
communicationsmaterials Article

https://doi.org/10.1038/s43246-024-00728-5

Generating multi-scale Li-ion battery
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Understanding structure-property relationships of Li-ion battery cathodes is crucial for optimizing
rate-performance and cycle-life resilience. However, correlating themorphology of cathode particles,
such as in LiNi0.8Mn0.1Co0.1O2 (NMC811), and their inner grain architecture with electrode
performance is challenging, particularly, due to the significant length-scale difference between grain
and particle sizes. Experimentally, it is not feasible to image such a high number of particles with full
granular detail. A second challenge is that sufficiently high-resolution 3D imaging techniques remain
expensive and are sparsely available at research institutions. Here, we present a stereological
generative adversarial network-based model fitting approach to tackle this, that generates
representative 3D information from 2D data, enabling characterization of materials in 3D using cost-
effective 2D data. Once calibrated, this multi-scale model can rapidly generate virtual cathode
particles that are statistically similar to experimental data, and thus is suitable for virtual
characterization and materials testing through numerical simulations. A large dataset of simulated
particles with inner grain architecture has been made publicly available.

Improving Li-ion battery energy-density, power-density, and cycle-life is
intricately linked to addressing the climate crisis by enabling transpor-
tation electrification and increasing storage capabilities for renewable
energy sources. The tremendous progress in Li-ion battery performance,
achieved over the past 30 years, has largely stemmed from fine tuning
electrode microstructures and electrolyte compositions, without much
change in the active material elemental composition1. Yet, opportunities
still exist for controlling cathode sub-particle microstructure to enhance
performance2,3. For example, fabricating radially oriented and elongated
grains within LiNixMnyCozO2 (NMCxyz) cathode particles has been
shown to significantly increase rate capability as compared to cathode
particles that have no preferential grain orientation or internal
architecture2,4–6. It is also expected that by designing cathode grain
microstructures, chemo-mechanically induced fracture, which perpe-
tuates loss-of-active-material and eventually leads to battery capacity
fade, can be reduced3. The present paper seeks to improve the under-
standing of structure-property relationships between particle-level and
grain-level microstructures and observed battery performance. This is
achieved by developing a tool that can generate representative

microstructures from experimental data. These realistic microstructures
are essential in experiment data interpretation and are required for
physics-based models that seek to explore particle- and grain-level
physics that ultimately determine battery performance and longevity.

There is a need in the community for a tool that can generate repre-
sentativemicrostructures formesoscale batterymodels to assist inmapping
realistic microstructural information to cell-level performance. Physics-
based models have been used to help accelerate Li-ion battery electrode
development. For example, physics-based models can be used to optimize
designs for fast-charge performance7–10. Effective optimization using battery
models requires relatively fast computation times. To achieve fast compu-
tation times, physics-based models typically abstract detailed electrode-
level, particle-level, and grainmicrostructures to “effective” parameters that
approximate these intricacies11. Examples of these effective parameters
include: secondary-particle diameter, specific surface area, solid-phase dif-
fusion coefficients, and electrolyte tortuosity. While these fast electro-
chemical models have shown great promise, there is a disconnect between
the optimized effective parameters and the underlying complex micro-
structures that can achieve these performance metrics.
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Moreover, geometric complexities not typically included in physics-
based models, such as grain orientation, grain size, and secondar particle
surface area, can strongly influence cell aging2,12. For example, secondary
particle cracking has a complex relationship with capacity fade–cracks
reduce solid-phase diffusion lengths and increase specific surface area13, but
can isolate active material and introduce unprotected surfaces for side
reactions14–16. Additionally, grain orientation, size, and shape greatly influ-
ence the apparent solid-phase diffusion coefficient17.

To bridge the gap betweenoptimized effective parameters, identified in
physics-basedmodels and real microstructures, researchers have developed
“mesoscale”models that focus on particle- and grain-level microstructures
and associated electro-chemo-mechanic physics15,18–22. However, generating
statistically representative, realistic particle and grain microstructures as
inputs for these mesoscale models is challenging23,24. Consequently,
researchers often approximate geometries with idealized shape, size, and
orientations15,19–22,25–29.

In the present paper, a “multi-scale” particle model is developed to
generate representative secondary NMC811 particles comprised of repre-
sentative grains (primary-particles). The multi-scale approach can be sub-
divided into twodistinctmodels that can generate virtualmorphologies that
statistically resemble secondary-particles and grain architectures. A similar
two-part, multi-length-scale approach was used previously30. As in this
study, the outer secondary-particle shell is generated using a random field
on the unit sphere31, and the inner grain architecture is generated using a
random tessellation. Roughly speaking, common (distance-based) tessel-
lations can be considered as parametric partitions of Euclidean space, such
as the Voronoi or Laguerre diagram32. Unlike the previous study30, the
proposed grain architecture model is not based on Laguerre tessellations33,
but on a more general class. Furthermore, in contrast to previous approa-
ches, a neural network is implemented to generate the parameters of the
tessellations. Importantly, this allows for a (gradient descent-based) fitting
procedure of the tessellation model, enabling the generation of 3D grain
architectures solely by using 2D planar section information.

Several stochastic approaches for 3D (re-)constructions have been
explored previously34–38. In contrast to the present model, many of these
methods are based on neural networks that rely on upsampling39 or trans-
posed convolution40 techniques to generate discrete 3D voxel representa-
tions from 2D pixel images (i.e., slices or projections). These generated 3D
voxel representations do not have any underlying constraints and thus are
able to generate any morphology and spatial arrangement at the expense of
interpretability and computational efficiency.

In contrast to other 2D-to-3D generation methods, the present
method does not solely rely on neural networks and the generation of a
3D voxel-based representation. Instead, a neural network and a Poisson
point process41,42 to generate the parameters of a (continuous)
tessellation43,44. More precisely, the parameters of the random tessellation
model, i.e., the parameters of the neural network and the point process,
are fit by a generative adversarial network (GAN)-based45 approach,
allowing for the simulation of realistic 3D grain architectures. These
virtual grain architectures are then sliced into several 2D images and

passed to the so-called discriminator to be compared with measured
grain architectures. The output of the discriminator is then used to
update the parameters of the grain architecture model to generate more
realistic 3D grain architectures. After training, the generated 3D struc-
tures are statistically similar to ones measured experimentally. This
enables characterization of 3D features like the distribution of mor-
phological features of grains, by using only 2D image data, bridging a
major systematic barrier in characterizing particle architectures in 3D.
These simulated 3D grain architectures, i.e., continuous tessellations, are
especially suitable for simulation applications3,18,20,22,46,47. Furthermore, the
fitted parameters of the random tessellation model are interpretable, and
by modifying these parameters, similar structures with novel hypothe-
tical structural characteristics can be generated and virtually tested using
numerical simulations of electrochemical performance18,48,49 or cracking
behavior3. Alongside this manuscript, a data set of simulated NMC811
particles with inner grain architecture is made publicly available.

