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ABSTRACT

The atmospheric boundary layer (ABL) height plays a key role in many atmospheric processes as one of the dominant flow length scales.
However, a systematic quantification of the ABL height over the entire range of scales (i.e., with periods ranging from one minute to one year)
is still lacking in literature. In this work, the ABL height is quantified based on high-resolution measurements collected by a scanning pulsed
Doppler LiDAR during the recent American WAKE experimeNt (AWAKEN) campaign. The high availability of ABL height estimates (�2200
collected over one year and each of them based on 10-min averaged statistics) allows to robustly assess five different ABL height models, i.e.,
one for convective thermal conditions and four for stable conditions. Thermal condition is quantified by a stability parameter spanning three
orders of magnitude and probed by near-ground 3D sonic anemometry. The free-atmosphere stability, quantified by the Brunt–V€ais€al€a fre-
quency, is both calculated from simultaneous radiosonde measurements and obtained from the best fit of two of the chosen ABL height models.
Good agreement is found between the data and three of the chosen models, quantified by mean absolute errors on the ABL height between 281
and 585 m. Furthermore, the seasonal variability of the convective ABL height model parameters (�15% to þ23% with respect to the year base-
line) agrees with the variability of buoyancy-generated turbulence caused by the variation in solar radiation throughout the year.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0211259

I. INTRODUCTION

The atmospheric boundary layer (ABL), i.e., the lowest portion of
the Earth’s atmosphere affected by the presence of the ground via sur-
face drag and energy exchange,1,2 is characterized by complex turbu-
lence processes impacting several fields such as pollutant transport,3

numerical weather prediction,4 air quality,5 and wind6 and solar
energy.7 A deep understanding of the physical processes within the
ABL is rooted in reliable experimental measurements up to the ABL
height [zi � Oð1000Þ m], which represents one of the fundamental
scaling parameters governing the turbulence dynamics in the atmo-
sphere.1,8,9 A key feature of this parameter is its large variability over a
wide range of timescales, spanning from minutes-long1 to several
months10 and years.11 To address this feature, accurate predictive
models of the ABL height are available in the literature to capture the

effect of either positive12,13 or negative14–18 vertical heat flux, as well as
free-flow stratification in the troposphere,19,20 high-latitudes,21 and
complex terrain effects. A caveat of these studies, however, is the lim-
ited amount of high-quality experimental data (on the order of few
tens of data points along the vertical direction,22 typically collected by
3D sonic anemometry) against which the ABL height models are
assessed, mainly due to the relatively short duration of the experimen-
tal campaigns (e.g., a few months).23,24

From the experimental standpoint, a suitable way to determine
the ABL height involves diagnosing vertical turbulent statistics evolv-
ing along the vertical direction (z) and rapidly changing across the
ABL height, and calibrating some empirical models dependent on z
and using zi as a free parameter.25 Several diagnostic methods are
available in the literature according to the physical mechanisms driving
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the ABL evolution throughout the day. In particular, the daytime ABL
height can be determined based on mean thermodynamic profiles,26

mean backscatter coefficient (which keeps track of the local aerosol
concentration),27–31 backscatter-to-extinction coefficient ratio,32 back-
scatter coefficient variance,33 vertical velocity variance,34 and turbulent
shear stress,35 i.e., statistical quantities reflecting a high turbulence
intensity within the ABL and a subsequent sharp decrease moving into
the free troposphere. By contrast, the nocturnal ABL, constituted by a
thin shear layer (of the order of few hundreds of meters) closer to the
ground and capped by a residual layer aloft, is more challenging to
probe due to the low turbulence level and the presence of non-
canonical ABL events. Thus, retrieval methods for the stable ABL
height seek local maxima of the mean velocity36,37 as well as local min-
ima of streamwise37 or vertical velocity38 fluctuations.

In this scenario, a breadth of experimental instruments are com-
monly used to determine the ABL height experimentally, such as
radiosondes,39,40 ceilometers,31 and optical sensing techni-
ques.10,26,27,40–42 Among the latter, the scanning pulsed Doppler light
detection ranging (LiDAR) technology has gained importance in esti-
mating the ABL height due to its extended measurement range (over
2000 m) together with its high spatiotemporal resolution (� 20 m,
� 1s, respectively) (see, e.g., Refs. 25, 30, and 43–46). Several diagnos-
tic techniques have been developed to quantify the ABL height based
on LiDAR-retrieved quantities, such as wavelet covariance trans-
form,10,28–30 image processing,47 empirical models,27,48 and gradient44

and variance methods.33 However, the accuracy of these methods relies
upon months- to years-long experimental campaigns to quantify the
variability of zi with adequate statistical convergence.

To address several research questions in the wind energy field,
the multi-institutional American WAKE experimeNt (AWAKEN)
campaign was recently conducted in the Southern Great Plains (SGP)
in Oklahoma, U.S., from 2022 to 2024.49,50 One of the main goals of
this campaign is to study the mutual interaction between the ABL and
five closely spaced wind farms under different micro-meteorological
conditions. This goal, in turn, requires a systematic and reliable quanti-
fication of the ABL height over the entire range of energy-containing
turbulent scales. Thus, in this work, a novel dataset of ABL height mea-
surements is presented based on data collected by one ground-based
scanning LiDAR deployed during the AWAKEN campaign. In partic-
ular, high-frequency, quality-controlled LiDAR measurements of verti-
cal velocity and signal-to-noise ratio are used to estimate zi under a
wide range of thermal and shear conditions, the latter quantified by
high-frequency single-point 3D sonic anemometer measurements
close to the ground. Given the large number of available ABL height
estimates, the present analysis aims to obtain a robust assessment of
five ABL height predictive models available from the literature (both in
stable and convective conditions) against the experimental ABL height
measurements. Two of these models encompass the effect of the free-
atmosphere stability, quantified by the Brunt–V€ais€al€a frequency. The
latter is then validated against the analogous estimates obtained from
simultaneous and co-located radiosonde profiles of potential tempera-
ture. Finally, leveraging the year-long span of the present measure-
ments, the variability of the ABL height model parameters is linked to
the presence of synoptic timescales driving the flow throughout the
year.

This paper is organized as follows: in Sec. II, the experimental
campaign, LiDAR scanning strategy, and quality control processes are

detailed. In Sec. III, both the predictive and the diagnostic ABL height
models used in this work are introduced. Results are presented in Sec.
IV, and conclusions are discussed in Sec. V.

II. EXPERIMENTAL DATA COLLECTION
A. Experimental site, instrumentation, and scanning
strategy

The data presented in this work are collected at the AWAKEN
C1a site located midway between the King Plains and Armadillo Flats
wind farms (cf. with Fig. 1), mainly featuring north-south wind condi-
tions.11,50–52 Among the instruments deployed at site C1a by different
research teams, this study focuses on the data collected by two sensing
instruments, namely, one Streamline XR scanning pulsed Doppler
LiDAR (manufactured by Halo Photonics) and one surface flux sta-
tion, both owned by The University of Texas at Dallas and deployed
from October 4, 2022, to October 14, 2023. The surface flux station is
equipped with two CSAT3-3D sonic anemometers (manufactured by
Campbell Scientific Inc.) mounted at 2 m height along the prevailing
wind direction (north–south) probing the three-dimensional wind vec-
tor and temperature within a measurement volume of the order of 0.1
m and sampling rate of 20Hz, thus fully resolving the shear and buoy-
ancy turbulent motions close to the ground.

