
When the gradient ∇𝐢𝐢𝑔𝑔(𝐮𝐮, 𝐢𝐢) is known or can be estimated, we 
consider an iterative first-order optimization algorithm – since (1) 
is constrained, we start by introducing the Lagrangian:

where 𝛌𝛌 is a vector of dual variables.  The algorithm is as follows:

When the gradient ∇𝐢𝐢𝑔𝑔(𝐮𝐮, 𝐢𝐢) is not known and cannot be estimated 
(e.g., due to lack of data) we consider zero-order two function  
eval 2,3 estimation of the Lagrangian gradient.  The following 
approximation is used in a tweaked primal update (line 4): 

with perturbed incentives 𝐢𝐢±
(𝑘𝑘) ≔ 𝐢𝐢(𝑘𝑘) ± 𝜎𝜎𝜻𝜻(𝑘𝑘), where 𝜻𝜻(𝑘𝑘) ∈ ℝ𝑛𝑛 is a 

random signal, and 𝜎𝜎 > 0 controls the magnitude of perturbation.
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Figure 1.  An annotated example of a step 𝒈𝒈 function.  Each step 
corresponds to a “controllable device”. 
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Motivation:  During extreme events, traditional grid regulation 
methods (e.g., energy prices, net power injection limits) may be 
insufficient.  While system operators typically lack control over 
end-user grid interactions, (e.g., energy demand), incentives 
can influence behavior -- for example, a user that receives a 
grid-driven incentive may adjust their consumption or expose 
relevant control variables in response.

Problem:  Optimize for the best incentive subject to system 
stability constraints. However, user behavior is unknown to the 
SO – i.e., for a given incentive, the amount of curtailed load or 
control variables exposed is unknown.

Algorithm Design
We propose feedback-based optimization algorithms to solve (1). 
Each algorithm leverages different amounts of information about 
the problem (or measurements).

Case Study: Voltage Control

Our approach: We propose a general incentive mechanism in 
the form of a constrained optimization problem -- our approach 
is distinguished from prior work by modeling human behavior 
(e.g., reactions to an incentive) as an arbitrary unknown 
function.  

Problem Formulation

For an application to distribution grid voltage control, we 
define a constraint function ℎ ⋅ , based on the LinDistFlow1 
linearized power flow model:
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where 𝐩𝐩 and 𝐪𝐪 are the active and reactive power demand, 
and 𝐑𝐑,𝐗𝐗 are symmetric positive definite matrices.

For system stability, we will require that voltages 𝐯𝐯 are within 
upper and lower bounds given by [ 𝐯𝐯, 𝐯𝐯 ]:

where 𝐮𝐮𝐮 indicates the tuple 𝐩𝐩′,𝐪𝐪′ . (ℎ 𝐮𝐮′ ≼ 𝟎𝟎 → 𝐯𝐯 ∈ [ 𝐯𝐯, 𝐯𝐯 ])
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Theoretical guarantees
Under standard conditions on problem (1) (e.g., convexity, 
Slater’s conditions, Lipschitz continuity) we can show that both 
first-order and zero-order converge to an asymptotically stable 
and (near-)optimal incentive.

We construct time-varying instances where each bus has an 
average of 6 controllable devices.  Devices are added and 
removed over time in a Poisson process. Our proposed 
algorithms track the time-varying optimal solution in an iterative 
fashion, while keeping voltages within the bounds [ 𝐯𝐯, 𝐯𝐯 ].

We evaluate the first-order and zero-order algorithms in a 
voltage control simulation on the IEEE 33-bus radial distribution 
network,1 with real loads.4  To define a “realistic” 𝑔𝑔(𝐮𝐮, 𝐢𝐢), we 
define a step function for each PQ (i.e., load) bus.
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Figure 2.  Iterates of 
the first-order and 
zero-order 
algorithms on time-
varying problem (1).  

The 𝑔𝑔 step function 
is updated every 
”minute”, where 
1000 iterations ≈ 
1 minute.

A linear approx. of 
the 𝑔𝑔 step function 
is used to construct 
and solve an LP that 
serves as a time-
varying benchmark.


