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H I G H L I G H T S

• Documents historic inequality of electric vehicle infrastructure.
• Illustrates significant spatial variation across different cities and states.
• Proposes novel metrics such as Racial Gap Index to characterize inequality.
• Develops equity strategies tailored to local and regional contexts.
• Evidences a need for more coordinated inter-state charging infrastructure across the country.
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A B S T R A C T

Based on high-resolution spatial and temporal analysis, we quantify and evaluate the equality of plug-in electric
vehicle adoption and public charging infrastructure deployment in the United States, examining current and
historical trends, as well as racial and income-based disparities. Our results show that the current and historical
distribution of conventional vehicle ownership and gas stations shows much more equality, in contrast to electric
vehicles and charging infrastructure. With regards to the distribution of electric vehicle adoption, the more
electrified vehicle technology is adopted, the more significant income inequality becomes, on a national scale.
Over the last several years, almost all states ameliorated income and racial/ethnic inequality for plug-in electric
vehicle adoption, but that is not the case for charging infrastructure. The income inequality of the distribution of
nationwide charging infrastructure is three times larger than that of gas stations. Individual states, as well as
some of the largest urbanized areas, demonstrate a wide range of inequality associated with income and race/
ethnicity. There is a need to better understand what drives this significant spatial heterogeneity, as it implies that
additional strategies tailored to local and regional contexts may be necessary to achieve more equal distribution
of infrastructure as electric vehicles become common beyond early adopters. Improving consistency and coor-
dination of development of charging infrastructure across different states/regions would likely benefit inter-state
travelers.
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1. Introduction

In the U.S., the number of plug-in electric vehicles (PEVs) – plug-in
hybrid-electric vehicles (PHEVs) and battery electric vehicles (BEVs) –
as well as associated charging infrastructure, has grown exponentially
over the last decade [1]. As of the end of 2021, the U.S. had about 2
million PEVs on the road [2,3]. The total number of non-residential PEV
charging stations across the country is now approximately 50,000,
hosting 130,000 charging ports. The growth of PEV adoption and cor-
responding charging infrastructure (or electric vehicle supply equip-
ment [EVSE]) in the U.S. is only expected to rise in the coming years, in
part owing to policy and market momentum [4,5].

As for the deployment of PEVs and EVSEs in the U.S., existing studies
suggest that there is a persistent issue of inequality (e.g., significant bias
towards high-income, white population, etc.), whether it is for cities
[6,7] or states [8,9]. Although those previous studies provide mean-
ingful insights as to the city- or state-wide inequality of vehicle electri-
fication, it is not clear to what extent the inequality exists for nation-
wide PEV adoption and EVSE deployment. Furthermore, a compara-
tive investigation of inequality between different cities, states, and years
is lacking in the existing body of literature. To fill that knowledge gap,
we quantify and evaluate the income and race/ethnicity inequality in
the current and historical diffusion of PEVs and non-residential EVSEs in
the contiguous U.S. (i.e., all states excluding Hawaii and Alaska).

Overall, the contribution of this study is to: (1) provide a compre-
hensive national and state-by-state assessment of equality in current and
historical PEV adoption and public EVSE deployment; (2) compare the
distribution of PEV and conventional non-PEV technologies, as well as
corresponding public refueling infrastructure (gas stations and charging
stations); and (3) develop and apply new metrics (built upon the con-
cepts behind Lorenz curves and Gini coefficients) that can be helpful to
quantify and evaluate the evolution of inequality in the space and time
domains.

In this study, we differentiate equality (considered) and equity (not
considered). Equality is mainly concerned with treating everyone
equally – for example, equal/even distribution of PEVs or charging
stations (e.g., per capita). On the other hand, the concept of equity in-
volves acknowledging different needs/challenges that different people
or communities may have and addressing them, which may require
treating people differently according to their needs/challenges (rather
than treating everyone equally) [10]. Equity requires a much more
complex analysis (e.g., an examination of who is benefiting or not; and/
or who is bearing the burden or not). Nonetheless, the results of this
analysis - quantification of the equality of PEV adoption and charging
infrastructure, in comparison with conventional non-PEV technologies
and gas stations - will help inform more equitable distribution of the
benefits or burdens of vehicle electrification in the future.

2. Methods

2.1. Analysis of variance

We first conduct a descriptive statistical analysis to see whether there
are statistical differences in PEV adoption and EVSE deployment in
terms of income and race/ethnicity. For this, we utilize analysis of
variance (ANOVA) and estimate correlations between those variables.
However, as is often the case, descriptive statistical analysis reveals
somewhat limited information and thus is not always very helpful for
systematically quantifying the quantity and structure of inequality for
the nation, regions/states, or cities. Therefore, in addition to descriptive
statistical analysis (e.g., ANOVA), we employ alternative approaches
and metrics to characterize the income and racial inequality of PEV
adoption and EVSE deployment.

2.2. Gini coefficient

For the national analysis, we use Lorenz curves and Gini coefficients
to quantify any inequalities (“an uneven or unfair share”) in the distri-
bution of nation-wide PEVs and charging infrastructure in relation to
median household income by census block group (CBG). The Lorenz
curve is a graphical representation of the relationship between the cu-
mulative proportion of the population and its cumulative proportion of
income. The Gini coefficient is a unit-less statistic (ranging from 0.0
[perfect equality] to 1.0 [perfect inequality]) that indicates the gap
between perfect equality and the Lorenz curve for a given setting. Here,
perfect equality refers to an equal share of income across the population.
In other words, equality (in Lorenz curves and Gini coefficients) does not
mean that each census block group must have the exact same number of
PEVs or chargers. Rather, it is about the relative share across income
groups – for example, 50 % of PEVs adopted in the group of census block
groups with lower income, and the other 50 % in the group of census
block groups with higher income. The Lorenz curves and Gini coefficient
have been widely used for various analyses of income inequality in en-
ergy and transportation systems [11–17], despite certain limitations
[18]. Numerous organizations publish Gini coefficients on a regular
basis, either assessing it at the national level [19] or comparing income
inequality across different countries [20].

When applying the Gini coefficient (based on the Lorenz curve), we
consider each and all census block groups (CBGs) in the U.S. [21] and
annual income for individual households in each CBG, for which we use
the 2015–2019 American Community Survey (ACS) 5-year estimates
[22]. To develop Lorenz curves for PEV adoption, we utilize historical
annual vehicle registration data [3] at the CBG spatial resolution be-
tween 2016 and 2021. For EVSE deployment, we employ monthly EVSE
data [1] as coordinates (longitude and latitude – assigned/paired to
corresponding CBGs) between 2015 and 2021. Regarding public
charging infrastructure, as noted earlier, because this study is focused on
equality (not equity), our analysis is solely based on the location of
chargers, without accounting for exactly who is benefiting from them
and/or bearing potential burdens, which lies in the realm of equity
discussions. It is acknowledged that a significant proportion of PEV
charging that occurs at public charging infrastructure is done outside the
census block group (e.g., at work, at shopping centers, during long-
distance travels) where the home of the driver is. However, such
equity-oriented investigation would require much more complex
assessment and data associated with vehicle movement, refueling
behavior, destination types, electric driving range, the dynamic between
home and public charging, and so on, which is beyond the scope of this
study.