In order to probe vertical distributions of velocity variance (w0w0 )
and time-averaged signal-to-noise ratio (SNR), which represents two
quantities typically utilized to estimate the ABL height,32,53 the
Streamline XR LiDAR performed 10-min-long vertical-staring mea-
surements with 48 m range gate and 2Hz sampling rate. The measure-
ment range spans from 120 m above the ground (end of the LiDAR’s
blind zone) up to 5976 m through 123 non-overlapping gates. In total,

FIG. 1. Elevation map of the AWAKEN site (source: United States Geological
Survey), the wind farms (colored circles) investigated, the deployment location of
the LiDAR (white star), and the ARM SGP C1 site where radiosondes were
launched from (white square). The axes reference the C1a site location.
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6734 vertical stare measurements (each of them with a 10-min mea-
surement period) were collected. For further details about the LiDAR’s
working principle, as well as the internal laser architecture, the reader
is referred to the study of Wu et al.54

As detailed in Sec. III, one of the fundamental scaling parameters
governing the ABL evolution is the mean potential temperature gradient
in the free atmosphere,2 which is quantified by the Brunt–V€ais€al€a fre-
quency. The latter will be estimated from the ABL height models cali-
brated onto the LiDAR data (see Sec. IVB). To validate the best-fitted
values of the Brunt–V€ais€al€a frequency, the radiosonde data collected by
the DOE Atmospheric Radiation Measurement (ARM) at the SGP cen-
tral facility (site C1, nearly 30km north of site C1a, reported in Fig. 1
with white square symbol)55 are included in the present analysis. Each
radiosonde returns instantaneous profiles of dry air temperature and
pressure sampled with variable vertical resolution (0.1–40 m), thereby
allowing for the calculation of the instantaneous profile of potential tem-
perature from the ground proximity (�300 m) to well above the ABL
height (�5000 m). Five different hours across the day are considered in
this study when radiosonde data are available: 02:00 UTC (21:00 local
time), 05:00 UTC (00:00 local time), 11:00 UTC (06:00 local time), 17:00
UTC (12:00 local time), and 23:00 UTC (18:00 local time). Each launch
is repeated across different days within the period October 4, 2022–
October 14, 2023, in order to provide statistical significance to the
retrieved quantities (50, 171, 188, 160, and 208 launches are done at
each mentioned hour, respectively). For each considered time, the
instantaneous vertical profiles of potential temperature are ensemble
averaged over a common vertical coordinate spanning from 300 to 3000
m with vertical resolution of 50 m, and eventually utilized to calculate
the vertical profiles of the Brunt–V€ais€al€a frequency [see Eq. (5)].

B. Quality control of the sonic data

Before moving forward with the quantification of the ABL height,
the sonic anemometer data are analyzed through a quality control pro-
cess to obtain statistically accurate turbulence estimates near the
ground. For each overlapping time period with the LiDAR, the 3D
sonic velocity vector is first aligned in the streamwise, transverse, and
vertical directions ðx; y; zÞ following the algorithm of Wilczak et al.56

(the x-direction is associated with the mean wind direction evaluated
over the whole 10-min period). The velocity components are hereafter
indicated as ðu; v; wÞ along ðx; y; zÞ, respectively. Then, the data col-
lected from the upwind sonic anemometer, which are deemed not
obstructed by the wake generated by the anemometer supporting
structure, are used to retrieve friction velocity (us) and Obukhov
length (L). In this work, the friction velocity is calculated via the eddy
covariance method1

us ¼ ðu0w0 2 þ v0w0 2Þ0:25; (1)

where the prime index indicates zero-mean turbulent velocity fluctua-
tions. The Obukhov length is defined as

L ¼ � u3sH

gjw0h0
; (2)

where H is the mean virtual potential temperature, g ¼ 9:81ms�2 is
gravity acceleration, j ¼ 0:41 is the Von K�arm�an constant, and w0h0

is the vertical heat flux (h0 being the zero-mean temperature
fluctuation).

To obtain reliable estimates of these two statistical quantities, the
following requirements are enforced:

1. The statistical uncertainty of us (Dus) must be lower than 20% of
the expected value [calculated via Eq. (1)].

2. Krishnamurthy et al.11 have shown that hourly averaged values
of friction velocity collected at the ARM SGP C1 site are statisti-
cally bounded within 0:25 and 0:45ms�1 throughout the day.
Thus, only friction velocity values smaller than 1ms�1 are con-
sidered in the rest of this study.

3. The statistical uncertainty of L (DL) must be lower than 50% of
the expected value [calculated via Eq. (2)].

The present quality control of 3D sonic anemometer data is
assessed against the Monin–Obukhov similarity theory; furthermore,
details are reported in Appendix B. It is noteworthy that the statistical
uncertainties of both us and L are calculated via bootstrap algorithm
over 100 subset periods containing 500 points each57 using Eqs. (1)
and (2), respectively. As expected, the enforcement of these require-
ments reduces the data availability. The relative percentage of data
reduction introduced by each criterion is reported in Fig. 2(a) with
black bars, while the cumulative percentage of data rejection is
reported in Fig. 2(b). Here, it is observed that the largest source of data
rejection (34.2%) is given by the unavailability of the sonic anemome-
ter data, while the aforementioned criteria cause relatively small per-
centage of data reduction (9.9% and 13%, respectively). Eventually, of
the 6734 LiDAR and sonic datasets, 2892 (42.9%) are left for further
analysis after the quality control of the sonic anemometer data.

C. Quality control of LiDAR data

Focusing on the Streamline XR datasets, only LiDAR data taken
simultaneously with the quality-controlled sonic anemometer data are

FIG. 2. Data rejection due to quality control (QC) procedure. (a) Percentage of data
rejection caused by each criterion. (b) Cumulative data rejection rate.
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considered for further analysis. Among them, those featuring cloudy
conditions are removed. This requirement is checked based on the var-
iance of the attenuated backscatter (batt) at each height [rbðzÞ]. In par-
ticular, datasets showing rb � 10�8m�2srad�2 at any measured
height are considered to be affected by the presence of clouds are dis-
carded from further analysis. The attenuated backscatter is automati-
cally calculated by the Streamline XR LiDAR model as the product of a
calibration curve [CbðzÞ] and the range-corrected SNR (z2SNR):58

battðz; tÞ ¼ CbðzÞz2SNRðz; tÞ. Of the 2892 selected LiDAR datasets,
2274 (representing the 33.8% of the 6734 datasets initially available)
are retained after the sonic and LiDAR quality control process (cf. with
Fig. 2), which are subsequently utilized to estimate the ABL height.