Results and discussion
Preprocessing of nano-CT data
Wepresent aprocedure formodeling theouter shell ofNMC811particles by
a randomfield on the sphere.Thefitting of this randomfieldmodel requires
preprocessing the nano-CT data first.

Initially, the 3D grayscale CT image, see Fig. 1a, undergoes segmen-
tation and labeling. This process includes convolving the grayscale image
with a discrete 3DGaussian kernel with standard deviation σ = 1.8, followed
by Otsu thresholding50 and labeling of the resulting binary 3D image using
the watershed algorithm51. Subsequently, disconnected components of the
watershed-labeled image are separated, and small (volumeV < 10 voxels) or
non-spherical (sphericity Ψ < 0.5, see Eq. (20) for a formal definition)
components aremergedwith their corresponding neighboring components
if they exist; otherwise, they are neglected to remove artifacts. Finally,
components intersecting the boundary of the sampling window are
removed to minimize edge effects. This procedure yields N = 1590 labeled
particles in voxel representation, as shown in Fig. 1b, c.

These voxel-based particles are assumed to be star-shaped such that
their so-called star point coincides with their centers of masses. Thereby, a
star-shaped domain is onewhere every line segment from the star point to a
boundarypoint lies entirely inside thedomain, thus this assumption ismuch
more general than the assumption of ellipsoidal/spherical or even convex
particles. A star-shaped particle with star point c 2 R3 can be represented
by a radius function P : S2 ! Rþ ¼ ½0;1Þ on the unit sphere S2 ¼ fx 2
R3 : jxj ¼ 1g given by

PðuÞ ¼ maxfr 2 Rþ : voxel ξðruþ cÞ belongs to the particle g; for each u 2 S2;
ð1Þ

where ξðxÞ 2 Z3 denotes the grid point that is closest to somepointx 2 R3.
Note that the inner region of a star-shaped representation P(u) of a particle
is, by definition, always a subsetof its segmented representation.Onaverage,
the star-shaped representation accurately captures 96% of the volume of

Fig. 1 | Subsequent data-preprocessing steps formodeling the outer shell ofNMC
particles. a Planar section of 3D nano-CT data. b Segmentation of the planar section
shown in (a). c 3D rendering of voxel-based particle representation. d Star-shaped

representation of particles displayed in (c). e Spherical harmonics-based repre-
sentation of particles shown in (d). f Simulated particles generated by the stochastic
outer shell model (explained in “Stochastic outer shell model” below).
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segmented particles. For a visual validation of the star-shape assumption,
see Fig. 1d.

To stochasticallymodel the star-shaped particles, the particles radius is
modeled as a function bymeans of random fields on S2. Realizations of these
models can be considered to be radius functions that describe the outer shell
of particles. Therefore, we use so-called (real-valued) spherical harmonic
functions Y ‘m : S2 ! R for ‘ 2N0 ¼ f0; 1; . . .g and m 2 Z ¼
f. . . ;�1; 0; 1; . . .g with ∣m∣ ≤ ℓ, which are given by

Y‘mðuÞ ¼

ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2‘þ1
4π
ð‘�jmjÞ!
ð‘þjmjÞ!

q
Pjmj‘ ðcos θðuÞÞ sinðjmjϕðuÞÞ; if m < 0;ffiffiffiffiffiffiffiffi

2‘þ1
4π

q
Pm
‘ ðcos θðuÞÞ; if m ¼ 0;ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2‘þ1
4π
ð‘�mÞ!
ð‘þmÞ!

q
Pm
‘ ðcos θðuÞÞ cosðmϕðuÞÞ; if m>0;

8>>>><
>>>>:

for each u 2 S2;

ð2Þ
where Pm

‘ : ½0; 1� ! ½0; 1� are the Legendre polynomials and θ(u) ∈ [0, π),
ϕ(u)∈ [0, 2π) are the polar and the azimuthal angles of u∈ S2, respectively.
These functions form an orthonormal basis of the Hilbert space L2(S

2) of
square-integrable functions on the unit sphere S252. Thus, loosely speaking,
the surface of each star-shaped particle can be expressed as a linear
combination of spherical harmonic functions. As the order of these
spherical harmonic functions increases (i.e., the value of ℓ), they contribute
to capturing more detailed and rougher surface features. Since the
considered CT data has a finite resolution, it is not meaningful to consider
significantly high orders. Therefore, in the following only spherical
harmonic basis functions with ℓ ≤ L = 9 are considered. This results in a
spherical-harmonics representation eP : S2! Rþ of the radius function P,
given by

ePðuÞ ¼XL
‘¼0

Xl

m¼�‘
a‘mY‘mðuÞ; for each u 2 S2; ð3Þ

whereaℓm are the (L+ 1)2 = 100 coefficients of this basis representation.The
computation of these coefficients for a given star-shaped particle’s radius
function P, and therefore its approximation in terms of the spherical
harmonics basis up to order L, is done by least squares regression. More
precisely, the least squares fit between ePðRuÞ and P(u) is computed
regarding 642 equidistant evaluation points u ∈ S2 on the unit sphere,
resulting in 642 equations with the 100 variables aℓm. Here, R 2 R3× 3

denotes a rotation matrix, uniformly chosen at random, which helps to
mitigate any anisotropy in the data arising from the voxel-based
representation of the CT data or the segmentation procedure. For a visual
inspection of the quality of this fit, see Fig. 1e.

Morphology of 2D grain architectures
As mentioned in “SEM and EBSD imaging”, the text data produced by the
EBSDmeasurement was first converted into image data of labeled grains, as

shown in Fig. 2. A few pixel values are missing due to overlapping Kikuchi
patterns in EBSD imaging. However, these few missing pixels do not sig-
nificantly affect the grain shape or orientation. These 2D image data
resulting fromEBSDmeasurement are fromnowon referred to as 2DEBSD
(planar section) data. The grain architectures observable in these data show
a non-uniform morphological orientation, i.e., the grains morphologies
exhibit a preferred orientation towards the center of the particle planar
section, which is identified as the origin o ¼ ð0; 0Þ 2 R2 of the coordinate
system. Note that morphological orientation described here is distinct from
crystallographic orientation. The proposed model should be able to reflect
this behavior, thus, theorientationof individual 2Dgrainshas tobe captured
quantitatively. For this purpose, the principal components v1; v2 2 R2 of
the pixel positions associated with a grain, along with their corresponding
eigenvalues e1≥ e2 > 0 are utilized. The first principal component v1 is a
direction thatmaximizes the (empirical) variance of the pixel positions53. In
other words, it describes the primary orientation of the grain. The orien-
tation α 2 ½0; π2� of a grain is thus given by the smallest angle between the
grain’s center c (in the planar section) and v1, i.e.,

