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A B S T R A C T

Determining accurate counts and size distributions for biological particles (bioparticles) is crucial in wide- 
ranging fields, but current methods to this end are susceptible to bias from polydispersity in size. This bias 
can be mitigated by incorporating a separation step prior to characterization. For this reason, asymmetrical flow 
field-flow fractionation (AF4) with on-line multiangle light scattering (MALS) has become an important platform 
for determining particle size. AF4-MALS has also been increasingly used to report particle concentration, 
particularly for complex biological particles, yet the impact of light scattering models and particle refractive 
indices (RI) have not been quantitatively evaluated. Here, we develop an analysis workflow using AF4-MALS to 
simultaneously separate and determine particles sizes and concentrations. The impacts of the MALS particle 
counting model used to process data and the chosen RI value(s) on particle counts are systematically assessed for 
polystyrene latex (PSL) particles and bacterial outer membrane vesicles (OMVs) in the 20–500 nm size range. 
Across spherical models, PSL and OMV particle counts varied up to 13 % or 200 %, respectively. For the coated- 
sphere model used in the analysis of OMV samples, the sphere RI value greatly impacts particle counts. As the 
sphere RI value approaches the RI of the suspending medium, the model becomes increasingly sensitive to the 
light scattering signal-to-noise ratio ultimately causing erroneous particle counts. Overall, this work establishes 
the importance of selecting appropriate MALS models and RI values for bioparticles to obtain accurate counts 
and provides an AF4-MALS method to separate, enumerate, and size polydisperse bioparticles.

1. Introduction

The measurement of physicochemical properties of polydisperse, 
complex biological particles (bioparticles) is an essential step towards 
understanding their function and harnessing their properties. Charac-
teristics such as size and particle concentration are key attributes yet 
there lacks a standardized way to measure and report these values across 
different research areas. While much attention has focused on devel-
oping reproducible and accurate sizing techniques for < 500 nm diam-
eter particles, lesser attention has been given to particle counting until 
recently. This interest has been driven by the realization that bio-
particles can play important roles in processes such as cell-cell signaling 
via exosomes [1], function as biomarkers [2,3], and be used as thera-
peutic tools [4]. In these scenarios, particle size distribution and 

concentration are important primary characteristics that are relatable to 
observed function, stability, potency, and batch-to-batch or biological 
reproducibility.

Multiple techniques rooted in different principles have been used to 
determine particle size and/or concentrations of extracellular vesicles, 
lipid nanoparticle drug carriers, etc. [5] Current methods include 
tunable resistive-pulse sensing (TRPS) [6,7], conventional Coulter 
counter (CC) [8], dynamic light scattering (DLS) [9], flow cytometry 
(FC) [5], nanoparticle tracking analysis (NTA) [10], and multiangle 
light scattering (MALS) [11] However, ensemble methods such as DLS 
and MALS only provide averages and do not capture information 
regarding size distributions within the sample. Discrete methods that 
examine particle-by-particle such as TRPS, CC, and FC are not sensitive 
enough to analyze small particles (e.g., < 30 nm in diameter) and all 
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methods except for FC (which requires labeling) often cannot readily 
accommodate large particle size distributions within a sample (e.g., 
20–500 nm). The latter is because of either instrumental constraints (e. 
g., needing multiple apertures and aperture blockage (CC), buildup of 
particles around tunable pores (TRPS), camera setting sensitivities 
(NTA) [12,13] or larger particles disproportionately impacting light 
scattering signal intensities (MALS)). Furthermore, incorrect use of the 
formalisms or shape-specific models in processing MALS data may 
introduce significant errors in reported values such as molar mass and 
size of polymers [14]. In the absence of certified particle count stan-
dards, comparisons between multiple techniques are the means to 
assessing methodological robustness and accuracy [5,15,16] but care 
must be taken to understand each technique’s limitations.

Particle separation can mitigate biases by creating more mono-
disperse sample subpopulations prior to sizing and quantifying. Two of 
the techniques mentioned previously, NTA and MALS, have been 
coupled to size exclusion chromatography (SEC) and asymmetrical flow 
field-flow fractionation (AF4) and NTA has been also been utilized as an 
offline, post-fractionation counting technique [15,17,18]. NTA de-
termines particle size and count by optically tracking the Brownian 
motion of particles in solution whereas MALS measures the light scat-
tering intensity from particles at different known angles and fits these 
intensities to light scattering formalisms or shape-specific models to 
obtain size and count information. Because of its ready availability, 
AF4-MALS has been increasingly used to determine particle concentra-
tion particularly for bioparticles such as virus-like particles, lipid-based 
nanocarriers [5,11,19–21] and extracellular vesicles [22–24]. While the 
importance of accurate refractive index values has been noted, none of 
these studies quantitatively examined the impact of analyte parameters 
and data processing (e.g., refractive index (RI) values and light scat-
tering model, respectively) on the reported particle concentrations.