For all the cloud-free LiDAR datasets, the dynamic filtering algo-
rithm developed by Beck and K€uhn59 is implemented to remove instan-
taneous outliers present in the vertical velocity time series, which could
bias the quantification of this statistical moment. Specifically, for each
time record at each height, instantaneous samples featuring either verti-
cal velocity fluctuations outside of the interval 63 m/s or SNR outside
of ½�20; 0� dB are marked as outliers and removed. As shown in Sec.
III B, the velocity variance profiles are utilized to estimate the ABL height
only during nighttime hours, i.e., when the thermal conditions are
mostly stable. Thus, although the choice of limiting the vertical velocity
fluctuations to63 m/s might seem too restrictive for daytime convective
conditions, this threshold does not influence the quantification of ABL
height during nighttime, when the vertical velocity fluctuations are typi-
cally much less than63 m/s. Subsequent to the choice of thresholds, for
each instantaneous realization, a normalized bivariate probability den-
sity function of w and SNR is calculated considering all the samples
within 150 s. All the normalized ðw; SNRÞ samples with occurrence less
than 0.1% are considered outliers, and the respective instantaneous
velocity record is removed from the time series. Notably, this algorithm
is implemented only to remove the incorrect estimates of vertical veloc-
ity, whereas no action is done on the SNR.

III. ATMOSPHERIC BOUNDARY LAYER HEIGHT
QUANTIFICATION
A. Predictive models for the atmospheric boundary
layer height

As mentioned in the Introduction, several models have been
developed to predict the ABL height involving both near-ground shear
and thermal conditions and the free troposphere stability. In this sub-
section, five ABL height models available in the literature are intro-
duced (one related to convective thermal conditions and four related
to stable conditions), which will be subsequently validated against the
ABL height estimates (Sec. IVB). The advantages and limitations of
each of these models are discussed, as is the physical meaning of the
free parameters utilized by the models.

1. The Rossby and Montgomery model

The earliest parameterization of the ABL height was proposed by
Rossby and Montgomery,60 where the ABL height for neutrally strati-
fied flows is estimated from the Reynolds-averaged momentum bal-
ance between geostrophic wind and surface drag:15

zi
L
¼ Cl; (3)

where

l ¼ us
fL

(4)

is a parameter accounting for the Earth’s rotation and thermal stability
(see, e.g., Ref. 61) (f ¼ 8:62� 10�5 Hz is the Coriolis frequency), and
C � 0:1–0:5 is a constant introduced in Eq. (3) to empirically account
for non-neutral conditions.

2. The Zilitinkevich and Mironov model

The Rossby and Montgomery60 formulation may be used for
non-neutral conditions by changing the value of the constant C.
However, a precise modeling of the thermal buoyancy and free-flow
stability is absent in Eq. (3). These two effects are typically quantified
by the Obukhov length (L) and the Brunt–V€ais€al€a frequency (N),
respectively. The latter is defined as

N ¼ g
H
dH
dz

� �0:5

: (5)

Physically, the Brunt–V€ais€al€a frequency represents the frequency at
which a parcel oscillates around its equilibrium height under a stably
stratified mean potential temperature profile, and it is typically of the
order of 0.01 s�1. This quantity will be estimated both directly from
the radiosonde measurements of potential temperature and indirectly
from the best-fit of those ABL height models involving N in their
parameterization of the ABL height.

For a stably stratified flow, Zilitinkevich and Mironov16 provided
a comprehensive multi-limit formulation derived from the turbulent
kinetic energy equation under several heuristic assumptions (i.e.,
steady-state flow, logarithmic mean velocity profile, first-order approx-
imation of resistance law and heat flux, and energy-transferring gravity
waves at the boundary between ABL and residual layer)

fzi
Cnus

� �2

þ zi
CsL

þ ziN
Cius

þ zif 0:5

Csr usLð Þ0:5 þ
ziðNf Þ0:5
Cirus

¼ 1; (6)

where Cn ¼ 0:5; Cs ¼ 10; Ci ¼ 20; Csr ¼ 1:0; and Cir ¼ 1:7 are
empirically determined constants. In Eq. (6), the first three terms of
the left-hand side are related to the isolated effects of Earth’s rotation,
thermal stability, and free-flow stratification, respectively, while the
fourth term accounts for the combined effects of Earth’s rotation and
thermal stability, and the fifth term is related to the combined effect of
Earth’s rotation and background stratification. Thus, Eq. (6) may be
used to predict zi under the simultaneous presence of all the driving
mechanisms during stable conditions.

3. The Steeneveld model

The model of Zilitinkevich and Mironov16 relies on a large num-
ber of assumptions, which are rarely verified in a real flow scenario all
together. Indeed, Steeneveld et al.18 observed a systematic underesti-
mation of zi when obtained from Eq. (6) as compared to the experi-
mental reference under a broad range of free-flow stratification. To
address this issue, the authors proposed a new parameterization of zi
solely based on dimensional considerations

zi
L
¼

���� gHw0h0
����

ausfNL

0
B@

1
CA

1
C1�k N

fð Þ
; (7)
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where a ¼ 3; C1 ¼ 1:8; and k ¼ 10�3 are empirical constants.18 The
main advantage of Eq. (7) with respect to Eq. (6) is that the empirical
exponent on the right-hand side of Eq. (7), typically greater than 1,
greatly improves the agreement with the data.18 In the present work,
Eq. (7) will be calibrated on the ABL height values retrieved by the
LiDAR by means of a least squares best-fit algorithm. Lacking a direct
quantification of the Brunt–V€ais€al€a frequency to be used in Eq. (7)
(which would require temperature measurements up to the ABL
height), in this study N/f will be fitted onto the experimental data
alongside a letting C1 ¼ 1:8 as a fixed parameter. Eventually, the fitted
value of N/f will be validated against the vertical profiles of Brunt–
V€ais€al€a frequency quantified by the radiosonde measurements. The
reason why C1 is fixed and a is left as a free parameter is that, for any
fixed value of N/f, any offset of the zi=L distribution results in the
increase or decrease in a, whereas the variability of C1 is less straight-
forward to interpret. This feature will be useful in Sec. IVC where a
will be calibrated over seasonal subsets of the AWAKEN dataset to
relate the variability of a to the seasonal trends. Finally, in Eq. (7), the
quantities H; w0h0 ; us, and L are calculated from 3D sonic measure-
ments, while zi is estimated from LiDAR data.

The constant k is empirically quantified by Steeneveld et al.,18

plotting the left-hand side of Eq. (7) vs the argument in parenthesis for
different intervals of N/f. For the present study, it is assumed that N/f
in stable conditions is of the same order of magnitude as in convective
conditions (N=f � 100 at the SGP sites62,63). The constant k is itera-
tively chosen based on this assumption; eventually, a value of
k ¼ 4� 10�3 is set in the remainder of this work.