α ¼ arccos
jv1c>j
jv1jjcj

� �
; ð4Þ

see Fig. 2. For grains with α ≈ 0 the principal component v1 points towards
the origin, whereas an orientation α = π/2 corresponds to principal com-
ponents that are orthogonal to the direction pointing to the origin. Figure 2
shows the grain orientation distribution per 2D EBSD image. Furthermore,
exemplary planar sections are presented in Fig. 2. Notably, for some planar
sections, the corresponding EBSD data (outlined with gray boxes in Fig. 2)
exhibits no preferred grain orientation. It is conjectured that these images
correspond to planar sections located farther away from the particle center
as compared to those highlighted with a black box, i.e., the assumption that
the particle center is located at the origin of the planar section observed in
the EBSD image is not valid. However, the stereological model fitting
approach for the inner grain architecture model, introduced in “Stereo-
logical tessellationmodel calibration”, relies on imagedata of planar sections
passing through the particle center, since in such images, grains in each
radial distance from the particle center can be observed, a property not
present in planar sections at other locations. Consequently, EBSD planar
sections represented by gray curves in Fig. 2 are excluded from the sub-
sequent model fitting procedure.

In this section, the stochastic models for both the outer shell and the
inner grain architecture, along with their corresponding fitting procedures,
are presented. The choice of a two-scalemodeling approach is driven by the
presumedminimal correlation between the outer shell ofNMC811particles
and their inner grain architecture. Initially, the outer shell structure is
modeled on a coarser length scale (by means of nano-CT data), before
proceeding to the modeling of the inner 3D grain architecture, which is
observable on a finer length scale (by means of 2D EBSD data).

Fig. 2 | Orientation of grain planar sections. a The orientation angle α of a grain is
computed via its first principal component v1 and its center c. d The angle dis-
tribution of each EBSD planar section is determined by kernel density estimation,

using symmetric boundary conditions. The curves in black correspond to retained
data, whereas the gray curves correspond to neglected data. Two exemplary grain
architectures of retained (b, f) and neglected (c, e) planar section data are shown.
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Stochastic outer shell model
After the preprocessing of nano-CT data explained in “Preprocessing of
nano-CT data”, the next step towards stochastic outer shell modeling is to
describe the distribution of the coefficients aℓm appearing in Eq. (3) by
appropriately chosen randomvariablesZℓm. Due to the assumed isotropy of
the underlying image data, the randomvariablesZℓm andZ‘m0 are supposed
to be identically distributed for anym;m0. For ð‘;mÞ≠ð‘0;m0Þ with ‘; ‘0≠ 0,
the randomvariablesZℓm andZ‘0m0 can be assumed to be independent, see54.
Furthermore, to justify the assumption of independence of Z00 and Zℓm for
ℓ, m ≠ 0, the empirical distance correlation coefficient (EDCC)55 of the
observations of a00 andaℓm is investigated.Note that thedistance correlation
coefficient of two random variables is zero if and only if the random vari-
ables are independent. Thus, the small values of the EDCC, shown in Fig. 3,
justify the assumption of independence. Note that the coefficient a00 pre-
dominantly determines the size of a particle, while the coefficients aℓm for
large values of ℓ primarily capture finer surface features. Thus, the observed
increase inEDCCvalueswith increasing values of ℓ corresponds to the trend
that, due to the finite resolution of image data, larger particles exhibit pro-
gressively finer surface features. Therefore, the model assumption of inde-
pendent spherical harmonics coefficients might no longer hold when
modeling very fine surface features (ℓ≫ 9), which are not considered in
this work.

The coefficients a00 are described by a log-normally distributed ran-
dom variable Z00 with parameters μ = 0.4, σ =− 29.83, whose probability
density f 0 : Rþ ! Rþ is given by

f 0ðxjμ; σÞ ¼
1ffiffiffiffiffi
2π
p

σx
exp � ðlnðxÞ � μÞ2

2σ2

� �
; for each x 2 Rþ: ð5Þ

On the other hand, for each ℓ > 0,m∈ {− ℓ,…, ℓ}, the coefficients aℓm
are described by a univariate scaled Student’s t-distribution, i.e., for some
ν, τ > 0, the probability density f ‘ : Rþ ! Rþ of the randomvariable τZℓm
is given by

f tðxjνÞ ¼
Γðνþ12 Þ

Γðν2Þ
ffiffiffiffiffiffi
πν
p 1þ x2

ν

� ��ðνþ1Þ=2
; for each x 2 R; ð6Þ

where Γ and ln denote the gamma function and the natural logarithm,
respectively. The fitted values of the parameters ν and τ are given in Table 1,
see also Fig. 4 for a visual validation of the fitted densities f ‘ : Rþ ! Rþ
for ℓ = 0, 1,…, 9. Both, the selection of the parametric distribution families,
from the set of normal, log-normal and Student’s t distributions, and their
best fitting parameters are determined using maximum likelihood

estimation. This was performedbased on the (deterministic) fitted spherical
harmonics coefficients aℓm that are obtainedwhen fitting the representation
given in Eq. (3) to segmented particles observed in data.

The resulting outer shell model {X(u), u ∈ S2} is given by

XðuÞ ¼
XL
‘¼0

X‘

m¼�‘
Z‘mY‘mðuÞ for each u 2 S2 ; ð7Þ

where Yℓm denotes the spherical harmonic function introduced in Eq. (2).
Realizations of thismodel are shown in Fig. 1f. Note that themodel has been
calibrated on a voxel grid, see Eq. (1). Thus, the generated outer shells are
scaled by the voxel side length of 128 nm afterwards.

Stochastic grain architecture model
This section introduces the model used to describe the inner grain archi-
tecture of NMC811 particles. The model is based on a so-called generalized
balanced power diagram (GBPD)56, which is a generalization of the well-
knownVoronoi32 and Laguerre33 tessellations. GBPDs are a powerful tool to
describe Euclidean space filling structures, such as grains, in a low para-
metric way43. This low-parametric representation allows for data com-
pression, fast computation, and a simpler and more interpretable grain
architecture modeling as compared to voxel-based approaches.

