

S. Acharya ¹, C. Eichstaedt ¹, P. Cline ¹, R. Larsen ¹, D. Pashov ², M. van Schilfgaarde ¹

¹National Renewable Energy Laboratory, ²King's College London

The Quasiparticle Self-Consistent *GW* **Approximation (QSGW)**

Green's-function methods supply *nonlocal*, *dynamical* self-energy *ab initio*

◦ DFT: insufficient fidelity for UCS, correlated systems. In La2CuO4, La(*f*) too high, Cu(*s*) too low, Cu(*d*) too wide, O(*p*) too high. ◦ GW: is simplest diagram.

Transforming ENERGY

-
- Quasiparticle Self-consistency: (QS*GW*) No reliance on Hartree Fock or DFT. Discrepancies with experiment become uniform, systematic, and traceable to specific diagrams
- Systematically Improvable: ladder diagrams greatly improve fidelity in both 1- and 2-particle properties
- \circ G_0 and G : yields both optimal nonlocal noninteracting G_0 and interacting G
- Response functions: intrinsic to the theory, needed for UCS
- Minimal Spin Fluctuations QS*GW* handles most systems extremely well. Ladder diagrams needed to up short ranged part.
- Fluctuating local moments are missed by QS*GW*

Dynamical Mean Field Theory: for strong local correlations

When the vertex in the spin channel is weak, we can use MBPT. Augment with DMFT when strong For superconductivity, need χ^m , χ^c . BSE gives Γ^{pp} and χ^{pp} needed for Eliashberg equation.

solid red line: $BSE@QSG\widehat{W}$ dots: Experiment from Spicer

High fidelity QSGW description of Fe

[1] M. Methfessel, M. van Schilfgaarde, and R. A. Casali. *A full-potential LMTO method based on smooth Hankel functions.* Lecture Notes in Physics, H. Dreysse. Springer-Verlag, Berlin, 2000.

[2] D. Pashov, S. Acharya, W. R. Lambrecht, J. Jackson, K. D. Belashchenko, A. Chantis, F. Jamet, and M. van Schilfgaarde. *Questaal: A package of electronic structure methods based on the LMTO technique.* Computer Physics Communications, 249:107065, 2020.

[3] Swagata Acharya et al., *Electronic Origin of Tc in Bulk and Monolayer FeSe* Symmetry 13, 169 (2021)

Origins of Superconductivity in FeSe FeSe is a **Hund's metal** with d_{xz} , d_{yz} , 3_{xy} all present at E_F .

◦ Which orbitals drive superconductivity? ◦ How does nematicity (seen in ARPES, neutron measurements, etc) affect T_{C} ?

- How applicable is BCS/BEC theory?
- Role dxy hole pocket at Γ

La₂CuO₄ noninteracting G_0 **and interacting** $G_0 \circ \text{What causes } T_c$ to increase five fold when intercalated with Li, Na, K, Cs, etc? When FeSe is deposited as a monolayer on

- SrTiO₃, why does T_c jump to ~80K? ◦ Is superconductivity driven by instabilities at
- Fermi surface?
- (See oral presentation for details) Figure 1. Top: d_{xz} , d_{yz} , 3_{xy} at Γ; Bottom: Fermi surface,

Main findings for 1-particle properties:

- d_{xy} slightly above E_F , contrary to ARPES. True for both QSGW and QSGW+DMFT. \circ QSGW+DMFT: d_{xy} becomes very
- incoherent much more than d_{xz} , d_{yz} . Incoherence in d_{xy} is will be main driver for superconductivity.

Crystal Structure and 2-particle properties:

 \circ Position of d_{xy} relative to E_F very sensitive to Se height

- \circ Incoherence in d_{xy} is very sensitive
- to proximity of d_{xy} to E_F . ◦ Therefore superconductivity is extremely sensitive to crystal

structure. Figure 3. Left: QS*GW* band structure. Right QS*GW*+DMFT spectral function on R-Z-R line.

Figure 4. Left: Dynamical spin susceptibility χ^m for : (left) pristine FeSe @ cRPA $J=0.60$ eV (middle) pristine FeSe @J=0.68 eV (right) ML FeSe/SrTiO₃ @cRPA J=0.66 eV (far right) leading eigenvalue under different geometries as a function of J.