For each CBG, we estimate median household income, as well as
aggregate vehicle registration by technology and public EVSE port
count. We then sort the CBG-by-CBG integrated data based on its median
household income (from the lowest to highest) and develop the cumu-
lative distribution for the entire country. We also generate a cumulative
distribution for vehicle registration and charging port count, respec-
tively. Based on the Lorenz curves (i.e., relationship between the cu-
mulative share of the CBGs for income and vehicle registration or
charging port count), we estimate the Gini coefficients (i.e., scaled dif-
ference between Lorenz curves and the perfect equality line). For the
Gini coefficient, we employ the method proposed by Sen [23]:

Gini = 1+
1
N
−

2
N2y

∑N

i=1
(N+1 − i)yi (1)

where N is the total number of CBGs, y is the mean value across all CBGs

(y =

∑N
i=1

yi
N ), and yi is the number of PEVs or EVSEs in the i-th CBG.
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2.3. Per-capita share of low-income neighborhoods (PCS-LIN)

In addition to the Gini coefficient, we define and utilize two new
metrics, PCS-LIN (per-capita share of low-income neighborhoods, using
census block group level data) and RGI (racial gap index), to charac-
terize inequalities, associated with income and race, respectively, of PEV
adoption and EVSE deployment for individual states as well as for ur-
banized areas. Both PCS-LIN and RGI are based on the similar concept of
cumulative proportions (or relative share) as expressed in the Gini co-
efficient. However, unlike the Gini coefficient, these two new metrics
(PCS-LIN and RGI) are more intuitive and less sensitive to sample size.
For example, the Lorenz curve can become less meaningful when the
sample size is small, leading to a less-than-meaningful Gini coefficient,
which is oftentimes the case for PEV adoption or EVSE deployment in
their early stages, especially for smaller geographies such as states and
cities. In contrast, PCS-LIN and RGI both generate workable and helpful
inequality measures, even when the sample size and/or geography of
interest is small. Furthermore, the Gini coefficient may not produce
meaningful results for multi-variate parameters (e.g., race). As illus-
trated in Table 1, PCS-LIN and RGI can fill the gap by allowing us to
tackle the types of questions that Gini cannot answer.

Fig. 1 (left) shows cumulative distribution of charger/port count
(vertical axis) in each state in December 2021, sorted by CBG-by-CBG
median income (horizontal axis), similar to the Lorenz curve. It must
be noted that the EVSE port count is normalized by population for each
state and CBG, to account for the heterogeneity of population between
different states or CBGs. Also, in PCS-LIN, the heterogeneity in income
level of different states/areas is also taken into consideration. If an area
has perfect equality in terms of the relationship between the distribution
of EVSEs and income, the PCS-LIN would be 0.5, which means that CBGs
that account for up to the state-wide median income value collectively
represent 50 % of state-wide EVSEs.

PCS-LIN is formulated as:

PCS − LIN =
Zj
⃒
⃒
(s.t.xj=XM)

ZL
(2)

Zj =
1

∑L

i=1
hi

∑j

i=1
qi (3)

where Zj is a cumulative distribution function of the number of per-
capita PEVs or EVSEs (qi) up to the j-th CBG (i = 1,…, j) in each state
or urbanized area; hi is human population in the i-th CBG (i = 1,…,L); ZL
is Zj

⃒
⃒
j=L which is essentially (state- or area-wide) total number of per-

capita PEVs or EVSEs in the state or urbanized area, as Zj is a cumula-
tive distribution function; 1ZL is a scaling factor to make the vertical axis
(Fig. 1) vary from 0 % to 100 %; XM is state- or area-wide median in-
come. Note that CBGs (i = 1,…,L) are indexed or sorted based on CBG-
by-CBG median income (x) so that xi− 1 ≤ xi, similar to the Lorenz curve.

Two example states are shown in Fig. 1. In the case of Mississippi,
state-wide median household income is 45,000 US dollars (in constant
2019 value). If one accounts for all CBGs that have a median income
below that state-wide median value, then the corresponding EVSE port

count in those CBGs collectively represents 70 % of all charging ports
available in Mississippi. Therefore, the PCS-LIN value for Mississippi in
December 2021 is 0.7. In the case of New Jersey, which has a median
income of 83,000 US dollars, a collection of CBGs that account for up to
the state-wide median income account for 42 % of all EVSEs in the state,
leading to PCS-LIN value of 0.42. This means that in terms of the dis-
tribution of EVSEs, whereas New Jersey has a marked bias towards more
affluent CBGs, Mississippi displays a bias in favor of lower income areas.

2.4. Racial gap index (RGI)

For the RGI, we take a similar approach as to PCS-LIN, but focus on
racial groupings (as defined by the U.S. Census). The main objective of
RGI is to quantify the difference between individuals inhabiting these
different racial groupings in terms of their share of PEV adoption and
EVSE deployment. However, “race”, as the Census labels these group-
ings, is a more complex variable than income. Race, as defined within
the context of the Census and individual responses to it, is inherently
categorical and multi-variate (White, Hispanic White, Asian, African
American, Native American Indian, and so on). Therefore, unlike with
income, it is difficult to represent the cumulative proportions (of PEV
adoption or EVSE deployment) for different races or ethnicities with one
Lorenz curve or Gini coefficient (unlike income). As it is possible that
different racial groupings have completely different spatial distribution
across the geographic dimensions (e.g., states or urbanized areas),
developing cumulative share based on one variable (e.g., income) would
not work. For those reasons, when estimating RGI, we take a different
approach from the Gini coefficient or the PCS-LIN. We develop a cu-
mulative proportion curve for each racial grouping separately, and, in
doing so, we sort the CBG-by-CBG data for each racial grouping by
population of each “race” category.

RGI is formulated as:

GI =
1
100

∑L

i=1
hi

∑L

i=1
qi

∑100

p=0

(
up − vp

)
(4)

up =
1

∑L

i=1
hi

∑rNW

i=1
qi (5)

rNW = i when p = 100

⎛

⎜
⎜
⎜
⎝

∑rW

i=1
hNWi

∑L

i=1
hNWi

⎞

⎟
⎟
⎟
⎠

(6)

vp =
1

∑L

i=1
hi

∑rNW

i=1
qi (7)

Table 1
Different research questions that Gini, PCS-LIN, and RGI can answer.

Inequality
metric

Research question addressed Description

Gini
coefficient

How evenly distributed are things or people across income spectrum? Widely used inequality metric. Inherently univariate. Not helpful when
sample size is small

PCS-LIN For neighborhoods with median household income below state-wide median value,
what is the percentage share of things/technologies?

Gini tends to be focused on the overall distribution and its evenness, not
necessarily the share of certain income groups. That is why PCS-LIN is helpful

RGI For different race/ethnicity groups – inherently not univariate unlike income, how
does inequality compare in terms of the distribution of things/technologies?

Gini does not allow multi-variate inequality evaluation, for example, race and
ethnicity, which is addressed by RGI
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rW = i when p = 100

⎛

⎜
⎜
⎜
⎝

∑rW

i=1
hWi

∑L

i=1
hWi

⎞

⎟
⎟
⎟
⎠

(8)

where up is a cumulative distribution function for the number of PEVs or
EVSEs (qi) for the CBGs (i = 1, …, rNW) that collectively represent the
p-th percentile of non-white population (hNW) in the state or urbanized
area; vp is a cumulative distribution function for the number of PEVs or
EVSEs (qi) for the CBGs (i = 1,…,rW) that collectively represent the p-th
percentile of white population (hW) in the state or urbanized area; p is an
integer variable that indicates the p-th percentile; and hi is total human
population in the i-th CBG. Note that CBGs are indexed based on pop-
ulation share for each race/ethnicity group, from the smallest to the
largest, so that (hWi− 1 ≤ hWi) and (hNWi− 1 ≤ hNWi), respectively.

An example of RGI curves for (non-Hispanic) “white” vs. “non-white”
is shown in Fig. 1 (right). It is worth discussing five elements of RGI
curves. First, as RGI curves are designed to compare a disparity between
different racial groupings, we use the gap between the curves as a
measure of inequality (similar to the difference between the perfect
equality line and the Lorenz curve for the Gini coefficient) – a wider gap
between the curves indicates a larger racial gap. Second, borrowing the
ratio concept from the Lorenz curve and the Gini coefficient, RGI is a
unit-less statistic – the difference between the curves divided by the
entire area (maximum of horizontal axis and maximum of vertical axis).
Third, the shape of each RGI curve may have a linear or non-linear
pattern (as illustrated in Fig. 1). If an RGI curve has a linear shape, it
means that (for that race category) PEV adoption or EVSE deployment is
relatively evenly distributed across the population of its own race
category. On the other hand, if the curve has a non-linear pattern, it
implies uneven distribution or representation of the population of that
race category. However, regardless of the shape (linear, non-linear, or
skewed), RGI is determined by the difference between the curves.
Fourth, as can be more easily explained by examining Fig. 1 (right), note
that the RGI curve for non-whites in Fig. 1 is above the curve for their
white counterparts. This should be interpreted to mean that PEV or
EVSE deployment is mostly driven by or correlated with the white
population, and therefore, the cumulative proportions of the non-white
population do not really affect the geography-wide PEV or EVSE
deployment, which is exactly what RGI is aimed to characterize. Fifth,

RGI can range from − 1.0 to 1.0, with 0.0 indicating perfect equality
between races or their categories (white vs. non-white as in our anal-
ysis). Again, looking to Fig. 1, it can be seen that as we use white as our
reference “race” for RGI, the example shown in that figure (bottom
right) will have a positive RGI value (but not greater than 1.0). However,
as the RGI curve for whites can sometimes be above the curve for the
non-white counterpart, the RGI value will be negative in those cases
(and no smaller than − 1.0).