In general, for any integer d 2N ¼ f1; 2; . . .g, a GBPD is a decom-
position of the d-dimensional Euclidean space Rd into non-overlapping
subsets (or grains)G1; :::;Gν � Rd ,where for each i∈ {1,…,ν} it holds that

Gi ¼ fx 2 Rd : jx � sijMi
� ri ≤ jx � sjjMj

� rj for all j 2 f1; . . . ; νg n figg;
ð8Þ

given ν 2N distinct seed points s1; :::; sν � Rd and markers
(M1, r1), . . . , (Mν, rν). Here,Mi 2 Rd × d is a positive definitematrix, ri 2 R
is an offset parameter and jx � sij2Mi

¼ ðx � siÞ>Miðx � siÞ is the metric
inducedbyMi. Later on, ford∈ {2, 3}, each setGiwill represent a single grain
and consequently will be referred to as such.

The tessellationsusedwithin theproposedgrain architecturemodel are
further restricted to GBPDs whose matrices Mi can be written as
Mi ¼ QiDiQ

⊺
i . Here,Qi is a basis changematrix to a given basis whose first

basis vector is si/∣si∣ andDi is a diagonal matrix. This restriction reduces the
marker dimensionality from 6+ 1 to 3+ 1 and allows deriving a
non-stationary but radial symmetric model, the realizations of which
resemble the grain architectures observed in the image data considered in

Fig. 3 | Empirical distance correlation coefficient (EDCC). a EDCC between a00
and aℓm of nano-CT data. b Plots of further exemplary data with corresponding
empirical correlation coefficients, where the values above the plots are the EDCCand

the Pearson correlation coefficient, respectively. Values of EDCC that are close to 0
and 1 indicate weak and strong dependence, respectively.

Table 1 | Values of fitted model parameters ν and τ

parameter ⧹ order ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 5 ℓ = 6 ℓ = 7 ℓ = 8 ℓ = 9

ν 2.22 4.64 2.84 2.43 2.28 2.26 2.20 2.17 2.22

τ 3.51 2.79 0.98 0.56 0.37 0.28 00.21 0.17 0.15
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“Morphology of 2D grain architectures”. To derive such a radial symmetric
model, the seed points s1, . . . , sν aswell as themarkers (D1, r1), . . . , (Dν, rν) of
the tessellations are modeled stochastically. Thereby, the modeling of the
seed points is done by a Poisson point process41,42, i.e., a random point
pattern, whereas the modeling of the markers is accomplished by a fully
connected neural network as explained in “Stereological tessellation model
calibration” below. Note that the neural network only determines markers
(D1, r1), . . . , (Dν, rν) of seed points s1,…, sν, meaning that it defines the local
shape and size of grains but not their spatial distribution or clustering
behavior. Thus, this combined tessellation generation approach is not able
to exactly reproduce regions of the data it was trained on—instead it is able
to reproduce the distribution of geometrical statistics observed in the
trainingdata.Additionally, this neural-network-basedapproach allows for a
stereological model fitting procedure. This is crucial since only 2D EBSD
data is available to investigate the grain architecture of NMC811 particles.

The following section describes this stereological procedure in more
detail.

Stereological tessellation model calibration
The neural network used for marker generation is calibrated by means of a
GAN framework45. Note that GANs represent a game-theory inspired zero-
sum game framework, where two key neural networks comprise the GAN
framework: The generator G and the discriminator D. These neural net-
works compete with each other to achieve a so-called Nash equilibrium57,
i.e., the generator continually refines its ability to produce data resembling
measured samples,while thediscriminator iteratively enhances its capability
to distinguish between measured and simulated data. Typically, this is
realized by an image generating neural network G : N ! I , i.e., a neural
network that maps some noise space N to some set of images I , and a
discriminator D : I ! R that is trained to distinguish between measured
and simulated images, see refs. 34,45 for details. In the present paper, the
discriminator tries to assignmeasured data a label of 1 and simulated ones a
label of 0.Using the least squares loss58, this results in the followingmin-max
problem:

max
G

min
D

E ðDðXÞ � 1Þ2� �þE ðDðGðZÞÞÞ2� �
; ð9Þ

where X 2 I is a random vector following the distribution of measured
data, and Z 2 N is some random vector which serves as input for the
generator network G (where Z is sometimes chosen as white noise58). The
terms max

G
and min

D
in Eq. (9) refer to the maximum and minimum taken

over all possible parameter values of the neural networks G and D,
respectively, given that their architectures are fixed. However, in the GAN
approach proposed in the present paper, the output of the generator, i.e., a
3D tessellation-based grain architecture, can not directly be compared to

measured data, i.e., pixel-based 2D image data, and, therefore, the loss
function given by Eq. (9) has to be adapted34. Thus, we introduce two
(random) functions,T2D andT3D, which compute (random) discretized 2D
cutouts of 2D images drawn from X, and 2D cutouts of simulated 3D
tessellations drawn from G(Z), respectively. This leads to the optimization
problem

max
G

min
D

E ðDðT2DðXÞÞ � 1Þ2� �þE ðDðT3DðGðZÞÞÞÞ2
� �

: ð10Þ

In the following, the precise definitions of G, T2D, T3D, and D will be
explained in more detail. To ensure an efficient GAN training, we assume
the superimposed mapping D(T3D(G)) to be differentiable almost every-
where with respect to the parameters of G. Since G and D are defined by
neural networks and thus almost everywhere differentiable, onlyT3D(G) has
to be analyzed in more detail. To achieve differentiability of T3D(G), the
tessellation representation given in Eq. (8) is not sufficient. Thus, a more
general differentiable softmax representation is introduced instead.

For a given sample (s1, n1, γ1), …, (sν, nν, γν) ∈ W = [−128, 128]3 ×
[0, 1]2 × [0, π] of seed points s1, …, sν and noise (n1, γ1), …, (nν, γν), the
generator G computes markers (M1, r1), . . . , (Mν, rν) and a differentiable
softmax representation T : R3! ½0; 1�ν of a tessellation, see refs. 43,59.
This means that the values of T are given by

T ðxÞ ¼
expð�jx � s1jM1

þ r1Þ
..
.

expð�jx � sνjMν
þ rνÞ

0
BB@

1
CCA 1Pν

i¼1 expð�jx � sijMi
þ riÞ

for each x 2 R3:

ð11Þ

The vector-valued mapping T ¼ ðT 1 . . . ; T νÞ directly implies a tessella-
tion G1, …, Gν, as defined in Eq. (8), by considering the index i of the
component T iðxÞ with maximal value, i.e., Gi ¼ fx 2 R3 : T iðxÞ ¼
maxjT jðxÞg. Furthermore, note that the differentiable softmax representa-
tion T given in Eq. (11) for 3D tessellations can be analogously defined for
planar 2D tessellations.