It is noteworthy that all the best-fitted values mentioned in this
work have been obtained in Matlab through the nonlinear least
squares optimization method implementing a Trust-Region algo-
rithm.64 The only constraint imposed on the optimization problem is
that all the ABL model parameters must be greater than 0. The mini-
mum of the cost function is then sought iteratively through the mini-
mization of the second-order local approximation of the cost function,
where the Jacobian and Hessian matrices are evaluated trough second-
order central finite difference schemes. The iterative search is stopped
when one of the following criteria is verified: a maximum of 400 itera-
tions is reached; the cost function changes by a value less than 10�6;
the norm of the incremental step is less than 10�6. Notably, for all the
tested cases, the iterative algorithm stopped because the cost function
increment was lower than 10�6.

4. The Joffre model

Another important parameterization of the stable ABL height is
provided by Joffre et al.,13 who assessed the multi-limit formulation of
Zilitinkevich and Mironov16 over a relatively wide range of l (1–100).
Similar to Steeneveld et al.18 and Joffre et al.13 also pointed out the
underestimation of zi done by Eq. (6) for strongly stable flows (l > 10).
By contrast, for moderately stable conditions (1 � l � 10), the authors
proposed a quasi-linear empirical relationship to estimate zi:

zi
L
¼ 0:082l1:07: (8)

As shown in Sec. IV, the stability range covered by the current
AWAKEN database spans from l � 1 to 103. To address this point,
we propose a generalization of Eq. (8) as follows:

zi
L
¼ Clð1þ blcÞ; (9)

where b; c are positive constants to be calibrated on the data, and C is
the same constant of Eq. (3). Indeed, as l ! 0 (i.e., conventionally neu-
tral conditions), the term in parenthesis goes to 1 and the formulation of
Rossby and Montgomery60 is retrieved [cf. with Eq. (3)]. Thus, we
expect Eq. (9) to cover the whole range of stability, from neutral to
strongly stable. Analogous to a in Eq. (7), the constant C accounts for
any shift of the l vs zi=L distribution along the ordinate axis. Therefore,
this constant will be calibrated in Sec. IVC by means of a least squares
fit to capture any synoptic variability in the stable ABL height. In Eqs.
(8) and (9), the parameter l is calculated based on 3D sonic data [cf.
with Eq. (4)], while zi is retrieved from LiDARmeasurements.

5. The Kitaigorodskii model

Focusing on convective conditions, the temporal growth rate of zi
due to buoyancy- and shear-produced turbulence must be taken into
account solving a time-dependent governing equation, typically repre-
sented by the turbulent kinetic energy (TKE) equation.65 In this sce-
nario, Kitaigorodskii and Joffre12 provided the following
parameterization:

zi
L
¼

1þ 1þ 4a0m00 us
LN

� ��2
" #0:5

2a0
us
LN

� ��2 ; (10)

where a0 ¼ 0:1� 0:3 and m00 � 6. Equation (10) will be calibrated on
the AWAKEN data in convective conditions letting N and m00 be free
parameters and keeping a0 ¼ 0:2 fixed. Analogous to a in Eq. (7), any
increase (decrease) of m00 is caused by upward (downward) shifts of
the l-vs-zi=L distribution along the ordinate axis. Thus,m00 is expected
to model the synoptic variability within the convective ABL height esti-
mates (cf. with Sec. IVC). In Eq. (10), us and L are obtained from 3D
sonic measurements, while zi is retrieved from LiDARmeasurements.

B. Algorithms to estimate the atmospheric boundary
layer height based on LiDAR data

In the context of the daytime convective ABL, the vertically star-
ing Streamline XR Doppler LiDAR is utilized during the AWAKEN
campaign to probe vertical turbulent motion. The time-vs-height
quantification of the attenuated backscatter (batt), assumed as an indi-
rect estimate of the local aerosol concentration,66 is provided by the
LiDAR as well. The latter is a compelling quantity when it comes to
estimating the convective ABL height, since the daytime turbulent
mixing induces an almost uniform aerosol concentration throughout
the mixed layer, whereas the entrainment zone aloft is characterized by
a sharp decrease, eventually leading to the low aerosol concentration in
the free atmosphere. Thus, the height associated with a rapid decrease
in aerosol concentration (or, equivalently, batt) represents a physically
sound estimate of the ABL height in the presence of a well-established
mixed layer.32,67 It is noteworthy that, for the Streamline XR LiDAR
used in the present work, the attenuated backscatter is calculated as58

battðz; tÞ ¼ CbðzÞz2SNRðz; tÞ, where CbðzÞ > 0 is a calibration curve
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provided by the manufacturer and accounting for the laser focus func-
tion. Since the latter may drift from the calibration conditions in time,
a recalibration of CbðzÞ against simultaneous and independent mea-
surements of batt is required. Lacking this possibility, for the present
experiment, we assume the range-corrected time-averaged SNR
(z2SNR) as an indicator of the local aerosol properties (as previously
done, e.g., by Kong and Yi,32 Menut et al.,33 and Toledo et al.68).

Several diagnostic methods have been defined to capture rapid
changes in the aerosol properties, for instance, based on the vertical
evolution of the mean attenuated backscatter27 as well as the maxi-
mum attenuated backscatter variance,33 particle depolarization, and
LiDAR ratio.32 Regardless of the particular quantity used, one method
largely applied to individual sharp transitions of the aerosol properties

is the wavelet covariance transform28,30,42,67,69 (WCT), which is used
in this work to estimate the ABL height from LiDAR data during day-
time. The details of this method are provided in Appendix A.

The WCT method, however, has two main limitations. First, it
may lead to incorrect ABL estimates in the presence of multilayered
aerosol structures. Second, a mixed layer must be well established in
the ABL to maintain high and uniform aerosol concentrations. This is
not the case during nighttime and early morning conditions, when the
ABL is characterized by a thin layer of shear-generated turbulence
close to the ground and a residual layer aloft. To address the first point,
a careful inspection of all the datasets is conducted based on the visual-
ization of the time-vs-height plots of vertical velocity and range-
corrected SNR; examples of these plots are reported in Figs. 3(a), 3(b),

FIG. 3. Example of ABL height quantification (dashed and continuous line) for convective (a)–(c) and stable (d)–(f) conditions. Panels (g)–(i) show an example of manually over-
written ABL height in the presence of a multilayer aerosol structure. Plots (a), (d), and (g) show the color contours of vertical velocity fluctuation; plots (b), (e), and (h) show the
range-corrected SNR, and plots (c), (f), and (i) show the vertical distribution of the statistical quantity utilized for the ABL height estimation.

Journal of Renewable
and Sustainable Energy

ARTICLE pubs.aip.org/aip/rse

J. Renewable Sustainable Energy 16, 053304 (2024); doi: 10.1063/5.0211259 16, 053304-6

VC Author(s) 2024

 28 O
ctober 2024 18:15:46

pubs.aip.org/aip/rse


3(d), 3(e), 3(g), and 3(h) for quality-controlled datasets. In regard to
the second point, the WCTmethod is used only with datasets collected
after 16:00 UTC time (corresponding to 11:00 local time), where a con-
vective mixing is assumed to be present; this choice of threshold will
be further discussed in Sec. IVA.