From the example shown in Fig. 1 (right) for PEV adoption in the
New York –Newark area, we can see that the RGI curve for non-whites is
above the one for their white counterparts, meaning, as noted above,
that the overall distribution of PEV adoption in the area is dominated or
driven by the white population. Also, we can see that the curve for the
white population has a linear pattern, while the one for non-white is
skewed to the right (i.e., with or a spike on the left side). This means
that, compared to its white counterpart, a smaller share of the non-white
population has a very large share of PEVs within that race category, and
this particular group of non-white population (representing a large share
of PEV adoption) tends to live in CBGs that have a relatively small
number of non-white residents but rather which have a larger shares of
white population and/or more affluent communities (contributing to a
larger share of PEVs in those CBGs, despite a small share of non-white
population). All things considered, the RGI for PEV adoption in the
New York – Newark area is 0.22, which means a bias in PEV adoption
towards the white population in the area by 22 %.

Although the RGI example shown in Fig. 1 has one linear curve (for
white) and one non-linear curve (for non-white), in some cases, both
curves may be skewed to the right (or with a steep increase/slope on the
left, similar to the curve for non-white in Fig. 1). In those cases,
regardless of the race category (white or non-white), a significant
portion of PEVs or EVSEs is highly concentrated in less-populated areas,
such as non-residential (e.g., commercial) and/or rural areas. A good
example is Nevada, where many chargers are installed in or around
places like resorts and such. In other words, the RGI curves not only tell
us the population-normalized gap between different racial groupings
(used for the RGI score), but also reveal the concentration of chargers in
each geography as a function of population across race.

Fig. 1. (a) Illustration of PCS-LIN (per-capita share of low-income neighborhoods) for public EVSE deployment across different states, showing cumulative per-capita
share (%) of charger counts by cumulative median household income; and (b) illustration of the racial gap index (RGI) for PEV adoption in New York – New-
ark (right).
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3. Results

3.1. Variance and correlation with income and race/ethnicity

ANOVA results in Table 2 indicate that CBGs that have one or more
PEVs or EVSEs tend to have different income and race/ethnicity char-
acteristics from those that have no PEVs or EVSEs. For example, mean
value of CBG-by-CBG median household income is about $44,000 for
CBGs with no PEVs, whereas it is approximately $74,000 for CBGs with
one or more PEVs, for which the difference (based on ANOVA) seems to
be meaningfully different at the significance level of 5 % (p-value
≤0.05). Similarly, non-white population share for CBGs with no PEVs is
44 %, 8 % greater than that for CBGs with one or more PEVs. This means
that the two groups of CBGs (one group with no PEVs, and the other with
one or more PEVs) have statistically distinct distributions along the
spectrum of CBG-by-CBG median household income or non-white pop-
ulation share.

The same applies to EVSE deployment – L2 or DCFC. ANOVA results
imply that CBGs with no EVSE ports have statistically significant dif-
ference from CBGs with one or more EVSE ports in terms of CBG-by-CBG
median household income or non-white population share. However,
compared to PEV adoption, EVSE deployment has lower difference in
terms of median household income or non-white population share.

By and large, ANOVA reveals the existence of meaningful difference
(i.e., inequality) between CBGs with vs. without PEVs or EVSEs in terms
of income or race/ethnicity. However, it is worth noting that correlation
coefficients are low. This implies that correlation analysis or linear
regression may not be very helpful or effective to explain or evaluate the
relationship between PEV/EVSE deployment and CBG-by-CBG income
or race/ethnicity. Furthermore, the descriptive statistics in Table 2 does
not explain the structure of the inequality that the Lorenz curves, PCS-
LIN, or RGI can shed light on (as illustrated in Fig. 1).

3.2. National Inequality of PEV adoption and charging infrastructure

Fig. 2 illustrates Lorenz curves for vehicle registration and refueling
infrastructure in the U.S. in 2021. Regardless of vehicle technology, the
Lorenz curves for vehicle registration are far away from the perfect
equality line. Among different vehicle technologies, the more electrified
vehicles are, the wider the gap between the Lorenz curves and the
perfect equality line for vehicle registration becomes. For example, in
2021, the Gini coefficient (dimensionless indicator of the gap between
Lorenz curves and equality line) for internal combustion engine vehicle
(ICEV) is 0.25, which is lower (and thus more equal) than the value

(0.36) for hybrid-electric vehicle (HEV) and about half the value for PEV
(0.47–0.44 for PHEV and 0.5 for BEV). These differences are about 10 %
lower than values for 2015–2016. This decline suggests that there has
been some reduction in income inequality of nation-wide PEV adoption.

The Lorenz curve for gas stations (for ICEV, HEV, and PHEV) is very
close to the perfect equality line (Fig. 2). The lack of inequality for gas
stations is not very surprising, given the ubiquity of gas stations.
Conversely, the Lorenz curves show a large gap for public electric
vehicle supply equipment (EVSE, or charging port) that is roughly three
times larger (higher level of inequality) than that for gas stations. As of
2021, the Gini coefficient for gas station is 0.09, but it is 0.27 for Level 2
(L2) and 0.24 for DC fast charging (DCFC). Unlike PEV adoption, the
Gini coefficients increased by 4 % for L2 and 10 % for DCFC between
2015 and 2016 and 2021, indicating the lack of improvement of
equality.

The EVSE infrastructure in the U.S. has grown 350 %, from 0.085
charging ports per 1000 people in 2015 to 0.38 in 2021. This growth (of
the gross number of EVSEs) does not seem to ease inequality. The Gini
coefficients imply that most of the recharging infrastructure added since
2015 has been deployed in areas that have income characteristics
similar to those that had such equipment in 2015. These results suggest
that public PEV refueling infrastructure continues to be distributed
unequally.

3.3. Per-capita share of low-income neighborhoods (PCS-LIN)

Unlike in the national analysis above, when characterizing income-
related inequality, we do not employ the Lorenz curve and Gini coeffi-
cient. As some states have a very small number of PEVs and/or EVSEs (e.
g., there are only 70 DCFC ports in Mississippi), Lorenz curves (and
corresponding Gini coefficients) can become very skewed or less-than-
meaningful and thus do not always accurately represent reality, espe-
cially when used to illustrate state-by-state comparisons. For this reason,
we use our own metric, called Per-Capita Share of Low-Income Neigh-
borhoods (PCS-LIN), which accounts for heterogeneous demographics
and income level within and across states.

PCS-LIN shows how well low-income neighborhoods, using census
block group data, are represented in the overall deployment of PEVs or
EVSEs; and how the equal or fair representation changes over time
(improving or worsening). If deployment within a state is perfectly
equal, the PCS-LIN for that state would be 50 % (evenly distributed
between low- and high-income neighborhoods). As noted earlier for the
Lorenz curves and Gini coefficients, equality here does not require the
exact same number of PEVs or EVSEs to exist in each neighborhood. It is

Table 2
ANOVA and correlation of PEV adoption and EVSE (L2 and DCFC) associated with CBG-by-CBG median income and race/ethnicity as of December 2021.

Median Household Income (in 1000 US dollars, per CBG) Percentage of Non-White (including Hispanic White) Population

Mean
(Std. Dev.)