The generation of the sequence (s1, n1, γ1),…, (sν, nν, γν), i.e., the seed
points s1,…, sν and corresponding noise (n1, γ1),…, (nν, γν) necessary for
randommarker creation, is done by drawing samples from a homogeneous
Poisson point process with some intensity μ > 0, being restricted to the set
W = [−128, 128]3 × [0, 1]2 × [0,π]41,42.However, the correspondingmarkers
(M1, r1), . . . , (Mν, rν) are generatedby a fully connected (FC)neural network,
which is denoted asGnet. Since the grain shape and the size is only influenced
bynearby grains,we assume that themarker of a seedpoint only depends on
its neighboring seedpoints.More precisely, for the generation of themarker
(Mi, ri) only information is considered derived from the κ = 12 nearest seed

Fig. 4 | Distribution of spherical harmonics coefficients. The blue histograms
depict the distributions of coefficients aℓm across different orders ℓ, while the red
curves represent the probability densities of the fitted parametric distributions. In

particular, for the case where ℓ = 0, a log-normal distribution is fitted, while in the
other cases, Student’s t distributions are used.
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points si1 ; . . . ; siκ ; ij 2 f1; . . . ; νg n fig with respect to the Euclidean dis-
tance. Furthermore, to ensure a statistically radial symmetric output of the
generator network Gnet, its input is modified to get rid of anisotropic
information, i.e., the direction of si. This is done by rotating the coordinate
system in such a way that si is always aligned in the direction of the unit
vector e1 = (1, 0, 0). That is, for a given seed point siwe determine a rotation
matrix Qi given by

Qi ¼ Re1 ;γi
� Resiþe1 ;π; ð12Þ

where Rs,γ denotes the rotation matrix that describes a rotation around
s 2 R3 by an angle of γ∈ [0, π],esi ¼ si=jsij is the normalized version of si,
and γi is some angle determined by the Poisson point process. Finally, the
vectors vi1 ; . . . ; viν , which are used as input of Gnet for marker generation,
are given by rotating the displacements sij � si by Qi, i.e., vij ¼ Qiðsij � siÞ
for j=1,…, κ. Note thatQi is a basis change as described in “Stochastic grain
architecture model”.

To further allow the generator networkGnet tofindanon-deterministic
grain architecture for given seed points, and therefore being a suitable sto-
chasticmodel, seedpoint specificnoisenij 2 ½0; 1�

2 is added.Thus, the input
of Gnet is given by ðvi1 ; ni1 ; . . . viκ ; niκ Þ. Figure 5a shows the fully connected
architecture ofGnet. It uses ReLu activation functions f ðtÞ ¼ maxf0; tg; t 2
R in the hidden layers for neuron activations and utilizes scaled sigmoid
functions ϕðtÞa;b ¼ aþ ðb� aÞ=ð1þ e�tÞ; t 2 R as activation functions
in the output layers to ensure that the generatedmarkers are in a reasonable
range. This limits the elongation of the resulting grains, which makes them
less likely to be disconnected (something that can occur for GBPDs), this
helps to prevent unintended artifacts, and improves the generator-
discriminator training. In particular, the values of a; b 2 R of the chan-
nels within the output layer are chosen such that the value of ri and the
diagonal entries of Di are restricted to [1, 10] and [0, 50], respectively. A
more detailed pseudocode representation of this procedure is shown in
Algorithm 1.

Algorithm 1. Tessellation Generation
1: procedureG ðS ¼ ððs1; n1; γ1Þ; . . . ; ðsν ; nν ; γνÞÞ � R3 × ½0; 1�2 × ½0; π�Þ
2: for i in 1,…, ∣S∣ do
3: Qi Re1 ;γi

� R~siþe1;π ⊳ See Eq. (12)
4: Compute ij, j = 1,…, κ ⊳ Nearest neighbor indices
5: vij  Qiðsij � siÞ; j ¼ 1; . . . ; κ ⊳ Relative directions
6: Di; ri  Gnetðvi1 ; ni1 ; . . . ; viκ ; niκ Þ
7: Mi  Q>i DiQi ⊳Markers
8: end for
9: return T ⊳ See Eq. (11)
10: end procedure

Recall that the sequence (s1, n1, γ1), …, (sν, nν, γν) ∈ W =
[−128, 128]3 × [0, 1]2 × [0, π], consisting of seed points si, noise ni, and
uniformly sampled angles γi, is generated by a homogeneous Poisson point
process with some intensity μ > 0. This point process corresponds to the
noise generation random variable Z considered in Eq. (10). A Poisson-

distributed random variable is used to determine the number ν of sampling
points. Then, the locations of the respective points are independently and
uniformly sampled within the windowW = [−128, 128]3 × [0, 1]2 × [0, π].
Note that this kind of point process has only one parameter, the intensity μ,
i.e., the expected number of points per unit volume. Since each of these
points correspond to a grain, the parameter μ has to be fitted such that the
average numbers of visible grains of generated andmeasured data in planar
2D cutoutsmatch. However, this cannot be accomplished a priori, since the
number of visible grains in a 2D planar section of a 3D tessellation is
influenced by the number of seed points as well as their markers, as can be
seen in Fig. 6. To overcome this problem, the intensity μ is adopted itera-
tively while training, i.e., the intensity μe+1 of the Poisson point process at
training epoch eþ 1; e 2N is defined as follows:

μeþ1 ¼
μe 0:5þ 0:5 NGgt

NGgen
e

� �
; if e > 1;

0:0018; if e ¼ 1;

(
ð13Þ

where NGgt;NGgen
e > 0 correspond to the average number of observable

grains per unit area in planar 2Dcutouts of ground truth data and generated
data at training epoch e, respectively. To avoid large jumps of μe, which
would hinder the learning process of both generator and discriminator, the
intensity μe+1 is chosen as a convex combination of the previous intensity μe
and the desired intensity μe ðNGgt=NGgen

e Þ. The initial value of this proce-
dure is set heuristically to μ1 = 0.0018.

Asmentioned above, the output of the generatorG, i.e.,T as defined in
Eq. (11), can not be directly compared tomeasured EBSD data. One reason
for this is the circumstance that there are several pixel positions in the EBSD
data to which no grain is assigned at all. Moreover, measured data is only
present as planar 2D sections, therefore planar sections have to be extracted
from generated 3D grain architectures to ensure comparability.