When the dataset does not show a sufficiently high positive buoy-
ancy production (typically before 16:00 UTC), the vertical distribution
of range-corrected SNR is not a reliable source to estimate the ABL
height. However, shear-induced turbulence is still expected to be gen-
erated at the ground and rapidly decrease moving upward. In the
absence of non-canonical stable ABL events (such as gravity waves,
bores, and shear instabilities), literature results have identified the ABL
height in several ways, such as the height at which the streamwise
velocity variance reaches a minimum37 as well as the height at which
the variance of vertical velocity is less than a certain percentage of its
value at the ground.22 In this work, we assume the local minimum of
vertical velocity variance (after the quality control procedure described
in Sec. II C) as the best estimator of the ABL height in stable condi-
tions. An example of this method is visualized in Fig. 3(f).

After estimating the ABL height for all the available datasets, a
further quality check is implemented to avoid the presence of non-
physical estimates in the database. These outliers are associated with
extreme over- or underestimation of the ABL height; thus, the zi esti-
mates are grouped into non-overlapping hour-long bins and, for each
of them, datasets featuring ABL height less than the 5th percentile or
greater than the 95th percentile are further investigated. In particular,
the ABL height is manually overwritten based on the visual inspection
of time-vs-height plots of vertical velocity and range-corrected SNR.
An example of this procedure is reported in Figs. 3(g)–3(i), where two
layers of high aerosol concentration (roughly located at 1400 and 2200
m, respectively) are evidenced in the range-corrected SNR pattern
[Fig. 3(h)]. The WCT initially quantifies the ABL height as 2426 m
(dashed line); however, the visual inspection of the vertical velocity
pattern [Fig. 3(g)] shows negligible turbulent fluctuations above 1357
m (continuous line). Thus, the latter is assumed as the new ABL height
value for the considered dataset. In total, 155 ABL height values (6.8%)
are manually checked.

IV. RESULTS
A. Assessment of the daily cycle of atmospheric
boundary layer height

After estimating the ABL height through the above-mentioned
diagnostic methods, the calculated zi values are used to evaluate the
daily cycle of ABL height. The latter is reported in Fig. 4(a) overlapped
to the daily cycle of vertical velocity variance. The analogy between the
distributions of zi and w0w0 confirms that the primary mechanism gov-
erning the ABL evolution at the tested site is the thermal stability.
From Fig. 4(a), the vertical velocity variance reaches its maximum
between 16:00 and midnight (UTC time) due to the onset of a positive
buoyancy flux which, in turn, enhances the aerosol mixing within the
ABL. As anticipated in Sec. III B, the WCTmethod can only be applied
in the presence of significant turbulent mixing; thus, it is utilized only
for datasets collected between 16:00 and midnight, whereas the mini-
mum vertical velocity variance method is used for the remaining data.
This time cutoff is highlighted in Fig. 4(a) with a vertical dashed line.

The ABL height can be further assessed comparing the current
daily cycle against the analogous estimates obtained by Krishnamurthy
et al.,11 who used a machine learning algorithm on a years-long scan-
ning LiDAR database collected at the ARM SGP C1 site (� 30 km
north of the C1a site) via vertical-staring scans. The result, reported in
Fig. 4(b), demonstrates strong quantitative agreement between the cur-
rent daily cycle and the literature result, both in the hourly averaged
ABL height values (black symbols) and in the standard deviation (ver-
tical uncertainty interval). The temporal oscillation of the current daily
cycle is deemed to be caused by the relatively short sampling period
(10min) of each vertical scan.

B. Stability dependence of the atmospheric boundary
layer height

After comparing the current ABL height estimates against previ-
ous results, the dependence of zi on the thermal conditions is investi-
gated by plotting the stability parameter zi=L against l (Fig. 5)
distinguishing between convective [Fig. 5(a)] and stable [Fig. 5(b)]
conditions. To facilitate the visual comparison between the data and

FIG. 4. (a) Daily cycle of vertical velocity variance (w 0w 0 ) and hourly averaged ABL height (indicated with black symbols; uncertainty intervals report one standard deviation
around the mean). (b) Daily cycle of hourly averaged zi compared with previous results of Krishnamurthy et al.

11 at the ARM SGP C1 site.
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the models, as well as the departure of the data from the 1 : 1 linear
trend [dashed lines in Figs. 5(a) and 5(b)], bin-averaged values of zi=L
(white filled squares) are overlapped on the data.

1. Convective conditions

Focusing on convective conditions first [Fig. 5(a)], strong agree-
ment is found between the data and the calibrated model of
Kitaigorodskii and Joffre12 [Eq. (10)], the latter fitted over 1078 data
points. The relative error distribution between the bin-averaged data
values and the Kitaigorodskii and Joffre12 model prediction, reported
in Fig. 5(c) with red symbols and continuous line, indicates percentage
errors between �19% and 15%. However, the root-mean-square error
(RMSE) and mean absolute error (MAE) between the ABL height eval-
uated experimentally and predicted by the model are quite large (798
and 585 m, respectively, as reported in Table I); these large values are
deemed to be caused both by the large variability of the convective
ABL height values [visualized by the large scattering of data points in
Fig. 5(a) and by the large uncertainty intervals in Fig. 4(b)] and by the
lack of direct quantification of the Brunt–V€ais€al€a frequency simulta-
neous to each ABL height estimate.

The calibrated model parameters (m00; N=f ) are reported in Table
I as well. The fitted value ofm00 ð9:31Þ is of the same order ofmagnitude
as the one proposed by Kitaigorodskii and Joffre12 (m00 ¼ 6), although

larger. A possible justification of this discrepancy may be found in the
synoptic variability of the ABL height across different seasons,11 which
will be investigated in Sec. IVC. Finally, the calibrated value of N=f ¼
90 agrees with previous estimates of the nondimensional Brunt–
V€ais€al€a frequency (N=f � 102) at SGP latitudes.62 Furthermore, the

FIG. 5. Stability dependence of the ABL height on the parameter l for convective (a) and stable (b) conditions. In (a), the red line reports the calibrated model of Kitaigorodskii
and Joffre.12 In (b), the blue, cyan, and green lines report the models of Zilitinkevich and Mironov16 (blue region corresponds to 1 � N=f � 103), Joffre et al.,13 and
Steeneveld et al.,18 respectively, while the magenta line reports the calibration of Eq. (9). (c) Percentage error between the bin-averaged experimental value and the model pre-
diction; the lines are colored according to the legend of plots (a) and (b).

TABLE I. Calibration of different ABL height models. The quantities in parenthesis
report the 95% confidence interval. The last two columns report the root-mean-
squared error (RMSE) and the mean absolute error (MAE) between the ABL height
quantified by the LiDAR and each model’s prediction, respectively.

