

Assessing the Viability of Geothermal Microgrid Deployment: A Geospatial Analysis Across the United States

Erik Witter, Jayaraj Rane, Dayo Akindipe, and Faith Smith National Renewable Energy Laboratory

NRFI /PO-5700-91217

October 27-30, 2024 | Waikoloa, Hawaii

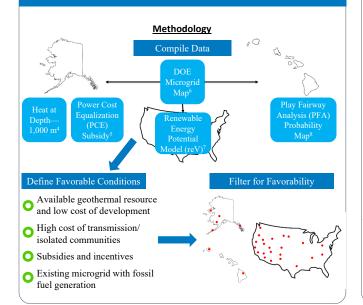
What is a microgrid?

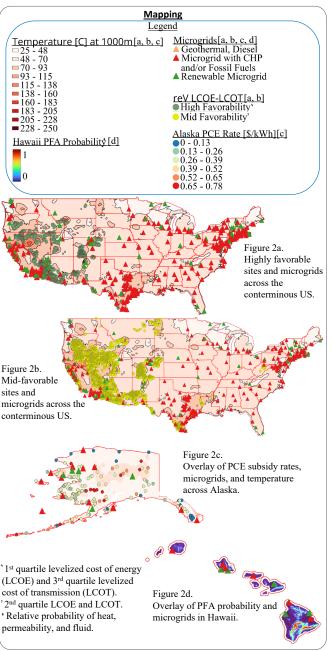
A microgrid consists of interconnected loads and distributed energy resources within clearly defined electrical boundaries that act as a single controllable entity with respect to the grid.¹

Benefits of microgrids

- Resilience islanded grids continue to serve critical facilities when the grid is down.
- Security decentralized, local generation is less vulnerable to natural disasters, cyber attacks, etc.
- Grid stability manage local supply and demand during peak hours and emergencies.
- Environmental impact reduce reliance on fossil fuels and optimize for local consumption needs, especially in isolated communities.

ected arces wind controller toad the Solar Wind Wode Utility


Figure 1. Microgrid components²


Geothermal microgrids in the US

- The sole installation in the US is the 680-kW geothermal and diesel Chena Hot Springs microgrid (AK).³
- Geothermal could replace current fossil fuel-based microgrid generators, reducing reliance on volatile fuel prices and the carbon footprint.

Analysis Goal

Leverage available data to pinpoint regions across the US that exhibit favorable conditions for the development of geothermal microgrids.

Discussion

Favorable Regions

- Conterminous US
- reV calculates location-specific costs of geothermal development and applies geographic exclusion zones, indicating numerous western regions with low development costs and avoiding high transmission costs.
- Many highly favorable zones already contain microgrids with combined heat and power (CHP) and/or fossil fuel generators.
- Alaska
- Many isolated Alaskan communities are reliant on imported diesel for electricity and depend on PCE subsidies to bring down electricity costs.
- Localized, reliable geothermal generation would reduce subsidy costs, reliance on a volatile fuel market, and carbon emissions.
- Hawaii
- PFA reveals several regions with high probability of a viable geothermal resource, although there is not significant overlap with existing microgrids.

Favorable Policy

- · Microgrid friendly
- e.g., California's Microgrid Incentive Program.⁹
- · Geothermal electric friendly
- 30 states + D.C. have financial incentives.
- Fossil fuel deterrent policies
- 18 states with clean energy standards or zero-emission goals.

Limitations

- Resource potential estimations have significant uncertainty.
- Lack of subsurface data around isolated communities where microgrids may have largest impact.
- reV assumes development of utilityscale geothermal, which does not always match the optimal microgrid for a community.

uture Considerations

- Perform case study impact analyses considering economic, environmental, and social benefits of eliminating subsidies, fuel storage and system upgrades, avoided heating costs, carbon taxes & policy incentives, and avoided fuel spills.
- Analyze costs associated with direct heat applications.
- Consider how the size of existing microgrids and target communities impacts favorability.

Acknowledgments

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DCB) under Contract No. DE-ACS-680C025808. Funding was provided by the U.S. Department of Energy Office of Energy of Energy

Citations

- ¹ Ton, D. T., & Smith, M. A. (2012). The U.S. Department of Energy's Microgrid Initiative. *The Electricity Journal*, 25(8), 84–94. https://doi.org/10.1016/j.tej.2012.09.013
- ² Mesa Solutions. (2023). Microgrid Controllers: Functions and Benefits [Web Figure]. https://247mesa.com/microgrid-controllers-functions-and-henefits/
- 3 Chena Hot Springs, Chena, AK, USA. (n.d.). Arctic Council. Retrieved August 6, 2024, from https://arctic-
- council org about working-groups acap home projects earlier-back-carron-case-studies-platform cineal-ind-sping-chena-act-plates and projects and projects and projects and projects and projects and Engineering, 13(3), 366–378. https://doi.org/10.1088/174.23331/3366-378.
- ⁵ Alaska Energy Authority. (2024). FY23 PCE by Community [Dataset].
- https://www.akenergyauthority.org/Portals/0/Power%20Cost%20Equalization/2024.02.26%20FY23%20PCE%20Statistical%20eport%20by%20Community%20(Final%20Optimzed).pdf?ver=om4p4ZK_A-xwHiFPOHfvDQ%3d%3d
- ⁶ U.S. Department of Energy. (2024). Combined Heat & Power and Microgrid Installation Databases (2.0) [Dataset]. https://doe.icfwebservices.com/microgrid
- ⁷ Pinchuk, P., Thomson, S.-M., Trainor-Guitton, W., & Buster, G. (2023). Development of a Geothermal Module in reV: GRC Transactions, 47. https://gdr.openei.org/files/1549/reV Geothermal GRC2023.pdf
- 8 Lautze, N., Thomas, D., Ito, G., Frazer, N., Martel, S., Hinz, N., & Whittier, R. (2018). Review of the Hawaii Play Fairway Phase 2 Activities. Stanford Geothermal Workshop, 43. https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2018/Lautze.pd/9Smith, F., Harmon, N. (2024). Geothermal Market Report Markets & Policy: Case Study Updates [Presentation to Geothermal Technologies Office].