To address the issue of unassigned pixels, a differentiable representa-
tion T (see Eq. (11)) of the restricted GBPDwith d = 2 is fitted to the EBSD
data using themethoddescribed in43. Thisfitted 2D tessellation is referred to
as “ground truth data”. Figure 7 shows an exemplary fit. The approach of
considering a 2D tessellation fit to the experimental EBSD data as ground
truth data has at least three advantages. First, it provides a meaningful
prescription for missing measurement information (inner white pixels in
Fig. 7, left), while maintaining the overall shape of grains. Second, it ensures
that the planar sections with which the generator attempts to imitate can
indeed be generated, i.e., the ground truth data can be represented by
GBPDs.Without assurance that the ground truthdata canbe representedby
GBPDs, it is possible that the discriminator differentiates betweenmeasured
and simulated data solely based on a difference of the representation, which
would offer no insightful feedback to guide the generator’s improvement.
Third, it facilitates effective data augmentation during training, i.e., by
modifying the seed points and markers of the fitted 2D tessellation slightly,
similar but new 2D grain architectures can be generated as additional
trainingdata.Note that thedistributionof the randomvariableX considered
in Eq. (10) describes the distribution of 2D training data, i.e., the data that
arise from the ground truth data by this kind of augmentation.

Fig. 5 | Architectures of neural networks. a Fully connected architecture of marker generator Gnet being part of G. b Convolutional architecture of discriminator D. The
numbers above the arrows and bars correspond to the dimensions of respective inputs/outputs and convolutional layers.
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Despite the fact that now both ground truth and simulated data are
represented as differentiable tessellations, their dimensionalities are not yet
consistent (being equal to 2 and 3, respectively). To overcome this problem
and to generate input that is feasible for the discriminatorD, i.e., a matrix of
fixed size, randomly located (2D) pixel-based cutouts of these tessellations
are computed.

For this purpose, a 32 × 32 grid of equidistant points is chosen, say
f1; . . . ; 32g× f1; . . . ; 32g � R2. The tessellation T of the restricted GBPD
with d = 2 is then evaluated at these grid points, resulting in a matrix I with
32 × 32 × ν entries. Such a matrix is often referred to as a multichannel 2D
image, with dimensions representing the x-axis, y-axis, and channels,
respectively. For each (x, y, i) ∈ {1, …, 32}2 × {1, …, ν}, the entry Ix,y,i of I
corresponds to the probability that the grid point (x, y) belongs to grain i. To
reduce the number of channels of I to a (sufficiently small) fixed value, the
set of channels is truncated to those channels which belong to grains being
most present among the consideredgridpoints. In the following, for the case
of a 2D tessellation T , this procedure is described in more detail. First, the
originally chosen 32 × 32 grid {1, …, 32}2 of equidistant points in R2 is
shifted and rotated at random, i.e., a (random) grid of equidistant points is
determined by drawing a radial distance p and a polar angle β uniformly
from the intervals (0, 80] and [0, 2π], respectively. Then, for each
(x, y)∈ {1,…, 32}2, the corresponding grid point ðx0; y0Þ of the transformed
grid is given by

ðx0; y0Þ ¼ Rβ

x þ p

y � 16:5

� �
; whereRβ ¼

cos β � sin β

sin β cos β

� �
: ð14Þ

Evaluating the tessellation T at these points gives the (non-truncated)
image I = (Ix,y,i), where the entry Ix,y,i of the matrix I at
(x, y, i) ∈ {1,…, 32}2 × {1,…, ν} is given by

Ix;y;i ¼ T i Rβ

x þ p

y � 16:5

� �� �
: ð15Þ

In Fig. 7c the three steps of this cutout computation procedure are illu-
strated,where twodifferent coordinate systems are used, one for the original
pixel positions (x, y) ∈ {1, …, 32}2 and one for the grid points ðx0; y0Þ
introduced in Eq. (14). The procedure starts with a cutout, whose center lies
on the x-axis, i.e., p = β = 0. Grains located in this cutout that are strongly
orientated towards the center of the planar section (i.e., α<< π

2, see Eq. (4))
are elongated in the direction of the x-axis. In a second step, the cutout is
shifted in the direction of x-axis, according to the selected value of p (where
p = 70 in Fig. 7). As before, grains within the cutout which have an orien-
tation α<< π

2 show elongations in the direction of the x-axis of the cutout.
Finally, in a third step, the cutout is rotated by an angle of β ∈ [0, 2π]. This
does not only displace the cutout but also changes its orientation. Conse-
quently, grains that are located in this cutout having an orientation of α<< π

2,
are orientated in the direction of the (new) x0-axis of the cutout. This
procedure is performed to generate consistent cutouts which are feasible for
the discriminator D and, simultaneously, to be able to use a wide range of
cutout positions within the ground truth data for training.

To achieve a fixed (small) number of channels necessary for the dis-
criminator input, the ν channels of I are sorted by the sum of their entries in
descending order. Then, all but thefirst 12 channels are omitted, i.e, only the

Fig. 7 | Computation of discriminator input. a Raw EBSD image and b corre-
spondingly fitted 2D tessellation with values assigned for missing pixels resulting
from poor local orientation information observed in EBSD data due to proximity to
grain boundary junctures. Additionally, three exemplary cutouts are magnified, one

from the fitted tessellation and two further cutouts, denoted by (1) and (2), arising
from data augmentation. c Sketch of the procedure of pixel-based cutout compu-
tation as described above.

Fig. 6 | Impact of markers on the grain architecture, where planar sections of 3D
grain architectures are depictedwith fixed seed points s1,…, s8000, additivemarks
r1,…, r8000 being equal to 0, and various diagonal markermatricesD1,…,D8000.
a Diagonal matrices Di with diagonal entries (3, 1, 1), b Diagonal matrices Di with

diagonal entries (1, 1, 1), c Diagonal matrices Di with diagonal entries (1, 3, 3) for
each i ∈ {1,…, 8000}. The number of visible grains reaches from 366 (a), via 252 (b)
to 212 (c).
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channels corresponding to the 12most prominent grains regarding the grid
points are retained, in order to retain the channels that contain the most
information of grain morphologies. This (random) procedure will be
denoted by T2D in the following.

A similar procedure, analogous to that described above forT2D, is used
to determine 32 × 32 × 12matriceswhich represent (random) 2Dcutouts of
the simulated 3D tessellations for a given number ν of seed points. More
precisely, for auniformlydrawnradial distancep∈ (0, 80], amatrix I=(Ix,y,i)
with 32 × 32 × ν entries is computed, where

Ix;yi ¼ T i

x þ p

y � 16:5

0

0
B@

1
CA

0
B@

1
CA for each ðx; y; iÞ 2 f1; . . . ; 32g2 × f1; . . . ; νg:

ð16Þ
Due to the rotational invariance of both the Poisson point process of seed
points and the marker generation, and the ability to create infinity many
simulated grain architectures, no rotation matrix is needed in Eq. (16) for
the generation of grain locations, unlike the procedure for T2D described
above. The resultingmatrix I (amultichannel2D image) is then channelwise
sorted by the sum of their entries and cropped to maintain a constant
number of channels, using a procedure similar to the one already described.
This (random) procedure of computing 32 × 32 × 12 multichannel 2D
images from artificially generated 3D tessellations is denoted by T3D. Recall
that both, T2D and T3D pay attention to differentiability and to preserve a
consistent orientation of the cutout with respect to the origin of the tessel-
lation. This is crucial to enable the discriminator to capture preferred grain
orientations with respect to the particle center.