To address this knowledge gap, an analytical AF4-MALS method 
suitable for dilute sample suspensions of 20 nm to ~500 nm size parti-
cles was developed. The effect of light scattering model and RI on par-
ticle counts was then systematically evaluated for polystyrene latex 
(PSL) standards and bacterial outer membrane vesicles (OMVs). OMVs 
were chosen as an exemplary bioparticle for this study as they are 
polydisperse (e.g., 25 to 500 nm [25–27]) and have a core-shell struc-
ture with a varying shell composition based on differing ratios of lipo-
proteins, phospholipids and proteins [28] all of which affect RI. The 
AF4-MALS method we present provides simultaneous size-based sepa-
ration and particle concentration of PSL standards and OMVs. Notably, 
this study, for the first time, quantitatively assesses the impact of varia-
tions in analyte refractive index values, the model chosen to process 
MALS data, and the impact of the signal-to-noise ratio of the light 
scattering intensity on particle concentration.

2. MALS particle counting theory

Regarding the use of light scattering theories for particle counting, 
there are subtle differences in particle counting equations [29,30] and it 
is important to understand the assumptions for data analysis and 
interpretation. Additional details regarding both Mie theory and 
Rayleigh-Gans-Debye (RGD) approximations can be found in the Sup-
plemental Information.

2.1. Mie theory

The use of Mie theory in particle counting is centered around 
obtaining the exact solution of the interaction of light with a spherical 
particle. When using this theory for determining particle concentration, 
the following equation is used 

N =
k2R(θ)
i (θ)

(1) 

where N is the numbers of particles per milliliter, k = 2πno/λo where no is 
the refractive index of the solvent and λo is the wavelength of the laser, 
R(θ) is the Rayleigh ratio (R(θ)∝IθS/I0), and i(θ) is the differential in-
tensity or single particle scattering function (Eq. S2). The i(θ) equation’s 
angular dependence on particle size suggests that the measured light 
scattering intensities and selection of detector angles may be important 
considerations in data analysis. Particle counting using Mie theory can 
be applied to particles spanning a range of 20–500 nm in diameter 
(depending on instrumental limitations such as laser wavelength) [29], 
but the reliability of using this model will also be influenced by RI values 
used in data analysis.

2.2. Rayleigh-Gans-Debye (RGD) approximation

While the RGD approximation is more widely used in the different 
formalisms for determining molecular weight and root mean square 
radius, a similar equation to Mie theory can be used for particle 
concentration.

Assuming an accurate extrapolation of the light scattering data to the 
0◦ angle (R(0)), and a uniform density, a similar particle counting 
equation is derived (see Supplemental Information) 

N∝
R(0)
V2

i
(2) 

where V2
i is the volume of the particle. While there is no exact rela-

tionship that dictates the upper limit for the RGD approximation, one 
may consider the analyte diameter at which isotropic scattering occurs. 
This has been described as a range of 1/10th to 1/20th of the wavelength 
of the laser [31,32]. For analytes beyond that diameter the light scat-
tered by the analyte becomes more asymmetrical, giving rise to angular 
dependence. This results in a transition from Rayleigh to Mie scattering, 
limiting the use of the RGD approximation for a more polydisperse 
sample (20–500 nm) [31].

2.3. Assumptions to consider for MALS particle counting

In addition to both Mie theory and RGD approximation having 
different size limitations, there are other assumptions that pertain to 
both theories when used for particle counting. These assumptions, 
related to Eqs. (1) and (2) consist of the following: 1) particles are 
monodisperse in size, 2) there are zero contributions of scattering from 
the solvent, giving an absolute Rayleigh ratio (R(θ)) (where R(θi) =

Rs(θi) − Rf (θi) and θi is the known angle, Rs is the Rayleigh ratio of the 
solution and Rf is the Rayleigh ratio of carrier fluid), 3) real and imag-
inary refractive index (RI) values are known, and 4) the RGD approxi-
mation can be used when particle refractive index is close to the RI value 
of the suspending fluid (na/no− 1≪1) [30,33]. It should be known that 
the latter assumption is solely for the RGD approximation, and is not 
considered for the models under the Lorenz-Mie theory which are dis-
cussed in the next section.