Reference Eq. # Fit parameters
zi RMSE
(m)

zi MAE
(m)

Ref. 12 10
m00 ¼ 9:31 ð61:42Þ

798 585N=f ¼ 90 ð68Þ ðL < 0Þ

Ref. 18 7
a ¼ 3:0 ð60:2Þ

474 281N=f ¼ 85 ð613Þ ðL > 0Þ

Proposed
model

9

C ¼ 0:119 ð60:017Þ
484 288b ¼ 2:7� 10�3 ð64:6� 10�3Þ

c ¼ 1:22 ð60:28Þ
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vertical profiles of the Brunt–V€ais€al€a frequency obtained from the
radiosonde data from site C1 are reported in Fig. 6(f) for each consid-
ered hour when launches are available. The vertical profiles of mean
potential temperature utilized to calculate N/f are reported in Figs. 6
(a)–6(e) for each considered launch time. The N/f interval evaluated
from radiosondes during daytime convective conditions [launches at
17:00 and 23:00 UTC, reported with red and magenta lines in Fig. 6(f)]
spans from 50 to 200 at different heights, thus in good agreement with
the value retrieved from the Kitaigorodskii and Joffre12 model
(N=f ¼ 90). In conclusion, the current estimates of the convective
ABL height from AWAKEN data lead to an overall good level of
agreement with the theoretical prediction of Kitaigorodskii and
Joffre,12 although this model is not able to completely capture the
ABL height variability in convective conditions.

2. Stable conditions

For stable conditions [Fig. 5(b)], we first observe an increase in
zi=L with slope greater than 1 increasing the stability (l’ 102), consis-
tently with previous results.13,18 Thus, the model of Zilitinkevich and
Mironov16 [reported in Fig. 5(b) with blue line], which predicts a less-
than-linear power law for very stable conditions, largely underesti-
mates the ABL height. Notably, this outcome does not depend on the
uncertainty on the Brunt–V€ais€al€a frequency as evidenced from the

blue shaded area in Fig. 5(b), which is obtained solving Eq. (6) letting
1 � N=f � 103. Similarly, the parameterization of Joffre et al.13 [Eq.
(8), reported in Fig. 5(b) with cyan line), although it models the mono-
tonic increase in zi=L with l, underestimates the stability-corrected
ABL height by 26% or more as evidenced by the percentage error dis-
tribution in Fig. 5(c) (cyan symbols).

Better agreement is found calibrating the model of Steeneveld
et al.18 [Eq. (7), green line in Fig. 5(b)], which leads to large percentage
errors (�69% to þ51%) for neutral to moderately stable conditions
(l � 50) followed by smaller values (<10%) for the rest of the stability
interval [cf. with Fig. 5(c)]. This feature indicates that the model of
Steeneveld et al.18 is better suited for strongly stable conditions. The
overall fitted value of a (3.0, cf. with Table I), however, is in excellent
agreement with the one proposed by Steeneveld et al.18 (a¼ 3), and
the obtained value of N/f (856 13) is in good agreement with previous
estimates in the SGP area during nighttime conditions (N¼ 0.01Hz,
corresponding to N=f � 116).63 Similarly, the N/f interval in stable
conditions retrieved from the radiosonde data (100 � N=f � 300
indicated by the cyan line in Fig. 6(f), related to radiosonde launches
done at 02:00 UTC) agrees well with the value calibrated from the
model of Steeneveld et al.18

Finally, the currently proposed parameterization of the stable
ABL height [Eq. (9)] is calibrated onto the experimental data and
reported in Fig. 5(b) with the magenta line. It is noticed that, among

FIG. 6. Mean potential temperature profiles retrieved from radiosonde measurements. Plots (a)–(e) report the instantaneous potential temperature in gray and the average as
the colored line; the title reports the launch time in UTC and local time (LT) format. Plot (f) reports the vertical profiles of the Brunt–V€ais€al€a frequency [cf. with Eq. (5)] divided
by the Coriolis frequency; the line colors are the same as reported in plots (a)–(e). The N/f values calibrated on the ABL height from LiDAR measurements are reported in dot-
ted and dashed lines for convective and stable conditions, respectively.
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the models introduced to parameterize the stable ABL height, Eq. (9)
leads to the smallest percentage error distribution across l, mainly due
to the fact that it relies on the largest number of free parameters. The
value of the constant C (0.119, cf. with Table I), quantifying the linear
growth rate of the ABL for weak stability, is in good agreement with
the order of magnitude of C in Eq. (3) for stable conditions (C � 0:12)
found in the literature.70 This confirms the initial hypothesis that Eq.
(9) may be seen as a generalization of the geostrophic drag law valid
for the entire stability range. The fitted value of b ¼ ð2:764:6Þ
� 10�3 is uncertain due to the large scattering of ABL height values
across the stability range. This is related to the difficulty of estimating
the ABL height while lacking a well-defined boundary between turbulent
and non-turbulent portions of the atmosphere for nighttime conditions.
Finally, the value c ¼ 1:22 captures the growth of zi=L for strongly sta-
ble conditions. It is noteworthy that Eq. (9) can be approximated by
zi=L � Cblcþ1 as l � 1. Given the current value of c, we obtain the
following expression for strongly stable conditions: zi=L / l2:22. Joffre
et al.13 estimated a growth rate proportional to l1:5 for 10 � l � 100.
The faster growth of zi=L currently found is thought to be a conse-
quence of the larger extension of the current stability range
(1 � l � 103) over which the behavior of zi=L is modeled.

For stable conditions, the RMSE (484 and 474 m) and MAE (288
and 281 m) values between the experimental ABL height values and
the model predictions are large (see Table I), although lower than what
was found for convective conditions. It is noticed that the models of
Eqs. (7) and (9) lead to similar values of RMSE and MAE. This feature,
together with the agreement between each model’s constants and the
literature values, leads to the conclusion that the discrepancy between
the experimental values and the prediction is due to the uncertainties
in the experimental quantification of the ABL height rather than a

limitation of the models to capture the flow physics. Thus, the current
stable ABL height dataset is in good agreement with the stability trend
predicted by the models, even though the uncertainty associated with
the experimental ABL height estimates leads to significant mean error
values with respect to the models’ predictions.

C. Seasonal variability of the parameters

The availability of ABL height estimates over one year is now lev-
eraged to quantify the effect of seasonal timescales on the ABL height
model parameters. To this aim, the data are binned into four subsets
spanning three months each, namely, December–January–February
(DJF), March–April–May (MAM), June–July–August (JJA), and
September–October–November (SON). The daily cycles of zi and ver-
tical velocity variance are reported in Fig. 7 for each data bin. Focusing
on daytime convective conditions (i.e., after 16:00 UTC, reported with
vertical dashed line), smaller velocity variance is observed for the
period DJF with respect to the baseline daily cycle [Fig. 7(a)] due to the
shorter exposure of the ground to the solar irradiation; this results in
less buoyancy-generated TKE and thus lower ABL height values [blue
symbols in Fig. 8(a)] with respect to the baseline distribution during
daytime conditions. By the same principle, higher values of w0w0 (asso-
ciated with higher values of ABL height) are found during MAM and
JJA daytime periods [Figs. 8b and 8(c)], whereas negligible difference
is found during SON. By contrast, before sunrise (i.e., before 16:00
UTC) no qualitative difference is found in the daily averaged values of
zi within the seasons with respect to the baseline trend.