The discriminatorD, which is trained to decide whether a 32 × 32 × 12
cutout image originates from ground truth or artificially generated data, is
structured as a convolutional neural network (CNN). Note that CNNs are a
neural networks that can handle spatial dependencies in their input and are
therefore especially useful in computer vision tasks such as image
classification60. To avoid overfitting issues, the discriminator D considered
in the present paper has a rather simple architecture. Namely, the dis-
criminator consists of stacked convolutional layers, batch normalization
layers, and ReLU activation functions. These components are responsible
for feature extraction, learning acceleration, as well as neuron activation and
deactivation. Additionally, max-pooling layers are used for dimension
reduction, and dense layers are used to process the extracted features to a
single output. Figure 5b shows a detailed representation of the network, and
the number of features per layer.

The GAN-based training process involves iteratively training the
generator G and discriminator D through gradient-descent and a non-
gradient-descent based optimization of the point process intensity μ, as
described in Eq. (13). The gradient-descent based training uses an Adam
optimizer with a learning rate of 10−4 and gradient normalization61. The
whole training procedure is done over 200 epochs with 100 steps per epoch
and a batch size of 64 and 128 for generator and discriminator training,
respectively. While training the discriminator the pixel values of its input
images (see Eqs. (15) and (16)) are rounded to the closest value in {0, 1} to
suppress features that arise from the dimensions of the underlying artifi-
cially generated and ground truth tessellations, respectively. To address the
issue of overfitting the discriminator, the update of the discriminator’s
weights is skipped during training, provided that its current mean squared
error given by Eq. (10) is below 0.32. Furthermore, training data augmen-
tation is achieved through marker modification, i.e., the diagonal entries of
thematricesDi introduced in “Stochastic grain architecturemodel”, and the
additive marks ri of the fitted 2D tessellation are modified through uniform
augmentations up to 20%, i.e., jx�x0jjxj <0:2, where x is equal to ri or a diagonal
entry of Di, and x0 is its augmented version. This augmentation of training
data results in more diverse grain architectures that still adhere to the
constraints of the restricted GBPD representation, see Fig. 7. However, this
is contrary to augmentations achievable through conventional techniques of

image data processing62. Figure 8 and Algorithm 2 provide an overview of
the training procedure described above, where the pseudocode is presented
in such a way as to improve readability and should not be considered
computationally efficient. For a more efficient implementation, the seed
point generation and, thus, the 3D grain architecture generation, as well as
the 2Dgrain architecture augmentation canbe restricted to a small sampling
window that contains the observed planar section.

Algorithm 2. Training Procedure
1: procedure Train

2: lr← 0.0001 ⊳ Learning rate

3: bs← 128 ⊳ Batch size

4: μ1 ← 0.0018 ⊳ Point process intensity

5: for e in 1,…, 200 do ⊳ Epochs

6: for step in 1,…, 100 do

7: Draw S1,…, Sbs/2 from Z with intensity μe ⊳ Seeds, noises and angles

8: loss 2
bs

Pbs=2
i ðDðT3DðGðSiÞÞÞÞ2

9: Maximize loss with respect to Gnet and lr ⊳ One step of Adam gradient descent

10: Draw S1,…, Sbs from Z with intensity μe ⊳ Seeds, noises and angles

11: Draw x1,…, xbs from X ⊳ Augmented measured planar sections

12: loss 1
bs

Pbs
i ðDðξðT2DðxiÞÞÞ � 1Þ2

þDðξðT3DðGðSiÞÞÞÞ2 ⊳ ξðaÞ ¼ argmin
b2N32× 32× 12

ja� bj (rounding)

13: if loss > 0.09 then ⊳Avoiddiscriminator overfitting

14: Minimize losswith respect toD and lr ⊳One step ofAdamgradient descent

15: end if

16: μeþ1  μeð0:5þ 0:5 NGgt

NGgen
e
Þ; ⊳ Iterative intensity adaption, see Eq. (13)

17: end for

18: end for

19: end procedure

Multi-scale model
Combining the outer shell model and the grain architecture model follows
the approach presented in ref. 30. More specifically, to get a simulated
NMC811 particle, an outer shell and a grain architecture are independently
drawn from the models introduced in “Stochastic outer shell model” and
“Stochastic grain architecture model”, respectively, and overlaid on a 3D
domain. Next, grains whose centers of mass are not located inside the outer
shell are removed. Figure 9 illustrates this procedure and shows 3D ren-
derings of samples drawn from the outer shell model and the grain archi-
tecture model, as well as their combination to a virtual NMC811 particle.

Validation of the modeling approaches
In this section, bothmodels are validatedusing interpretable descriptors that
were not part of the training process. Note that due to the limited number of
particlesmeasured by EBSD, the training data will be used to compute these
interpretable descriptors that will serve as ground truth during validation.
Note that due to the choice of the models these are not able to reproduce
training data and thus a validation data split is not necessary, see “Stochastic
grain architecture model”.

Validation of the outer-shell model
To evaluate the outer-shell model introduced in “Stochastic outer shell
model”, four different descriptors are chosen to characterize the 3D mor-
phology of ground truth and simulatedmicrostructures, respectively. These
descriptors include the diameter dmax, the compactness γ, the aspect ratio
AR, and the sphericity Ψ of particles63. More precisely, for a particle repre-
sented by its radius function P : S2 ! Rþ, the values of these descriptors
are given by

dmaxðPÞ ¼ maxfPðuÞ þ Pð�uÞ : u 2 S2g; ð17Þ

γðPÞ ¼ VðPÞ
Vð∂Conv ðPÞÞ ; ð18Þ
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ARðPÞ ¼
dmaxðPÞ
dminðPÞ

; where dminðPÞ ¼ minfPðuÞ þ Pð�uÞ : u 2 S2g;

ð19Þ

ΨðPÞ ¼ π
1
3ð6VðPÞÞ23
AðPÞ ; ð20Þ

whereA( ⋅ ) is the surface area,V( ⋅ ) the enclosed volume, and ∂Conv( ⋅ ) the
boundary of the convex hull. Note that the compactness γ measures the
degree of convexity of a particle, whereas the aspect ratio AR describes the
particle’s elongation, and the sphericity Ψ measures the roundness of a
particle, i.e., its similarity to a sphere. Figure 10 (a) showshistogramsof these
descriptors for both ground truth and simulated particles.