2.4. MALS particle count models

Sphere models for particle counting are the focus of this work. Three 
different spherical models can be used to analyze particles and their 
underlying theories follow either Mie theory or the RGD approximation. 
The “Lorenz-Mie” and “coated sphere” models use Mie theory while 
“sphere” model uses the RGD approximation.

To successfully use these models, all three require sphere radius in-
formation which can be determined by online MALS along with the 
analytes’ absolute and imaginary RI values. The sphere and Lorenz-Mie 
models require only one RI value whereas the coated sphere model 
needs two RI values (sphere and shell RI) and knowledge of the shell 
thickness.
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3. Experimental section

3.1. Materials and methods

3.1.1. Polystyrene latex and buffer preparation
National Institute of Standards and Technology Traceable Size 

Standards (also known as Duke polystyrene latex (PSL) particles) with 
sizes of 22, 100, and 496 nm were obtained from Thermo Fisher Sci-
entific (Waltham, MA) and used for the AF4 method development. These 
standards are 1 % solids based on their Certification of Analysis and 
were subsequently diluted with the AF4 carrier fluid which consisted of 
0.02 % sodium azide (Sigma-Aldrich, St. Louis, MO) and 0.05 % FL-70 
surfactant (Thermo Fisher Scientific, Waltham, MA) in deionized 18.2 
MΩ⋅cm water. For OMV separation, 150 mM phosphate buffered saline 
(PBS) was prepared with sodium chloride (Thermo Fisher Scientific, 
Waltham, MA), potassium chloride (Mallinckrodt Chemical, St. Louis, 
MO), sodium phosphate dibasic (Thermo Fisher Scientific, Waltham, 
MA), and potassium phosphate monobasic (Mallinckrodt Chemical, St. 
Louis, MO).

3.1.2. Production and isolation of OMVs
Pseudomonas putida KT2440 (P. putida) was inoculated into 50 mL of 

M9 minimal media (6.78 g/L Na2HPO4, 3 g/L KH2PO4, 0.5 g/L NaCl, 1 
g/L NH4Cl, 2 mM MgSO4, 100 μM CaCl2, and 18 μM FeSO4) supple-
mented with 5 g/L glucose ("lignin-free” condition) or 5 g/L glucose plus 
25 % (v/v) alkaline liquor from corn stover pretreatment with NaOH 
(“lignin-rich” condition) in biological triplicate. These cultivation con-
ditions were selected based on a previous study that suggested that OMV 
sizes depend on the media composition [34]. All chemicals other than 
‘the lignin-rich’ liquor, which was made in-house as has been described 
previously [35] were purchased from Sigma-Aldrich (St. Louis, MO). 
Cultivation conditions and OMV isolation and purification were per-
formed as previously describe [34].

3.2. Asymmetrical flow field-flow fractionation (AF4) and multi-angle 
light scattering (MALS)

All experiments were performed using an AF2000 system (Postnova 
Analytics, Salt Lake City, UT) coupled to a SPD-20A UV/Vis detector 
(Shimadzu, Columbia, MD), and a multi-angle light scattering (MALS) 
DAWN HELEOS II with a wavelength of 658 nm (Wyatt Technology 
Corporation, Santa Barbara, CA). The channel was formed with a tip-to- 
outlet length of 27.5 cm, breadth at channel inlet of 2 cm, breadth of 
channel outlet of 0.5 cm, and a spacer with a nominal thickness of 350 
µm. The accumulation wall was a 30 kDa molecular weight cutoff re-
generated cellulose membrane (Postnova Analytics, Salt Lake City, UT). 
A 0.1 µm inline filter (Merck Millipore Ltd, Darmstadt, Germany) be-
tween the HPLC pump and the AF4 channel was used to filter 0.02 % 
sodium azide and 0.05 % FL-70 surfactant along with 150 mM PBS as the 
two carrier fluids used in this study.

The initial AF4-UV-MALS method had a focusing time of either 10 or 
15 min, the injection flow rate was 0.2 mL/min, the detector flow rate 
was 0.5 mL/min, and the sample injection volume was either 200, 500, 
and 1000 µL. The crossflow rate was programmed to start at 1.0 mL/min 
during focusing, then decreased linearly to 0.1 mL/min over 10 min, 
held at 0.1 mL/min for 20 min, and then turned off. For OMV frac-
tionation, the isocratic hold at 0.1 mL/min was shortened to 2.5 min 
after testing the methods with the different OMV samples used in this 
study.