ANOVA
F-value
(p-value)

Corr.
(p-value)

Mean
(Std. Dev.)

ANOVA
F-value
(p-value)

Corr.
(p-value)

PEV
No PEV

43.6
(20.4) 36,220a

(0.2 × 10− 16)
0.26b

(0.2 × 10− 16)

0.44
(0.38) 538a

(0.2 × 10− 16)
0.004b

(0.2 × 10− 16)1 or more PEVs 73.5
(38.1)

0.36
(0.3)

EVSE: L2
No L2 ports 66.5

(36.8) 647a

(0.2 × 10− 16)
0.004b

(0.2 × 10− 16)

0.38
(0.32) 268a

(0.2 × 10− 16)
0.002b

(0.2 × 10− 16)
1 or more L2 ports

74.2
(40)

0.37
(0.27)

EVSE: DCFC
No DCFC ports

67.1
(37.1) 119a

(0.2 × 10− 16)
0.024b

(0.2 × 10− 16)

0.38
(0.32) 170a

(0.2 × 10− 16)
0.01b

(0.2 × 10− 16)1 or more DCFC ports 72
(36.1)

0.4
(0.27)

a F value for the variance between CBGs with no PEV/EVSE vs. CBGs with one or more PEV/EVSE, in terms of median household income (log-transformed) and
percentage of non-white population (log-transformed).
b Dependent variable: Per-capita PEV/EVSE count (log-transformed). Independent variable: Median household income or percentage of non-white population (log-

transformed).
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rather about equal share between lower and higher income neighbor-
hoods. For example, if a state has 200 PEV chargers distributed evenly
between the neighborhoods (hosting 100 chargers, 50 % share) that
have income below the state-wide median income value and those
neighborhoods (hosting 100 chargers, 50 % share) that have income
above the state-wide median value, the PCS-LIN value for the state will
be 50 %. If the state has only 50 chargers (among the 200, and thus 25 %
share) in the neighborhoods that have median income below the state-
wide median value, then the PCS-LIN value becomes 25 %, implying
the uneven distribution of PEV chargers (biased towards the relatively
more affluent neighborhoods). A more detailed description and visual-
ization for the PCS-LIN metric are available in the Experimental Pro-
cedures section.

As illustrated in Fig. 3, the PCS-LIN value for PEV adoption is below
50 % (equality line) for all states, which means that PEVs are dispro-
portionately less represented in low-income neighborhoods. The bias
towards high-income neighborhoods as such (the further below the
equality line, the more severe) shows a wide variation between states. In
Virginia, low-income neighborhoods represent only 23 % of state-wide
PEV adoption, whereas it is 45 % (very close to the equality line) in
Vermont. In most states, PCS-LIN values for PEV adoption get closer to
the equality line over time (from 2016 to 2021), which suggests a lon-
gitudinal improvement in equality. Spatial and temporal variation of
PCS-LIN reveals that income inequality in the space and time domains is
much more complex than what was characterized by Lorenz curves and
Gini coefficients above. This illustrates why it is important to examine
the inner structure of inequality across different areas/locations as well
over time.

For EVSE deployment, it is interesting that the overall longitudinal
variations are greater than that for PEV adoption, indicating potentially
greater flexibility of EVSE deployment and its equality impact, in com-
parison with PEV adoption. In other words, improving income equality
of public EVSEs could be relatively easier than tackling the income

inequality in PEV adoption, although the historical and longitudinal
variation of PCS-LIN values alone cannot confirm the relative easiness in
improving equality in EVSE deployment vs. PEV adoption. Furthermore,
it is recognized that household income alone may not be the most
effective variable to measure or characterize the longitudinal change in
equality of public charging infrastructure, because a significant portion
of the public EVSEs is in non-residential areas (e.g., shopping centers,
office parks, schools) that may have skewed representation of household
income on a census block group level.

Unlike PEV adoption (all states below the equality line), for EVSE
deployment, about half of the states have PCS-LIN values above 50 %
(equality line). In those states, relatively more EVSEs are deployed in
neighborhoods that have income below state-wide median value in 2021
(Fig. 3). Although the contrast between PCS-LIN values for PEV adoption
and EVSE deployment may be surprising, it must be noted that PEV
adoption tends to be concentrated in high-income and residential areas,
whereas EVSEs are usually located in predominantly commercial areas
(that may or may not be strongly correlated with income). Nonetheless,
like PCS-LIN values for PEV adoption, there is a wide variation of PCS-
LIN values for EVSE deployment between states – 20 % above the
equality line (biased towards low-income) in Utah, and 20 % below the
equality line (biased towards high-income) in Kansas.

Longitudinal patterns indicate the decline in PCS-LIN values over
time in most states, except some (e.g., Iowa, New Hampshire, Louisiana,
West Virginia, Oklahoma). This implies a worsening equality over time,
in which more and more public EVSE ports are preferentially deployed
in the areas that have income values higher than the state median value.
In the case of Iowa and New Hampshire, the PCS-LIN values increased
but from a starting point that was already above the equality line – in
other words, they became more unequal due to preferential deployment
to neighborhoods that have incomes lower than the state median value.
While the PCS-LIN values for Louisiana, West Virginia, and Oklahoma
increased, they got much closer to the equality line.

Fig. 2. Lorenz curve (for 2021) and Gini coefficient (for 2015–2016 and 2021) for different light-duty passenger vehicle technologies (a) and refueling infrastructure
types (b). A Lorenz curve denotes, in this analysis, a graphical representation of the relationship between the cumulative proportions of the population with
registered vehicles and/or living nearby refueling infrastructure and its cumulative proportions of income. Note that the Lorenz curves are based on the cumulative
distribution of yi and that CBGs on the horizontal axis are sorted according to the CBG’s median income, from the smallest to the largest.
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Evaluating Figs. 2 and 3 together leads to two intriguing observa-
tions. First, the Gini coefficients in Fig. 2 reveal that the overall nation-
wide income inequality for vehicle ownership is generally greater than
the inequality for refueling infrastructure. For both electric (PEV – PHEV
and BEV) and non-electric (ICEV and HEV) vehicle technologies, the
Gini coefficients for vehicle ownership or technology adoption are larger
(greater inequalities) than those for corresponding refueling infra-
structure (EVSEs or gas stations). Second, the state-by-state analysis in
Fig. 3 in part explains the overall difference of the Gini coefficients
(Fig. 2) between PEV adoption and EVSE deployment. Fig. 3 shows that
there is a widespread income inequality for PEV adoption in all states,
and the inequality is biased towards high-income neighborhoods, which
contributes to relatively bigger Gini coefficients for vehicle technology
adoption (compared to refueling infrastructure) in Fig. 2. Interestingly,
state-by-state PCS-LIN values for EVSE deployment also indicate sig-
nificant income inequalities in most of the states, but (unlike PEV
adoption) they are spread in both directions – some states above the
equality line (biased towards low-income), and others below the line
(bias towards high-income). Owing to this spread above and below the
equality line (Fig. 3), when aggregated for the entire country, the overall
income inequality for EVSE deployment becomes relatively smaller
(compared to PEV adoption), as can be seen in Fig. 2. Ironically, this also
shows why the Lorenz curves and Gini coefficients (Fig. 2) can some-
times be misleading, and why we need alternative metrics such as PCS-
LIN (Fig. 3).

Fig. 4 shows the historical evolution and latest status of PEV

adoption and EVSE deployment in each state. Figs. 3 and 4 reveal three
interesting aspects. First, although California has the largest per-capita
number of PEVs (and the second largest per-capita EVSEs, next to Ver-
mont), California is one of the states that has the most severe income
inequality in PEV adoption and EVSE deployment (Fig. 3). The example
of California implies that simply increasing the number of PEVs or EVSEs
(Fig. 4) does not necessarily or automatically improve equality (at least
at current levels of adoption) (Fig. 3), and it requires purposeful efforts
and effective strategies to achieve both a wider PEV adoption (or EVSE
deployment) and equality at the same time. In comparison with Cali-
fornia, Washington shows a little more complex of a pattern – worse
than average income inequality for PEV adoption, but almost perfect
equality for public EVSEs. This may mean that PEV owners (in Wash-
ington) predominantly reside in high-income neighborhoods but benefit
from public EVSEs in both high- and low-income neighborhoods. It may
also mean that government incentives for EVSEs have been skewed to-
wards low-income neighborhoods with the anticipation that PEV
adoption will follow.