The impact of seasonal trends on the ABL height is further exam-
ined by calibrating the models of Eqs. (7) and (9) for stable conditions
and the model of Eq. (10) for convective conditions over different

FIG. 7. Daily cycle of ABL height calculated during different seasons (colored symbols) overlapped to the baseline ABL daily cycle (gray symbols) and vertical velocity
variance.
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seasonal subsets. The fitted parameters are reported in Table II
grouped by model and in Fig. 8 by physical effect. In particular,
Fig. 8(a) depicts all the parameters directly impacted by any vertical
displacement of the l-zi=L distribution (namely, m00; a, and C), which
is deemed to be caused by the seasonal timescale. Figure 8(b) reports
the averaged values of N/f across different seasons for both stable and
convective conditions. Finally, Fig. 8(c) focuses on the parameters b; c
of Eq. (9).

Focusing on Fig. 8(a), the parameter a of Eq. (7) (reported with
squared symbols) assumes higher value on DJF with respect to the ref-
erence (þ16%, cf. with Table II), indicating a lower ABL height under
stable conditions as compared to the averaged value across the year. By
contrast, a sensibly lower a value (�23% from baseline) is found dur-
ing MAM, followed by slightly lower values during JJA ((�3%) and
SON ((�3%), which implies higher stable ABL height during these
months. However, it should be noticed that the best fit for the MAM
bin relies on fewer data points as compared to the other bins, as
reported by Fig. 8(d). This implies larger fitting uncertainty and thus

less reliable values for the MAM period. These considerations are less
evident when observing C, for which the uncertainty intervals associ-
ated with the fitting do not allow for firm conclusions of the seasonal
trend [cf. with Fig. 8(a), triangular symbols]. Finally, the seasonal dis-
tribution of m00 (thus focused on convective conditions) confirms the
previously mentioned qualitative result, i.e., lower convective ABL
height during DJF with respect to the year average modeled by a lower
value of m00 (–11%), and higher ABL heights (thus higher m00) during
MAM (þ23% increase in m00) and JJA (þ13% increase) and, finally,
lower ABL heights during SON (–15%). In conclusion, it is inferred
that the effect of seasonal timescales on the ABL height is embedded
into the model parameters a (for stable conditions) and m00 (for con-
vective conditions), whereas the parameter C is less sensitive to the sea-
sonal variability.

The seasonal trends of nondimensional Brunt–V€ais€al€a frequency
obtained by calibrating Eq. (7) in stable conditions and Eq. (10) in con-
vective conditions exhibit overlapping intervals (64 � N=f � 97 in
stable conditions and 85 � N=f � 100 in convective conditions).

FIG. 8. Intra-annual variability of (a) models’ multiplicative parameters (a; m00; C) (b) nondimensional Brunt–V€ais€al€a frequency, and (c) b; c. Panel (d) shows the available
data points for each season bin for stable (black bars) and convective (white bars) conditions.

TABLE II. Calibration of different ABL height models across different seasons. The values in parenthesis quantify the percentage difference with respect to the baseline values
(reported in Table I).

Ref. 12 (Eq. 10) Ref. 18 (Eq. 7) Present model [Eq. (9)]

m00
N
f
(L< 0)

a
N
f
(L> 0)

C b (�10�3) c

DJF 8.3 (–11%) 88 (–2%) 3.49 (þ16%) 64 (–24%) 0.13 (þ9%) 2.15 (–22%) 1.17 (–4%)
MAM 11.5 (þ23%) 92 (þ2%) 2.32 (–23%) 80 (–6%) 0.14 (þ22%) 1.02 (–63%) 1.37 (þ12%)
JJA 11.4 (þ13%) 100 (þ11%) 2.91 (–3%) 97 (þ15%) 0.11 (–6%) 1.34 (–51%) 1.45 (þ19%)
SON 7.9 (–15%) 85 (–6%) 2.93 (–3%) 98 (þ16%) 0.12 (–1%) 1.31 (–52%) 1.41 (þ15%)
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However, while the Brunt–V€ais€al€a frequency is nearly constant across
different bins for convective conditions, the analogous frequency in
stable conditions shows a peak during JJA and SON [as reported in
Fig. 8(b)]. The uncertainty intervals obtained for the MAM data [green
symbols in Fig. 8(b)] are sensibly larger than the other estimates, again
due to the lower number of data points available.

Finally, the seasonal trend of c [reported in Fig. 8(c) with dia-
mond symbols] reveals a slight increase from DJF (–4% with respect to
the baseline) to SON (þ15%). However, the large uncertainty intervals
do not allow for further considerations about the growth rate of zi dur-
ing stable conditions across different seasons. Similarly, the uncertainty
intervals around b do not allow for definitive conclusions on the effect
of seasonal scales.

V. CONCLUSION

In this work, the ABL height (zi) is quantified during the year-
long AWAKEN campaign. Based on time series of vertical velocity
and range-corrected signal-to-noise ratio probed by a vertically point-
ing scanning pulsed Doppler LiDAR, the ABL height is systematically
evaluated for over 2200 quality-controlled 10-min averaged measure-
ments. Two different diagnostic models are used to quantify the ABL
height under convective and stable conditions. One model performs
best under daytime conditions (i.e., when a well-mixed layer is
ingrained in the ABL), and the other model performs best during
nighttime low-turbulent conditions. This approach provides the com-
plete coverage of the ABL height evolution throughout the diurnal
cycle. The average daily variation agrees well with previous literature
results and with the daily cycle of vertical velocity variance.

The simultaneous availability of two co-located 3D sonic ane-
mometers allows us to provide quantitative information on the shear-
and buoyancy-generated turbulence near the ground, thereby relating
the ABL height variability to the near-ground thermal stability and
shear turbulence. Similarly, the free-atmosphere stability (expressed by
the Brunt–V€ais€al€a frequency, N) is quantified based on the radiosonde
potential temperature profiles available from the neighboring ARM
SGP C1 site. Five stability-dependent ABL height models are intro-
duced to capture the ABL height variability over a wide range of stabil-
ity classes, the latter ranging within three orders of magnitude both for
stable and convective conditions. One model (first proposed by
Kitaigorodskii and Joffre12) is used to assess the ABL height in convec-
tive conditions, while four models are introduced for stable conditions.
Among the latter, three models are taken from the literature, namely,
from the Zilitinkevich and Mironov,16 Joffre et al.,13 and Steeneveld
et al.18 studies, while the last model is introduced here to generalize the
geostrophic drag law originally proposed by Rossby and
Montgomery.60 It is noteworthy that the Brunt–V€ais€al€a frequency is
fitted on the data as a free parameter for the models of Kitaigorodskii
and Joffre12 and Steeneveld et al.,18 and it is subsequently validated
against radiosonde measurements collected at the ARM SGP C1 site
(located nearly 30 km north of the tested site). Good agreement is
inferred for the Kitaigorodskii and Joffre,12 Steeneveld et al.,18 and pro-
posed model with respect to the experimental ABL height estimates.
By contrast, low agreement is obtained between the retrieved ABL
heights against the Zilitinkevich and Mironov16 and Joffre et al.13 pre-
dictions. From a quantitative standpoint, the models’ parameters
match well with the analogous values found in the literature. Similarly,
the fitted values of the Brunt–V€ais€al€a frequency in convective
(N=f ¼ 90, where f is the Coriolis parameter) and stable (N=f ¼ 85)

conditions agree well with the analogous intervals obtained from
radiosonde measurements (50 � N=f � 200 and 100 � N=f � 350
for convective and stable stratification, respectively).