3.3. Particle counting analysis using MALS

Data acquisition and particle counting analysis were performed 
using ASTRA 7.3.2.21 (Wyatt Technology Corporation, Santa Barbara, 
CA). The MALS detector was normalized using bovine serum albumin 
(BSA) (Sigma-Aldrich). For each PSL size, triplicate runs were injected 

into the AF4 using a 200 µL sample loop and the AF4 method described 
in the previous section. The 22 and 100 nm PSL particles were diluted by 
200, 400, 1000, or 2,000x and 90 % of the MALS laser power was used. 
The 496 nm particles were diluted by 1000, 2000, 4000, and 8,000x and 
the MALS laser power was set to 25 % to prevent saturation of the low- 
angle detectors (detectors 1–8). Using the ASTRA software, the sphere 
and Lorenz-Mie models were selected and RI = 1.58 for PSL. Detectors 
2–18, 5–18, and 9–18 were used for data analysis of the 100 and 496 nm 
PSL. Corresponding detector angles can be seen in Table S1.

For OMV particle counting, the MALS laser power was set to 90 %, 
and ‘Heavy’ was chosen as the despiking level for the MALS signal. In 
addition to the sphere and Lorenz-Mie models, the coated sphere model 
was also examined. An RI range of 1.35–1.65 was used to encompass the 
range of composition of the OMVs. Detector selection was determined by 
examining the best fit (R2 value) to the spherical model used at the peak 
maximum of each sample, which can be found in the “Molar Mass & 
Radius from LS” procedure in the ASTRA software. For lignin-free 
samples, detectors 8–17 were selected while detectors 7–17 were cho-
sen for the lignin-rich samples. Additional details regarding the RI range 
and detector selection will be discussed in the following section.

For both PSL and OMVs, the number of particles were obtained from 
the summary report from the ASTRA software. The particle concentra-
tion or number of particles per milliliter was obtained using the volume 
of the analyte peak. The volume was determined from the area under the 
peak multiplied by the detector flow rate.

4. Results and discussion

4.1. AF4-MALS method for size-based separation and enumeration

4.1.1. Adaptation of AF4 method for large sample volume injections
Current AF4 separations for bioparticles or macromolecules use in-

jection volumes that span 10–150 µL [36,37]. While these volumes are 
suitable for characterization, they may not be suitable for fraction 
collection and further offline analyses due to significant sample dilution. 
This may also lead to low light scattering intensities thereby impacting 
size and count analysis [5]. To increase the measured light scattering 
intensity and decrease the number of AF4 runs needed to produce suf-
ficient quantities of subpopulations for further analysis, injection vol-
umes of 200, 500, and 1000 µL were investigated. A PSL mixture of 22, 
100, and 496 nm particles was chosen due to the size range of the 
bacterial OMVs (25–500 nm). Experiments contained the same sample 
mass, but in larger injection volumes, and retention times and sample 
recoveries were evaluated for the different sample loop volumes.

As injection volume increased, consistent retention times and peak 
areas were observed for each species in the PSL mixture showing 

Fig. 1. AF4-MALS separation of a 22, 100, and 500 nm polystyrene latex 
mixture using 200, 500, and 1000 µL sample loops. The dashed line and right y- 
axis show the crossflow rate program.
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successful separations (Figs. 1 and S1). Sample recovery, assessed by 
comparing the UV peak areas of the separated mixture with crossflow to 
the area of the peak observed without the crossflow (Fig. S1), was higher 
than the accepted sample recovery of >70 % across the three sample 
volumes [38] For the 22, 100, and 496 nm PSL standard mixture, the 
total sample recovery was estimated to be 81, 83, and 75 % for the 200, 
500, and 1000 µL loops, respectively. Thus, the AF4 method used here is 
amenable to scale-up without significantly reduced sample recovery, 
and therefore 1000 µL loop was used for separation of the OMVs to 
maximize the amount of sample processed per run.

4.1.2. MALS particle counting: utilization of spherical models with PSL 
standards

To understand the limitations (model, particle size, etc.) associated 
with MALS particle counting, initial experiments were done with the PSL 
standards used in the AF4 method development as they are spherical 
shape and have a known RI value (1.58). Currently there is no count 
standard for < 1 µm particles or count standard for biological particles, 
which would provide a better model for assessing MALS particle 
counting for OMVs. As discussed in the MALS Particle Counting Theory 
section, the sphere and Lorenz-Mie models can be used to examine 
spherical particles. Since the 100 nm PSL particles would show some 
angular dependence on the light scattering signal and potentially be the 
upper limit of the sphere model, this size was used to examine changes in 
particle count between the two models. The 22 nm PSL sample could not 
be fit to either the sphere or the Lorenz-Mie models. This could be due to 
the lower size limitations of the MALS or the lower light scattering signal 
of this PSL size. The Lorenz-Mie model will only be utilized for the 496 
nm PSL because of the strong forward scattering signal where the RGD 
approximation would no longer be satisfied. Based on the 1 % solids 
listed on the manufacturer’s certification of analysis (CoA) and the 
known diameter of the particle size standard, one can calculate a 
nominal particle count using Eq. (3), where Wv% is the percent solids 
based on the CoA, ρp is the polymer microsphere density, and d is the 
diameter of the particle [39]. 