Second, Utah and Kansas, positioned at opposite ends of the spec-
trum in terms of PCS-LIN for EVSE deployment (Fig. 3) highlight the
complex inequality conditions within and between states. The PCS-LIN
value for Utah, 20 % above the equality line, indicates a bias towards
low-income neighborhoods, whereas it is 20% below the line for Kansas,
implying a bias towards high-income. Utah and Kansas are both rela-
tively rural states, and they have approximately the same number of per-
capita ICEVs and gas stations (Fig. 4). Furthermore, in both states, a

Fig. 3. Per-capita share of low-income neighborhoods (PCS-LIN) by state, and historical change over the last several years, for PEV adoption (a, top) and EVSE
deployment (b, bottom). PCS-LIN shows how well low-income neighborhoods or census block groups are represented in the overall deployment of PEVs or EVSEs. If
deployment within a state is perfectly equal, the PCS-LIN for that state would be 50 %. Above the perfect equality line (50 %) – a bias towards low-income; below the
equality line – a bias towards high-income (i.e., lower representation of low-income neighborhoods).
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significant portion of EVSEs are concentrated in the states’ largest cities
(Salt Lake City in Utah, and Overland Park [near Kansas City in Mis-
souri] in Kansas). Despite those similarities, why do the two states have
the largest, yet completely opposite, income inequality? Two factors
may be contributing to this. In Utah, a good chunk of EVSEs in Salt Lake
City are in lower-income neighborhoods, whereas it is the opposite in
Overland Park in Kansas – see Figs. A1 and A2 in Appendix. Another
factor is the overall state-wide distribution of EVSEs. Utah has relatively
better spatial spread of EVSEs across the state, in part owing to a greater
number of EVSEs placed along interstate highways, rural areas, and
national parks (that tend to be lower-income neighborhoods). On the
other hand, Kansas does not yet have similarly significant number of
EVSEs spread along the interstate highways and/or in rural areas
(beyond population centers).

Third, the longitudinal variation of PCS-LIN values in each state
(Fig. 3) seems to be somewhat correlated with the level of electrification
(Fig. 4). States (e.g., California, Oregon, and Washington) that have
relatively more established PEV adoption (or EVSE deployment) do not
show much variation in the longitudinal evolution of PCS-LIN values (at
least over the past several years). On the other hand, those that have
relatively lower level of PEV adoption (or EVSE deployment) show
greater longitudinal variations over the past several years. For those
states with relatively more established PEV adoption, it is uncertain
whether the lack of longitudinal variations (or improvements) in in-
equalities would remain the same in the future, but it is discouraging
that the data indicate less-than-meaningful improvement in inequalities
in those states over the past several years.

3.4. Racial gap index (RGI)

We characterize racial inequality in PEV adoption and EVSE
deployment using the racial gap index (RGI), which measures how well
different races are represented, by quantifying the disparity between
different racial groupings and where a wider gap between the curves
indicates a larger racial gap. For simplicity, we analyze only non-
Hispanic white (white) vs. non-white. If the deployment of PEVs and
EVSEs proceeds equally in white and non-white populations, they will
have the same share of PEVs or EVSEs, resulting in an RGI score of zero
(perfect equality). Fig. 5 shows RGI results for PEV adoption and EVSE
deployment in each state. A positive RGI value implies a bias towards
the white population, in which the distribution of white population
disproportionally represents a larger share of the distribution of PEVs or
EVSEs. Accordingly, a negative RGI value suggests a bias towards non-
white population. If the distribution of PEVs or EVSEs is perfectly
equally represented across white and non-white populations, the RGI
value would become 0. More detailed description and visualization for
the RGI metric are available in the Experimental Procedures section.

Whether it is PEV adoption or EVSE deployment, as of today, our RGI
results indicate that there is a wide-spread bias towards the white
population in almost all states. Longitudinal changes between 2015 and
2021 indicate that the racial gap has been narrowing slowly (RGI values
getting closer to the equality line) for PEV adoption in most of the states.
Conversely, the racial inequality has worsened for public EVSE
deployment in most of the states.

Regarding the inequality in PEV adoption, for both income (Fig. 3)
and race/ethnicity (Fig. 5), the results seem to show a consistent pattern
– a widespread (income or race/ethnicity) inequality in all states, but

Fig. 4. Historical evolution of state-by-state PEV and ICE vehicle adoption (a, top) and EVSE and gas station deployment (b, bottom), on a per-capita basis, compared
to conventional vehicle and corresponding refueling infrastructure. Detailed discussion is provided in Appendix.
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slowly improving over time (getting closer to the equality lines). As for
EVSE deployment, it is a little more complicated. From the income
perspective (PCS-LIN in Fig. 3), about half of the states are above the
perfect income equality line (with the other half below the equality line)
– some states are biased towards high-income, while others biased to-
wards low-income. However, from the race/ethnicity standpoint (RGI in
Fig. 5), almost all states are above the racial equality line. This means
that racial/ethnic inequality (in EVSE deployment) has a predominant
bias towards the white population in almost all states, of which the bias
(and thus inequality) is more severe and widespread compared to in-
come inequality (PCS-LIN in Fig. 3).

States that have the largest racial inequality (for PEV and EVSE
deployment) include New York, Montana, South Dakota, and Nebraska.
On the other hand, California and Georgia are among the states with the
smallest racial inequality in both PEV adoption and EVSE deployment.
One might suspect that relatively lower racial inequality in California or
Georgia may be just a byproduct of the greater share of non-white
populations in those states, but that does not fully explain the RGI
values across different states. A good example is Georgia vs. New York in
terms of RGI values for EVSE deployment. While the two states have a
similar share of non-white population in each state, Fig. 5 shows that the
RGI value of Georgia (for EVSE deployment) is very close to the equality
line, but the RGI value for New York is the furthest away (among all
states) from the equality line (worst racial equality).

When it comes to racial inequality of public EVSE deployment, the
Utah vs. Kansas comparison discussed above (for PCS-LIN) presents

another interesting case. In addition to the similarities between those
two states described earlier, Utah and Kansas have a similarly high share
of white population (relative to other states). However, the RGI value for
Utah is very close to the equality line (Fig. 5), while the RGI for Kansas
shows one of the most severe racial inequalities (for public EVSE
deployment) in the country. Overall, in terms of EVSE deployment, Utah
seems to have relatively better income and racial equality in comparison
with Kansas, in part owing to the more even distribution in Salt Lake
City as well as across the state (as mentioned above) – see Figs. A1–A4 in
Appendix.

3.5. Inequality comparison for 20 largest urbanized areas

Our analyses thus far clearly show that high-level national charac-
terization of income inequality for PEV adoption or EVSE deployment
(based on Lorenz curves and Gini coefficients in Fig. 2) does not tell the
whole story, and therefore it is important to investigate the spatial and
temporal heterogeneity of inequality (e.g., using PCS-LIN and RGI as in
this study). To that end, in addition to state-by-state analyses above
(Figs. 3 through 5), we now also evaluate the inequality of PEV adoption
and EVSE deployment in the 20 largest (i.e., most populous) urbanized
areas (as defined by the US Census Bureau to indicate areas smaller than
metropolitan areas, but larger than cities, focused more on densely-
populated urban cores) [24]. Together, these 20 largest urbanized
areas cover about 1 % of the land area of the lower 48 states, are home to
about 30 % of the US population, and account for 26 % of the light-duty

Fig. 5. State-by-state racial gap index (RGI), and its historical change from 2015 to 2021, for PEV adoption (a, top) and EVSE deployment (b, bottom). RGI measures
how well different races are represented (spatially) in the deployment of PEVs and EVSEs. If the deployment of PEVs and EVSEs proceeds equitably for the white and
non-white populations, they will have the same share of PEVs or EVSEs and have an RGI score of zero. Above the perfect equality line (0 %) – a bias towards white
(lower representation of non-white population); below the equality line – a bias towards non-white (including Hispanic).
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vehicle stock, 42 % of PEVs, and 37 % of public EVSE ports. These areas
are analyzed using the same data and methodology adopted above.

