility of physical-state predictions without the 
need to construct a physical model. However, the accuracy of such 
models when applied beyond the immediate dataset they were trained 
and tested on remains unclear. 

Ultimately, the availability of reliable experimental TR data is the 
biggest impediment to building and validating any kind of TR model. 
Large amounts of experimental data are especially needed for AI/ML 
approaches whose accuracy and generalizability largely depend on the 
quality and volume of data used to train the model. Comparatively, 
AI/ML methods need the most data, followed by FOMs, followed 
by ROMs. The stochastic nature of TR further means that even more 
measurements are needed to resolve distributions of outcomes. Given 
the difficulty of TR experiments and the existing sparsity of data, 
community efforts are needed to build and curate large TR datasets 
for model training and validation. The NREL/NASA Battery Failure 
Databank3 is the first effort of its kind and should be viewed as a 
promising beginning to an effort that must be continued and expanded.

Summary

Modeling TR in lithium-ion batteries can be approached through 
physics-based models, reduced-order models, or multi-scale models, 
each with its own set of advantages and challenges. Physics-based 
models provide a detailed understanding of the electrochemical 
and thermal processes involved, while reduced-order models offer 
computational efficiency by simplifying complex interactions. Multi-
scale models integrate phenomena across different scales to provide a 
comprehensive view of TR dynamics. Despite these advancements, 
accurate prediction of TR events remains a major challenge due to the 
chaotic and highly variable nature of the phenomena.
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