Np =
Wv%

(
6.0x1010

)

πρpd3 (3) 

Experimental particle counts compared to nominal values for the 100 
nm PSL are shown in Fig. 2. The latter were determined using Eq. (3)
based on the injected mass and recovery value of the 100 nm PSL. Both 
the sphere and Lorenz-Mie models exhibit linear trends and demonstrate 
the expected change in particle counts with an increase in injected 
sample concentration. Moreover, the sphere model more closely 

matched the expected slope of unity. The Lorenz-Mie model has 
consistently larger particle counts compared to the sphere model by 
11–12 %.

One contribution to this observed difference between the two models 
could lie within the measurement of the particle size or volume. In both 
Eqs. S2 and 2 the (volume)2 is inversely proportional to the number of 
particles per milliliter. Upon further investigation, online radius data 
showed minimal differences with uncertainty < 2 %. The other potential 
reason for this difference in slope is centered around the assumption 
(na /no − 1≪1). As the RI of the analyte (na) increases, the assumption 
becomes increasingly less valid. To demonstrate this, the RI value for 
PSL was varied from its known value of 1.58 to a range of 1.35–1.65. The 
results in Fig. 3 show an increasing percent difference in particle con-
centrations calculated using the two models as the analyte’s RI in-
creases. Between RI values of 1.55 and 1.60, the percent difference 
ranges between 10.1 and 13.3 %, correlating to differences in the counts 
between the sphere and Lorenz-Mie models seen in Fig. 2. The results of 
Fig. 3, supporting the differences observed in Fig. 2, highlight the lim-
itation of the sphere model. This suggests that the Lorenz-Mie model 
may be more well-suited for samples with higher RI values as it is not 
impacted by the assumption of na/no − 1≪1. While the sphere model 
can still be used for analytes of higher refractive index, the experimen-
tally determined particle count may be underestimated due to this 
assumption.

In addition to the two different models, another component of data 
processing is the selection of the MALS detectors to be used for data 
analysis. It is suggested that the smaller angles should be selected to 
better satisfy the RGD approximation to help extrapolate the fitted data 
to the 0◦ angle [40,41]. Larger angles may also be selected as the more 
detectors used, the better representation of the sample. Currently there 
is no definitive recommendation for the number of angles that should be 
selected for accurate analyses with either the RGD approximation or 
Lorenz-Mie theory besides the aforementioned. Previous works have 
suggested that selecting 13 detectors should be sufficient to have a good 
representation of the analyte across all angles. This includes all models 
and analyte RI values. Higher noise at lower angles, however, may cause 
unattainable fits unless these lower angles are removed for both the 
sphere (RGD approximation) and Lorenz-Mie models [33,42].

Effects of selected detectors used for analysis of the 100 nm PSL can 
be seen in Fig. S2. Three detector ranges were investigated (2–18, 5–18, 
and 9–18) based on the correlation coefficient R2’ values provided by the 
ASTRA software at peak maxima. These R2’ values, associated with the 
MALS data processing step, are typically used to assess the goodness of 
the fit to the light scattering model. There were no significant changes in 
particle counts between selecting detectors 2–18 and 5–18 for either 
sphere or Lorenz-Mie models. However, the fits were drastically 
different with detectors 2–18 and 5–18 having R2’ values of 0.05–0.07 
and 0.6–0.7, respectively. While the smallest angles (detectors 2–4) 

Fig. 2. Comparison of experimental and nominal particles counts using the 
sphere and Lorenz-Mie models for PSL standards. The nominal counts are based 
on a 200 µL injection volume and 1 % solid suspension of 100 nm PSL. Detectors 
5–18 were used in this analysis.

Fig. 3. Changes in particle concentration as a function of refractive index for 
100 nm PSL particles using the sphere and Lorenz-Mie models.
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should help satisfy the RGD approximation, they do not exhibit signifi-
cantly different particle counts due to poor fitting of the data to each 
spherical model. Across both models, there is a difference in particle 
counts between the use of detectors 5–18 and 9–18 despite good line-
arity in the fit of the data points (R2 = 0.999). This suggests that detector 
selection, in addition to model choice, can impact the calculated particle 
counts.