Fig. 6 illustrates PEV adoption, public charging stations, household
income, and race on a census block group level for three example cities
(Chicago, Manhattan-Bronx area of NYC, and Houston) that are part of
the urbanized areas assessed. In Chicago, Manhattan-Bronx, and Hous-
ton, there is a strong positive correlation between income and PEV
adoption or EVSE deployment – affluent areas have more PEVs and/or
EVSEs (Fig. 6). Generally, downtown areas have greater concentrations
of EVSEs (L2 in particular). PEVs or EVSEs are less prevalent in less
affluent areas that also tend to be home to a higher share of the non-
white population. Those patterns are apparent in downtown and
northwest of Chicago vs. southeast of Chicago; Manhattan vs. Bronx; and
downtown and west of Houston vs. the rest of the city. More systematic
evaluations are summarized in Table 3.

For EVSE deployment, of the twenty urbanized areas analyzed, the
New York – Newark area has a PCS-LIN value (0.25) that is the furthest
away from the perfect equality line (0.5). This means that the census
block groups that have incomes lower than the area-wide median value
represent only 25 % of per-capita EVSEs in the New York – Newark area.
In contrast, those lower income census block groups account for 70 % of
all EVSEs in the Tampa – St. Petersburg area, as illustrated by PCS-LIN
value of 0.7 (20 % above the equality line [0.5], meaning a significant

bias towards low-income neighborhoods).
In general, for EVSEs, half of the urbanized areas have PCS-LIN

values below 50 % (equality line), which implies a bias towards more
affluent neighborhoods (or census block groups). This is consistent with
the pattern illustrated in Fig. 3 – about half of the states are above the
equality line and the other half are below that line. For gas stations,
however, the values of PCS-LIN are greater than 50 % in all but three
urbanized areas. This indicates that gas stations are disproportionately
located in less affluent neighborhoods, which may raise pollution and
health concerns in those neighborhoods [25–28].

For PEV adoption and income equality, the New York – Newark area
again has the worst income equality (as was the case for EVSE deploy-
ment), among the twenty urbanized areas evaluated – with a PCS-LIN
value (0.25) furthest away from the equality line (0.5). It is worth
noting that the state of New York has about the same income equality
(PCS-LIN of 0.29 for PEV adoption) as the state of Georgia (0.26) – see
Fig. 3, but the urban area of New York –Newark area (0.25) in New York
state has much worse income equality than the Atlanta area (0.4) in
Georgia – recalling that the further away from the equality line (0.5), the
worse inequality. This highlights again why it is important to investigate
inequality at different geographical scales.

Notably, almost all of the twenty urbanized areas have PCS-LIN
values close to 50 % (perfect equality) for conventional gasoline

Fig. 6. Spatial relationship between PEV adoption, EVSE deployment, percent of low-income households, and percent of non-white (people of color, including
Hispanic), by census block group, for three example cities (Chicago, Manhattan-Bronx area of NYC, and Houston) in 2021.
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vehicles. In the case of PEV adoption, none of the urbanized areas has a
PCS-LIN value that is closer to the equality line (0.5) compared to ICEV
ownership (for which PCS-LIN values are all very close to the equality
line, ranging from 0.38 to 0.55). For the twenty urbanized areas, the
variation in the difference between PCS-LIN values for PEVs and ICEVs
ranges from 0.07 (for the Minneapolis – St. Paul area) to 0.28 (for the
Houston area) – the greater the difference, the more severe inequality
between PEVs and ICEVs.

With regards to racial equality (characterized by RGI values), our
analysis indicates that almost all urbanized areas evaluated demonstrate
marked underrepresentation of the non-white population. In the Denver
– Aurora area (RGI of 0.23), the white population has a 23 % higher
share of public EVSE ports than the non-white counterpart on a per-
capita basis. In contrast, in the Seattle area, public EVSE ports are
distributed almost equally (on a per-capita basis) between white and
non-white populations. This is consistent with the state-level results in
Fig. 4 – Colorado has an RGI value 36 % above the equality line (biased
towards the white population), while Washington’s RGI value is very
close to the equality line. In contrast, RGI values for gas stations in both
areas (Denver – Aurora and Seattle) are very close to perfect equality.

Across the twenty urbanized areas investigated, the adoption of PEVs
occurs at higher rates among the white population than the non-white
population, with RGI values ranging from 5 % (San Francisco – Oak-
land) to 27 % (Philadelphia) – all are above the equality line (a bias
towards white population). It is worth noting that the non-white pop-
ulations exhibit a higher share of per-capita ICEV ownership – see
negative RGI values in many of these urbanized areas. In the Houston
area, the non-white population has a 14 % higher per-capita share of
ICEVs than its white counterpart. In the Boston area, however, RGI
values are above 20 % for both PEVs and ICEVs, which may be associ-
ated with an underlying bias in personal vehicle ownership across all
technologies towards the high-income and/or white population in that
area. In the Chicago area, RGI for ICEV ownership is 2 % (implying
almost perfect racial equality), whereas it is 23 % for PEVs (significant
inequality compared to ICEVs). Overall, differences in the range of RGI
values between PEV (5 % to 27 %) and ICEV (− 16 % to 17 %) illustrate
racial inequalities that persist in some of the largest urbanized areas in
the U.S.

As shown in Fig. 5, California is one of the states that has the best

racial equality for PEV adoption and EVSE deployment, despite being
one the states with the most severe inequalities based on income (Fig. 3).
Within California, the comparison between two areas, San Francisco –
Oakland vs. San Diego (Table 3), shows a significant variation of racial
inequality across different cities/areas in the same state. The San
Francisco – Oakland area’s RGI for PEV adoption is 5 % above the
equality line (0 %), meaning a slight bias towards white population (and
lower than the state-wide value [8 %]), whereas the San Diego’s RGI is
three times larger (15 % above the equality line, and greater than state-
wide value). Note that the two areas have almost the same income
inequality for PEV adoption (PCS-LIN: 35 % above the equality line in
the San Francisco –Oakland area; 34 % above in the San Diego area; and
thus a significant bias towards high-income neighborhoods in both ur-
banized areas). Despite the same income inequality, racial inequality for
PEV adoption is apparently very different between those two areas. The
racial inequality gap between the two areas gets even bigger for EVSE
deployment, as the San Francisco – Oakland area has an RGI value of 3
%, whereas it is 13 % (more than four times greater) for the San Diego
area. A similar observation (significant variation within the state) can
also be made between the Miami area (RGI for EVSE deployment: 8 %)
vs. the Tampa – St. Petersburg area (15 % - about twice greater
inequality), while the state-wide RGI value for Florida is about 7 %
(Fig. 5).

This study’s use of a binary definition of race (non-Hispanic white vs.
non-white, including Hispanic) creates limitations in terms of implica-
tions, however spatial comparisons of the relationships between race or
income and PEVs and EVSE show examples patterns of both equality and
inequality. In terms of the comparison of racial inequality between
EVSEs and gas stations, our data for the Baltimore area shows an inverse
relationship between income and race. RGI values for EVSEs and gas
stations are the same (0.02) and very close to the equality line (0), which
means that both EVSEs and gas stations are relatively evenly distributed
between white and non-white dominant neighborhoods in the area. This
seems to be in part due to relatively even distribution of white and non-
white households in the area (despite some sign of segregation) – see
Figs. A5 and A6 in Appendix. On the contrary, the comparison between
PCS-LIN values for EVSEs and gas stations in the area presents a different
picture. PCS-LIN for EVSEs in the Baltimore area is 0.54 (very close to
the equality line [0.5]), whereas PCS-LIN (0.67) for gas stations is

Table 3
Human population, median household income, EVSE deployment, PEV adoption, PCS-LIN, and RGI for the 20 largest (most populous) urbanized areas – PCS-LIN and
RGI values are to be interpreted in terms of the level of deviation from the perfect equality line (0.5 for PCS-LIN and 0 for RGI) as illustrated in Figs. 3 and 5 above.