Finally, the variability of each model’s fitting parameters is
physically linked to intra-annual timescales by fitting the models
over non-overlapping seasonal subsets. In particular, the lower TKE
buoyancy production (due to shorter periods of solar irradiance on
the ground) during the winter season induces lower ABL height, as
opposed to spring and summer seasons. This effect is carried on by
each model’s multiplicative constant, for which the intra-annual dis-
tributions are found to agree with the seasonal cycle of TKE buoy-
ancy production.
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APPENDIX A: THEWAVELET COVARIANCE
TRANSFORM METHOD

The wavelet covariance transform (WCT) method, introduced
by Davis et al.29 and Brooks30 and further elaborated by Baars
et al.,67 is an algorithm to detect sharp transitions in a chosen func-
tion, f(z), based on the local functional values. In particular, the
function is convoluted with the wavelet Haar function (h):

WCTða; bÞ ¼ 1
a

ðzmax

zmin

f ðzÞh z � b
a

� �
dz; (A1)

where zmin; zmax are the lowest and highest probed heights, respec-
tively. In this work, we select f ðzÞ ¼ z2SNR (see Sec. III B for fur-
ther details). The Haar function is piecewise defined based on the
dilation (a) and translation (b) parameters as follows:

h
z � b
a

� �
¼

1; b� a
2
� z < b

�1; b � z < bþ a
2

0 otherwise

;

8>>>><
>>>>:

(A2)

and reported in Fig. 9(a) with a red line. It can be shown that, as b
changes (and, thus, h is translated along z), the WCT attains a local

maximum within a sharp interval, whereas it decreases outside of it.
The ABL height is then found as

ziðaÞ ¼ max
b

WCTða; bÞ½ �: (A3)

In this work, b is assumed equal to the LiDAR range gate val-
ues within zmin ¼ 500 and zmax ¼ 3500 m, thus with increase equal
to the range gate (48 m).

As evidenced by Eq. (A3), the correct quantification of zi relies
on a correct choice of dilation parameter, a, which is physically
associated with the depth of the entrainment zone. In particular, a
relatively low value of a (� 100 m) is sensitive to the noise fluctua-
tions of z2SNR, whereas a large value of a (� 103 m) may exceed
the entrainment zone depth, and thus, the local maximum of the
WCT would be smoothed out by the convolution integral. In this
work, the correct value of a is found by the iterative procedure
introduced by Brooks.30 A large dilation parameter (a0 ¼ 2000 m)
is initially guessed to obtain a first estimate of the WCT (said
WCT0), the latter attaining a peak value (WCTmax;0Þ for a certain
translation parameter, b0, and reducing to a fraction of the maxi-
mum value (here assumed 0:3WCTmax;0) within a certain interval
Db0 centered around b0 [cf. with Fig. 8(b)]. Since the WCT is nearly
zero outside of the entrainment zone, Db0 is assumed as a proxy of
the entrainment zone depth30 and, thus, can be used as a better esti-
mate of the dilation parameter for the next iteration (a1 ¼ Db0).
The iterative procedure ends when the percentage difference
between ai and Dbi�1 (where i is the iteration number) is less than
10% or when the number of iterations reaches 100.

APPENDIX B: ASSESSMENT OF THE QUALITY
CONTROL OF 3D SONIC DATA

The quality control process detailed in Sec. II B is designed to
satisfy two contrasting requirements, i.e., having the largest number
of quality-controlled 3D sonic statistics as possible and, on the other
hand, minimizing the detrimental effect of large statistical

FIG. 9. Summary of wavelet covariance transform (WCT) method. (a) Haar function (red line) and range-corrected SNR (black line); (b) WCTða; bÞ through different iterations
with reduced dilation parameter relative to the maximum value; the vertical gray line indicates the threshold used to update the dilation parameter (0.3).
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uncertainty in the data. In this scenario, the Monin–Obukhov simi-
larity theory (MOST) has been leveraged to assess the effectiveness
of the quality control process on the 3D sonic data. In particular,
for stably stratified flows, the standard deviation of each velocity
component can be modeled as a polynomial function of the stability
parameter z/L as follows:71–73

u0iu0i
0:5

us
¼ ai þ bi

z
L

� �
; (B1)

where the subscript “i” refers to each velocity component (i¼ 1, 2, 3
corresponding to u, v, and w, respectively); for the present work, the
sonic anemometer height is: z¼ 2 m. Thus, Eq. (B1) is utilized as a
reference against which the quality-controlled sonic statistics are
validated. The shear-corrected velocity standard deviations obtained
from the 3D sonic anemometer data are plotted against the stability
parameter z/L (see Fig. 10) before (gray symbols in Fig. 10) and after
(black symbols in Fig. 10) the quality control procedure. Here, it is
observed that the quality control algorithm is particularly effective
in removing the data characterized by extremely low values of sta-
bility parameters (z=L � 0:01). These data are characterized by low
values of sensible heat flux (w0h0 ), which, in turn, reflects into high
values of Obukhov length. In this situation, even a small statistical
uncertainty on the sensible heat flux can cause a large uncertainty
in the estimation of the Obukhov length; thus, the quality control
procedure rejects these data. Indeed, we observe a strong disagree-
ment comparing the rejected data with z=L � 0:01 against the
MOST prediction (red lines in Fig. 10).

The best fit of Eq. (B1) (whose parameters are reported in
Table III for each velocity component) on the present quality-
controlled data captures the increase in shear-corrected standard
deviation with the stability parameters, as well as the plateau as z/L
goes to 0. Comparing the best-fitted quantities with the reference
values, the largest source of discrepancy is found in the values of b
(Table III). This could be explained considering the lack of data
beyond z=L ¼ 2, as opposed to the dataset shown by Pahlow et al.
reaching z=L ¼ 10; this leads to a less precise calibration of the sec-
ond term on the right-hand side of Eq. (B1), which models the
increase in shear-corrected standard deviation with the stability.
However, the 3D sonic velocity statistics remaining from the quality
control procedure agree with the MOST prediction, whereas the
rejected portion of the data does not. Thus, it is concluded that the
adopted quality control process leads to a reliable quantification of
the turbulence state close to the ground.
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