The 496 nm PSL particles were also examined considering the in-
fluences of MALS calculated counts, detector selection, and model 
choice. One major hindrance with a larger-sized population is that 
because light scatters more in the forward direction and to the diameter 
to the sixth power, saturation of the lower angled detectors (< detector 
8, θ= 64◦) easily occurred at low concentrations. To mitigate this, the 
laser power of the MALS was decreased to 25 %, and lower concentra-
tions were utilized. Additionally, because of the larger diameter (496 
nm), only the Lorenz-Mie model could be assessed. Similar to Figs. 2 and 
S2, the 496 nm PSL shows a linear trend, but with much larger slopes 
(Fig. S3). Again, the linear trends suggest that MALS can provide a good 
correlation between increased concentration and increased particle 
counts, but absolute particle counts cannot be determined.

4.2. Separation and enumeration of P. putida OMVs using AF4-MALS

4.2.1. Size-based separation of P. putida OMVs
Given the methodological evaluations with a mixture of PSL stan-

dards, we next sought to apply the AF4-MALS method to bioparticles 
and evaluate the effect of key parameters, such as model and RI, on 
counts. To generate OMVs, P. putida was cultivated in lignin-free or 
lignin-rich media and bulk OMVs were harvested at 24 h from biological 
triplicates as previously described [34]. OMVs harvested from both 
types of media were anticipated to contain bimodal size populations. 
This expectation was based on prior results from dynamic light scat-
tering measurements that showed two OMV subpopulations in both 
lignin-free (d = 17 and 120 nm) and lignin-rich (d = 28 and 307 nm) 
cultivations, respectively [34]. For OMV separation, an AF4 method 
with 1000 µL sample volume was applied to accomplish the following: 
(i) remove small particles (d ≈ 4–6 nm, approximately the size of a single 
protein) in the focusing step, (ii) elute smaller OMVs rapidly thereafter, 
and (iii) elute the larger OMVs with intra-population separation (Fig. 
S4a).

AF4 separation, MALS signal, and radiii were similar for the lignin- 
rich and lignin-free OMVs across analytical replicates (Fig. 4a). The 
total OMV populations for lignin-free samples display a lower light 
scattering signal and a lower size range (d = 40–138 nm, both pop-
ulations) compared to the lignin-rich OMVs (d = 32–404 nm, both 
populations), which is slightly larger than each anticipated size range 
[34]. Within the larger OMV population, the continuous increase in the 
radius demonstrates that intra-population separation is achieved 

(Fig. 4a).29 To address the presence and characterize the smaller OMV 
population (d < 30 nm), AF4 experiments using an isocratic crossflow 
rate of 0.1 mL/min were performed on the lignin-rich samples (Fig. 
S4b). AF4 theory was then used to calculate the OMV size from the 
retention times in the MALS fractogram and yielded a range of 20–50 nm 
in diameter between 1.7 and 3.8 min. The average particle size of the 
collected fraction using batch DLS (Fig. S4b, shaded region) was 36 nm, 
confirming the presence of a smaller size population. Finally, AF4-MALS 
was conducted on the biological replicates for both the lignin-free and 
lignin-rich samples. AF4 retention times, MALS signal (LS 90◦

Response), and radius distributions were consistent across the triplicates 
in both media conditions (Fig. 4b and c). The higher signal-to-noise 
within the lignin-rich samples is due to the presence of larger parti-
cles, as light is scattered ~d6.

4.2.2. Estimation of OMV RI values for use in the coated-sphere model
The structure and composition of OMVs are more complex than PSL 

spheres and how to best represent these vesicles and the RI value(s) to 
use during count analysis by MALS need to be considered. The current 
understanding of P. putida OMVs suggests they should be modeled as a 
core-shell structure. Compositionally, the shell contains a mixture of 
lipopolysaccharides (LPS), phospholipids (PL), and transmembrane 
proteins while the core is filled primarily with water and protein, sug-
gesting the core and shell may have different RI values. One major 
challenge with examining OMVs and other biological particles using 
light scattering is the lack of experimentally determined RI values or 
methods to easily obtain this information [43,44]. Few studies have 
utilized experimental data from techniques like NTA or flow cytometry 
scatter ratios (Flow- SR) of mammalian EVs to estimate RI values that 
span 1.35–1.40 [43]. One drawback is that these values may not effec-
tively represent the OMVs used here due to differences in composition.