Urbanized Area State Population
(1000)

Median Income
($1000)

PCS-LIN (Perfect Equality: 0.5) RGI (Perfect Equality: 0)

EVSE Gas
Station

PEV ICEV EVSE Gas
Station

PEV ICEV

New York – Newark NY, NJ, CT 17,800 77 0.25 0.42 0.25 0.38 0.12 0.07 0.22 0.08
Los Angeles – Long Beach –
Anaheim

CA 12,300 71 0.53 0.47 0.31 0.48 0.03 − 0.04 0.09 − 0.16

Chicago IL, IN 7900 69 0.46 0.61 0.28 0.50 0.16 − 0.02 0.23 0.02
Miami FL 5700 56 0.58 0.59 0.37 0.49 0.05 − 0.08 0.08 − 0.12
Dallas – Fort Worth – Arlington TX 5200 65 0.63 0.67 0.33 0.52 0.09 − 0.09 0.14 − 0.07
Philadelphia PA, NJ, DE,

MD
4900 68 0.41 0.52 0.26 0.45 0.18 0.14 0.27 0.11

Houston TX 4700 62 0.42 0.64 0.27 0.55 0.09 − 0.14 0.11 − 0.14
Washington, DC DC 4600 102 0.50 0.53 0.30 0.44 0.10 − 0.09 0.13 − 0.05
Atlanta GA 4200 68 0.42 0.62 0.33 0.50 0.04 − 0.02 0.12 − 0.05
Boston MA, NH, RI 3800 86 0.32 0.40 0.27 0.44 0.12 0.19 0.22 0.17
Phoenix AZ 3700 61 0.41 0.53 0.33 0.50 0.17 0.02 0.25 0.05
Detroit MI 3500 58 0.65 0.73 0.27 0.51 − 0.02 0.01 0.16 0.11
San Francisco – Oakland CA 3200 100 0.35 0.48 0.34 0.48 0.03 − 0.03 0.05 − 0.12
Seattle WA 3100 87 0.56 0.57 0.30 0.48 − 0.01 − 0.01 0.12 0.06
San Diego CA 2900 76 0.40 0.57 0.35 0.50 0.13 0.04 0.15 − 0.04
Minneapolis – St. Paul MN, WI 2500 75 0.62 0.62 0.44 0.51 0.14 0.15 0.19 0.13
Denver – Aurora CO 2400 76 0.39 0.56 0.40 0.48 0.23 0.04 0.22 0.09
Tampa – St. Petersburg FL 2300 53 0.70 0.54 0.42 0.52 0.08 0.05 0.15 0.09
Baltimore MD 2000 76 0.54 0.67 0.37 0.52 0.02 0.02 0.06 0.02
Las Vegas – Henderson NV 2000 58 0.67 0.67 0.34 0.52 0.07 − 0.05 0.12 − 0.03
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further away from the equality line. This is partly due to the spatial
coincidence of the higher concentration of low-income neighborhoods
and EVSEs in the downtown area of Baltimore, which is not the case for
gas stations. This example (PCS-LIN vs. RGI for EVSEs and gas stations in
the Baltimore area) highlights that the pattern of income inequality
related to electrification does not always translate into the same pattern
of racial inequality, or vice versa. On a state-level, Colorado is a good
example for this – almost perfect income equality for EVSE deployment
(Fig. 3), but one of the states with the most severe racial inequalities in
the country (Fig. 5).

4. Discussion: Reflections, limitations and future gaps

Our results are the first to quantify the current and historical in-
equalities across income and race regarding the distribution of PEV
adoption and EVSE deployment, compared to conventional vehicles or
gas stations, across local, regional, and national scales.

Nonetheless, our analysis contains some limitations. As noted at the
beginning, our analysis is based on the location (longitude and latitude)
of public EVSEs and does not include the broader characteristics of those
who use public EVSEs (where they live, work, shop, etc.) or the inter-
action between home charging access and the utilization of public
EVSEs. One example of such interaction is that the charging duration for
electric vehicles is significantly longer compared to refueling an ICE
vehicle at a gas station, resulting in a stronger correlation between the
number of PEVs and charging demand, meaning that absolute equality
in EVSE deployment may not align linearly with the broader goals of
PEV adoption. To account for such considerations, a much more com-
plex analysis will be required, involving home charging access (as a
function of housing type, parking options, and power outlet availabil-
ity), electric driving range (or battery size), vehicle utilization (how
often and far people drive), refueling behavior (where, how often, and
how long people charge their PEVs), destination types (work, shopping,
exercise, etc.), and so forth.

Furthermore, our analysis is primarily focused on distributional
equality with respect to income and race/ethnicity, but there are other
important dimensions (e.g., housing, jobs, education, pollution, decar-
bonization, resilience, etc.) that were not addressed in this study. In
addition, as acknowledged at the beginning, this study is strictly focused
on equality (or the lack thereof), not equity. The design of equitable PEV
and EVSE deployment must be grounded upon a clear understanding of
who is benefiting or bearing burdens, and to what degree, which is
beyond the scope of this study. Nevertheless, the data and methods
(equality metrics) in this study could also be applied to equity analyses if
the unit of analysis is converted to benefits or burdens [29–31]. Exam-
ples of considerations in an equity analysis include more categories for
race or ethnicity, and controlling for income.

Given that most EVSE locations are public and are built and situated
not necessarily where the users live, analyzing the number of gas sta-
tions instead of income or race might also show interesting patterns of
spatial heterogeneity that we encourage future researchers to explore.
Same with possible rates of charging malfunctions, or spatial data on the
sales of EVs and availability of stock within urban locations.

Lastly, although this analysis provides critical information as to what
type of and how much inequality exists at different spatial and temporal
scales based on novel equality metrics (Gini, PCS-LIN, and RGI), those
equality quantification methods may have some limitations [32,33]. For
example, even when the two cases have the exact same Gini coefficients,
they may have very different income distributions (or shapes of the
Lorenz curves). Furthermore, equality metrics (distilled down to a single
number) may not sufficiently reveal sub-group characteristics (e.g., for
the poorest of the poor). For PCS-LIN and RGI, potential sensitivity or
the lack therefore would also need to be examined carefully to shed light
on the robustness of those metrics. These limitations may also apply to
PCS-LIN and RGI metrics developed in this study, as they are built upon
the same concept as in the Lorenz curves and Gini coefficients.

Nonetheless, some of those issues regarding the equality metrics can be
alleviated to an extent by carefully investigating the inner structure of
distributions (beyond numeric values). That is why we conducted visual
examination (e.g., maps) alongside numerical quantification of
inequality in this study. All in all, despite some limitations, the
inequality metrics adopted in this study do provide a consistent and
scalable platform upon which different areas and times can be compared
against each other at different geographical scales. A logical future
extension of this work would be to incorporate other equity consider-
ations, including the fact that quality of mobility and access are not tied
to a single mode such as personally-owned vehicles.

5. Conclusion

Two core measures of equality, income and race, strongly shape and
connect with the adoption of conventional cars, spatial patterns of EV
diffusion, and the distribution of EVSE charging stations. This leads to
disparities in adoption patterns, impacts travel patterns and urban
morphology, and generates differential responses to pressing energy and
mobility problems. All states examined, except New York, have
approximately the same per-capita number of ICEVs (ranging from 0.8
to 1 ICEV for every person), while the number of PEVs (per capita) varies
greatly from one state to another. State-level public EVSE count tends to
be correlated with PEV adoption on a per-capita basis, meaning that
EVSE deployment also has significant unequal distribution across states.
It is uncertain whether and how long such stark contrast between ICEVs
(almost evenly distributed across the country on a per-capita basis) and
PEVs (significantly unequal distribution) will remain the same or not in
the future. Nonetheless, it is worth considering the impacts of the
inequality and whether policy or market intervention are warranted to
address the disparity.