- Screening J critically affects incoherence. $J=0.60 \rightarrow J=0.68$ $J=0.60 \rightarrow J=0.68$ $J=0.60 \rightarrow J=0.68$ causes 10-fold increase in $T_c!$
- \circ ML FeSe/SrTiO₃ has high T_c mostly because reduced screening increases J
- Intercalated FeSe has high T_c because (1) increase in Se height (changes position of d_{xy} , and also (2) expanded lattice parameter reduces screening of J.
- \circ Nematicity changes *shape* of e.g. χ^m , but only slightly affects T_c
- Conclusions: (a) Two key factors are (1) proximity of d_{xy} to E_F and (2) value of J. (b) BCS theory does not apply $-$ property of vertex, not density-of-states at F_F (c) d_{x} need not be at E_F , because of ω -dependence of χ^m .

Properties of YFe2**Ge**² **(collaboration with Dessau group CU Boulder)**

Figure 5. Left: QS*GW* band structure. Right QS*GW*+DMFT spectral function on R-Z-R line.

- ARPES shows very flat band at X ... but QS*GW* already provides a good description of it Slight band renormalizations needed (supplied by DMFT)
- Flat band not a property of Hundness, but originates from cancellation in hopping matrix elements, much like twisted graphene. Not strongly correlated.
- **Flat band still gives rise to Kondo physics**
- One-particle theory shows strong tendency to FM, which would yield spin triplet superconductivity. DFT predicts YFe₂Ge₂ to be FM!
- But, Kondo physics intervenes below Kondo temperature, prevents FM (In accord with experiment).
- Preliminary calculations show spin triplet does not survive because of Kondo physics.

Is TiSe² **an** excitonic insulator?

Overarching quemastion: Why is TiSe₂ an insulator with a gap of 0.1 eV? TiSe₂ can be be driving superconducting with pressure or Cu doping. But one-particle properties still not understood.

Figure 6. QSGW spectral function of TiSe₂ in a supercell folded to the Brillouin zone of the high-symmetry $P\bar{3}m1$ structure for (a) the ideal $P\bar{3}m1$ structure, (b) the $P\bar{3}c1$ charge-density wave, (c) statistically averaged snapshots from the 120 K *ab initio* molecular dynamics simulations of 96-atom cells and (d) MD simulations at 300 K.

- Long-standing conjectdure that TiSe₂ is an excitonic insulator. (They are rare.)
- Important, if true, because implies storng electron-hole coupling \Rightarrow strong many-body effects
- Evidence comes from presence of band at L (seen in ARPES), missing from band theory.
- **TiSe**₂ undergoes transition from high-symmetry $P\bar{3}m1$ structure to CDW $P\bar{3}c1$ around 200 K
- QSGW theory says: *metal* in high-symmetry $P\bar{3}m1$ (Fig. 6a) but becomes narrow gap insulator as CDW (Fig 6b). In unfolded Brillouin Zone of $P\bar{3}m1$, Umklapp processes make it appear as though a band appears beloe E_F
- We do AIMD simulations at finite temperature, and QS*GW* calculations at snapshots. A "memory" of the CDW remains, at 120 K and also at 300 K.

• Conclusion: TiSe₂ is a **band insulator**, because of (dynamic) symmetry breaking. It is the only instance to our knowledge where a metal-insulator transition forms from dynamical nuclear fluctuations.

[4] S. Acharya, D. Pashov, m van Schilfgaarde, *Role of nematicity in controlling spin fluctuations and* superconducting T_c in bulk FeSe, Phys. Rev. B 105, 144507 (2022).

[5] D. Pashov, R.E. Larsen, S. Acharya, M van Schilfgaarde, *Lattice fluctuations, not excitonic correlations, mediated electronic localization in TiSe*2 Preprint <https://arxiv.org/abs/2311.08015>

[6] S. Acharya, D. Pashov, E. Chachkarova, M van Schilfgaarde, and C. Weber, *Electronic structure correspondence of singlet-triplet scale separation in strained Sr2RuO44*, Appl. Sci. 11, 508 (2021).

showing pockets at Γ and M; Right: crystal structure.

 \bullet d_{yz} \bullet d_{yz} \bullet d_{yz}

◦ DFT *d* bandwidth much too wide Figure 2. Left: QS*GW* band structure. Right QS*GW*+DMFT spectral

function on R-Z-R line.

 $QSGW+DMFT$, $J = 0.60$ eV