Taking a calculation approach, the RI values for OMVs were deter-
mined from the weight percent, partial specific volume of a sphere, and 
dn/dc values of the individual components. This approach has recently 
been used for MALS particle concentration determinations of lipid-based 
nanoparticles for RNA delivery [20]. A range of RI values for both the 
‘shell’ and ‘core’ of the P. putida OMVs were calculated for a range of 
compositions. The RI value of the shell considered an LPS and PL bilayer 
in which transmembrane proteins are embedded. The ratio of LPS, PL, 
and protein was varied from no protein in the OMV shell (50:50:0 weight 
percent LPS:PL:protein) to more than half being protein (20:20:60 
weight percent LPS:PL:protein). Similarly, core RI values for a range of 
water:protein content were determined (Table S2). The dn/dc values for 
LPS, PL, and protein used in these calculations of RI for different 
composition shell and core are summarized in Table S3 [20]. Shell and 
core RIs ranged from 1.49 to 1.52 and 1.33–1.58, respectively. While 
this range is broad, it encompasses a similar range of RI values deter-
mined for mammalian EVs [45–49].

Fig. 4. (a) MALS responses and radius distributions across the AF4 separation of P. putida OMVs isolated from lignin-free (LF) and lignin rich (LR) cultivations. 
Reproducibility of three biological replicates of P. putida OMVs grown in (b) lignin-free and (c) lignin-rich media. Each MALS fractogram and radius distribution is an 
average of two AF4 injections.
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4.2.3. Impacts of RI values and LS model on OMV particle counts
After verifying the AF4 separation was reproducible across biological 

replicates and estimated RI values were calculated, the impact of RI 
values and light scattering models on particle counts were examined. 
While both OMV size populations are present, only the larger vesicle 
populations eluting between 8 and 17 min. (lignin-free) and 15–40 min 
(lignin-rich) were considered for particle counting as they had the 
higher intensity of light scattering signal. The coated sphere model most 
closely approximated the OMV structure. The lipid bilayer thickness 
used for the coated sphere model was 4 nm. This was chosen based on 
existing literature values that ranged between 3 and 6 nm for various 
lipid compositions [50,51]. The sphere and Lorenz-Mie models were 
also assessed despite the sphere model potentially reaching its upper 
limit of ~100 nm. Moving forward, the RI value for the “core” of the 
coated sphere model will be termed “sphere RI.”

Fig. 5 shows particle count as a function of RI for lignin-free and 
lignin-rich OMVs when different LS models are selected. For lignin-free 
OMVs, the coated sphere model gave rise to unrealistic particle counts 
(> 1016 particles/mL) (Fig. 5a), likely owing to the poor signal-to-noise 
(S/N) observed for the MALS detector response (see Fig. 4a and b). This 
was confirmed when detailed examination of particle counts across the 
entirety of the peak within the ASTRA software showed anomalously 
large spikes that subsequently influenced the total particle count. This 
demonstrated the sensitivity of coated sphere model to the quality (S/N 
ratio) of the measured light scattering intensity. The sphere and Lorenz- 
Mie models showed similar particle counts; however, across the RI range 
of 1.35 to 1.65, a two order of magnitude change in particle counts is 
observed and is consistent for both OMV samples.

Unlike the lignin-free OMVs, the lignin-rich OMVs do not exhibit the 
anomalous higher particle counts for the coated sphere model (Fig. 5b). 
This is likely due to the lignin-rich OMVs exhibiting a larger S/N ratio LS 
intensity owing to their larger size. For a sphere RI value of 1.33, the 
coated sphere model behaves similarly to the sphere and Lorenz-Mie 
model but gives rise to a larger number of particles. With sphere RI 
values held constant at 1.43 or 1.53, the particle counts are stabilized 
across the shell RI values and at a constant shell thickness. These trends 
hint at the sphere RI in the coated sphere model having a greater in-
fluence than the shell RI or shell thickness on particle counts. The dif-
ference in magnitude of the particle counts between sphere RI values of 
1.43 and 1.53 can be attributed to the ratio of analyte and solvent 
refractive index observed in the single particle scattering function i (θ) 
(Eq. (S2)). While this change in counts can be attributed to the sphere RI, 
this trend does not hold for the sphere RI of 1.33, as discussed in the next 
section on shell RI and shell thickness. With respect to using the sphere 

model for the lignin-rich samples, the overall trend in counts matched 
those using the Lorenz-Mie model which is unexpected. Despite the 
lignin-rich OMVs being larger in size, major differences in particle 
counts may not be observed due to the influence of detector selection as 
discussed earlier.