Compared to public EVSE deployment, our analysis shows that PEV
adoption has widespread income and race inequalities in all states. As
PEV owners are the ones who benefit the most from public EVSE
deployment, the severe inequalities associated with PEV adoption may
also spill over to public EVSE deployment (although the interaction/
dynamic between PEV adoption and public EVSE deployment was not
considered in this study). In some states, public EVSEs are more
concentrated in lower-income areas (e.g., 63 % in Nebraska), while most
PEV owners live in high-income neighborhoods (e.g., 70 % in Mis-
sissippi). The interaction between EVSE access and PEV adoption may
mean that installing more public EVSEs in low-income neighborhoods,
without concerted efforts between PEV adoption and public EVSE
deployment in less-affluent areas, might only benefit high-income PEV
owners who live outside of those areas. At the same time, public EVSE
deployment can also support PEV adoption over time in less-affluent
areas.

Our results suggest future research can help us understand what
works and what doesn’t work in terms of equalizing access to PEVs and
EVSE. This is because our findings indicate that there is really no one
good state or city that can be used as a benchmark for improving income
and/or racial equalities in PEV adoption or public EVSE deployment
across the country. South Dakota has one of the best income equalities
for both PEVs and EVSEs (see Fig. 3 – very close to the equality line), but
the state has the most severe racial inequalities for both PEVs and EVSEs
(Fig. 5 – furthest away from the equality line). California is completely
the opposite – one of the most severe income inequalities for PEVs and
EVSEs, but one of the best racial equalities. Even within California,
different cities show different characteristics, as illustrated previously
with the comparison of PEV adoption in the San Francisco – Oakland vs.
San Diego areas (similarly biased towards high-income, but the San
Diego area has three times more severe racial inequalities). Further-
more, the Baltimore area example presented earlier exemplifies the
heterogeneity in the relationship between income, race/ethnicity, PEVs,
and public EVSEs.

Different cities and states may want to consider different approaches
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based on their own needs and conditions, and incorporate relevant
transportation equity considerations. In that regard, it is worth
mentioning that federal and state policies around PEVs and EVSEs tend
to be uniform – no geographical considerations (between states or cit-
ies). Therefore, in addition to federal and state entities, city governments
and businesses (e.g., utility companies) may also have an important role
to develop and implement local strategies to achieve better equality of
mobility, so that equality may not only become a goal but a reality.
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Appendix A. Appendix

A.1. Discussion on Historical State-by-State PEV and EVSE Deployment

As illustrated in Fig. 4 in main text, on a per-capita basis (normalized by state population), there has been significant growth in PEV adoption
(mostly BEVs) in all states between 2016 and 2021 –Mississippi with the highest growth (by 700 %, albeit from a very low baseline) and Georgia with
the lowest (by 50 %). As of 2021, California has the highest per-capita PEV adoption rate, followed by those states that have state-wide goals/
mandates for zero-emission vehicle (ZEV) deployment, such as Oregon, Washington, Vermont, Colorado, etc. In the case of ICEVs, except New York,
there is approximately one ICEV for every person in each state, which contrasts with the PEV adoption pattern that is dominated by one state (i.e.,
California). Also, the relatively small variation of ICEV concentration across states (except New York), ranging from 800 to 1000 (per 1000 people),
implies that ICEV population is generally correlated with human population (and thus there are relatively small variation across different states in
terms of per-capita ICEV count), but that is not the case for the PEV population.

If state-level ICEV ownership (normalized by human population in each state) is any indication of the potential level of future penetration of PEV
technologies, Fig. 4 (in main text) illustrates the wide-ranging gap between the electrification potential (ICEV density [per 1000 people]) and reality
(current PEV adoption) across different states. For instance, California and Louisiana have approximately the same number of ICEVs (800 per 1000
people), but the current number of PEVs in Louisiana is approximately ten times smaller compared to California. Another good example is Oregon vs.
Rhode Island – the same number of ICEVs (800 per 1000 people), but Rhode Island’s PEV adoption is twice lower than that of Oregon. If equality is
about “equal access for all” to electrification (e.g., whether people live in California or Louisiana), this drastically uneven distribution between states
(Fig. 4 in main text) implies a great inequality across the nation for access to PEVs. This between-state inequality tends to be taken for granted, but it is
worth asking why such inequality persists and whether something is to be done to decrease such inequality.

Deployment of public EVSE shows a very different pattern from PEV adoption. For example, California is no longer the most dominant state, and
Vermont has the highest density of per-capita EVSE ports (as well as gas stations). Nevertheless, per-capita EVSE port count generally appears to have a
positive correlation (0.6 in log-log scale) with the per-capita PEV adoption. However, this correlation does not necessarily imply causation.
Conversely, longitudinal growth shows a weak correlation (less than 0.3) between PEV adoption and public EVSE deployment. Tennessee had the
lowest growth in EVSE deployment, 80 % from 0.12 to 0.23, while PEV adoption has grown 200 % from 0.6 to 1.8. On the other hand, the EVSE port
count in North Dakota increased 2600 % from 0.007 to 0.19, while the rate of growth of PEV adoption was around 500 % from 0.1 to 0.6.

For the state-by-state public EVSE port count (in comparison with gas stations), unlike PEV adoption (in comparison with ICEV population – see the
discussion above), we cannot draw strong inequality implications from the per-capita values for two reasons. First, while ICEVs solely rely on public
refueling infrastructure (gas stations), most PEVs are primarily charged at home, with public charging stations being secondary refueling locations.
Second, as Fig. 4 (in main text) illustrates, because state-level EVSE port counts are generally proportional to state-level PEV adoption (not human
population), inequality discussions based on the gap between the number of EVSE ports and the number of gas stations may not be very meaningful.

For example, California and Louisiana have similar per-capita number of gas stations (and ICEVs), but that doesn’t necessarily mean that those two
states are supposed to have equal number of EVSE ports (when normalized by the same unit [1000 people]). Despite almost the same number of gas
stations and ICEVs between California and Louisiana, California’s PEV adoption is ten times higher than Louisiana, and that is also true for public EVSE
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port count (about ten times larger). Nonetheless, if we look at Montana and Vermont, those two states also have similar per-capita number of gas
stations and ICEVs (as in the example of California vs. Louisiana), but Vermont has four times higher PEV adoption thanMontana, while the number of
public EVSE ports in Vermont is seven times greater than Montana. In general, except some outliers such as Vermont, given the correlation between
the number of EVSE ports and the number of PEVs in each state (0.6 in log-log scale, as mentioned earlier), the inequality of public EVSE port dis-
tribution across different states seems to be closely aligned with the inequality in state-by-state PEV adoption.

Despite wide variations across states, it is evident that there has been universal growth of PEV adoption and EVSE deployment in all states (Fig. 4 in
main text). A key question that remains is to what degree this growth has been unequal in each state (i.e., the inner structure of the growth). To answer
that, we now evaluate each state’s unequal (uneven) distribution of PEV adoption and EVSE deployment, focusing on household income and racial
groupings (non-Hispanic white and non-white including Hispanic). Within non-white racial grouping (including Hispanic), there could be some
variations across races or ethnicities in terms of the equality of PEV adoption and EVSE deployment, but we use dichotomous racial groupings in this
study for simplicity.
Examples for Utah vs. Kansas; and the Baltimore Area in Maryland

Fig. A1. Distribution of low-income households (by CBG) and public EVSEs in Utah (left) and Salt Lake City, UT (right).

Fig. A2. Distribution of low-income households (by CBG) and public EVSEs in Kansas (left) and Overland Park, KS (right).
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Fig. A3. Distribution of non-white population (by CBG) and public EVSEs in Utah (left) and Salt Lake City, UT (right).

Fig. A4. Distribution of non-white population (by CBG) and public EVSEs in Kansas (left) and Overland Park, KS (right).
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Fig. A5. Distribution of low-income households (by CBG), public EVSEs, and gas stations in the Baltimore urbanized area in Maryland.

Fig. A6. Distribution of non-white population (by CBG), public EVSEs, and gas stations in the Baltimore urbanized area in Maryland.
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