4.2.4. Impacts of shell thickness on OMV particle counts
As the sphere RI approaches or equals the RI value of the suspending 

fluid using the coated sphere model, particle counts appear to increase 
significantly (Fig. 5b, red trace). Because this trend deviates from the 
higher sphere RI values, the shell thickness and RI values could be 
influencing the magnitude of the particle counts. When examining 
different shell thickness values of 2, 4, and 6 nm across the different 
sphere RI values, a sphere value of 1.33 shows significant variation in 
the magnitude of particle counts with respect to shell RI and shell 
thickness (Fig. 6a) [52].

Based on the results from Fig. 5, it can be concluded that the counts 
are not affected by the shell RI or thickness (Fig. 6b and c). This re-
iterates that the dominating parameter in the coated sphere model is the 
sphere RI. In the case of unknown shell thickness and RI values, there is 
more leniency in the estimation of shell thickness compared to sphere RI 
values. Despite being a better representation of the OMVs, the sensitivity 
of the coated sphere model, which could be algorithm-dependent, does 
not allow accurate particle counting for the smaller OMVs due to the low 
S/N in the MALS intensity. Therefore, while the AF4 method is still 
suitable to separate particles in lignin-free and lignin-rich media, par-
ticle counts cannot be compared directly using the coated sphere model. 
One way to achieve a higher MALS signal so that the coated sphere 
model could be used in this application is through a concentration step 
after AF4 separation and prior to the analyte flowing into the MALS.

5. Conclusion

This work presents an AF4-MALS method for the simultaneous sep-
aration and enumeration of polydisperse bioparticles, including bacte-
rial OMVs. This first-time detailed examination identified key 
parameters that impact MALS particle counts and demonstrated the 
magnitude of the impact of the light scattering model used in data 
analysis, RI values, and the signal-to-noise ratio of the MALS intensity. 
Bioparticle counts via MALS were found to be most suitable when shape 
and RI are known, and good signal-to-noise at all selected angles is 
achieved. In sum, AF4-MALS can be used as a separation, enumeration, 
and purification method for bioparticles such as OMVs but relies on 
careful consideration of key MALS parameters.

Fig. 5. Effect of RI values and light scattering model on particle concentration for (a) lignin-free and (b) lignin-rich samples. For the coated sphere model, the sphere 
RI value was kept constant at 1.33, 1.43, or 1.53 while the shell RI value (x-axis) was changed. The shell thickness was held constant at 6 nm. Data corresponds to 
fractograms shown in Fig. 4b and c.
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The effect of light scattering theory was systematically evaluated for 
PSL standards and OMV bioparticles using sphere, Lorenz-Mie, and 
coated sphere models. Between the three spherical models studied, the 
coated sphere model is most sensitive to noise in the measured signal 
intensity; samples with S/N > 800 returned reasonable particle counts 
but were greatly influenced by the sphere RI. The sphere and Lorenz-Mie 
models are less sensitive to S/N, but a small RI range yields up to a 200 % 
variation in OMV particle counts. Deviations between results from the 
sphere and Lorenz-Mie models can be attributed to assumptions within 
the light scattering theory and warrant special consideration when 
working with materials that strongly scatter light. To address this, 
improved model fits utilizing lower detector angles would provide more 
accurate particle counts for both sphere and Lorenz-Mie models. This is 
especially important for the sphere model where the numerator of Eq. 
(2) heavily relies on the extrapolation of scattered light back to the 
0◦ angle. Additional considerations such as the assessment of normali-
zation constants and AF4 method optimization may also help with 
improved data fits for larger analytes. Moreover, the trends observed 
with PSL standards demonstrate appropriate and expected MALS re-
sponses, however only relative particle counts can be achieved. To 
determine absolute particle counts, a particle count standard with a 
closer refractive index to water (RI =1.33) would satisfy the assump-
tions made with the RGD approximation.

Considering the variables that impact counts reported by MALS for 
bioparticles, it is important to report the RI values used, the MALS de-
tectors selected, the LS model used, and other processing parameters (e. 
g., despiking of LS signals). While biochemical analyses can inform the 
compositional ratio of biological particles and aid in calculating a more 
accurate RI, this remains a time-intensive process and is not a standard 
practice in the field. Thus, new methods for RI determination of bio-
particles could aid in improving the accuracy of MALS particle counts 
and could impact other data analyses such as DLS.

Appendix-Supporting Information
MALS particle counting theory, AF4 method development using 

polystyrene latex beads, impacts of detector selection for polystyrene 
latex particles, table with literature dn/dc and RI values for OMV com-
ponents, and detector number and corresponding angles for MALS 
instrumentation (PDF).
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