In the outer-shell analysis, simulated particles having a volume of less
than 10 voxels, i.e., less than 10 ⋅ (0.128 μm)3, are neglected. These volumes
are omitted for further analysis, since the described segmentation procedure
generates only particles with larger sizes. The histograms of the descriptors
dmax, γ, AR, and Ψ of the resulting particles show nice agreement with
corresponding histograms computed from nano-CT data, see Fig. 10. It is
noteworthy that the model does not produce particles with extremely low
sphericities, as observed in the segmentation process (see the values for
Ψ ≤ 0.6 in Fig. 10). Further investigations are required to check whether
these particles can be attributed to an imperfect segmentation, and conse-
quently, whether their absence in model realizations is important.

Recall that the relatively small EDCC values displayed in Fig. 3 pro-
vided the basis for assuming that the model’s random spherical harmonics
coefficients are independent of each other. However, an increasing trend of
the EDCC along with the order of the basis functions can be observed. It is
assumed that this trend can partially be attributed tomissing fine structures
in particles with a small diameter due to the discrete voxel-based resolution.
Additionally, the small expected values of ∣Zℓm∣ for ℓ > 4 suggest that these

coefficients can be neglected, without decreasing the model quality sig-
nificantly. A systematic investigation of the influence of the maximum
spherical harmonics order L on the model quality will be the subject of
future work.

Validation of the grain architecture model
Themodel introduced in “Stochastic grain architecturemodel” for the inner
3Dgrain architecture ofNMC811particles is based solely on 2DEBSDdata.
Since only 2D planar section data of ground truth grain architectures is
available, the validation of simulated grain architectures is done by a sta-
tistical comparison of pixel-based planar sections. For this comparison, the
distributions of four microstructure descriptors are evaluated: the dis-
tribution of the size Across of planar grain sections, the distributions of their
elongation η and their orientation α, and the chord-length distribution64 of
the ensemble of planar grain sections. Note that the size Across of a planar
grain section is given by the number of pixels occupied by the given grain
section. The orientation α is defined in Eq. (4), and the elongation η is given
by

η ¼ e1
e2
; ð21Þ

where e1≥ e2 > 0 are the eigenvalues of the principal components of the
planar section of the given grain, see “Morphology of 2D grain archi-
tectures”. The chord-length distribution is given by the distribution of the
lengths c of all chords of the planar section, where a chord of a pixel-based
planar section of grains is a sequence of consecutive aligned pixels that
belong to the same grain and that can not be extended further without
containing pixels belonging to other grains. Figure 10b shows histograms of
these descriptors for both ground truth and simulated data, which are quite
similar to each other. However, the elongation η shows slightly larger values
for simulated data, which means that the grains observed in the planar

a) b)

Fig. 9 | Integration of multiple scales. a 2D sketch of the overlay and grain
removing procedure. The black dots inside the grains correspond to their centers of
mass. Grains with centers of mass outside the originally generated outer shell (red)

are removed. b 3D renderings of samples are presented, derived from both the outer
shell model and the grain architecture model, as well as their combination into a
virtual NMC811 particle.
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tessellation. Planar sections of this 3D tessellation are then compared to 2D tessellations fitted to the measured data.
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sections of the stereologically fitted model are slightly more elongated than
those in the ground truth data. A similar behavior can be observed for the
grain orientation α, where simulated grain architectures show a slightly
more preferred orientation as compared to the ground truth. Nevertheless,
the histograms computed from ground truth and simulated data,
respectively, show nice agreement, which indicates that planar 2D sections
of grains observed in EBSD data are well captured by the stochastic grain
architecture model introduced in “Stochastic grain architecture model”.
This gives strong evidence that effective properties such as ion transport or
cracking behavior are alsowell captured.However, the investigation of these
based on numerical simulation is beyond the scope of this paper andwill be
subject of future work.

Computational speed
An important factor in practical applications is computational speed, par-
ticularly for generating a large number of model realizations to compute
effective properties for homogenization. To accurately assess this, it is
necessary to distinguish between two key components: the computation
time required for model calibration and the computation time for gen-
erating virtual 3D particles with the calibratedmodel. Since the former step
only has to be performed once per data set, the latter one is of particular
interest. All computation times were measured on a personal computer
equipped with an AMDRyzen 9 5900X CPU and an NVIDIA RTX A4000
GPU. For data already available in a format suitable for training, i.e.,
spherical harmonics coefficients determined for segmented outer shells or
parameters of a deterministic 2D tessellation fitted to 2D image data
“Preprocessing of nano-CT data” and “Stereological tessellation model
calibration”model calibration takes less than oneminute for the outer shell
model and approximately half a day for the grain architecture model. In
terms of simulation speed, generating a realization of the outer shell model
takes 2.37 × 10−3 s per particle shell, and for the grain architecture model, it
takes 7.06 × 10−6 s per grain. These times are averaged over 106 generated
outer shells or grains, respectively. It is important to note that these times
correspond to generating analytical representations of themorphologies. In
practical applications, one has to account for additional computation time,
necessary for transforming these analytical representations ofmorphologies
into discretized representations, e.g., discretized 3D image or surface
meshes, which are suitable for further computations, such as numerical
simulations. The time required for this transformation depends on the
desired resolution and can be significant.

Discussion of model assumptions
The trained grain architecture model, which was fitted and evaluated by
means of planar 2D sections, can be used to generate realistic 3D grain

architectures of NMC811 particles and to investigate structural prop-
erties of these 3D morphologies. For example, Fig. 11 shows how the
distribution of grain orientations observed in planar sections depends on
the section’s position (i.e., its cut height). It can be observed that the
grains that are visible in planar sections near the origin exhibit an
increasingly preferred orientation, in contrast to more distant planar
sections, which show an almost uniform distribution of grain orienta-
tions. This observation coincides with the assumption stated in “Mor-
phology of 2D grain architectures” that some planar sections observed in
EBSD data may not pass through the particle center and therefore were
neglected for training purposes. However, the GAN-based training of
the grain architecture model could be adapted such that planar sections
that are taken farther away from the particle center can also be used.
Nevertheless, such modifications would necessitate providing the dis-
criminator with additional information about the observed data. Such
additional information could include the distance of the planar section
to the particle center. This adjustment would enable the discriminator to
evaluate the plausibility of observed grain elongations or preferred
orientations based on the position of the planar section within the
particle. However, this type of information, i.e., the relative location of
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Fig. 10 | Descriptor-based validation of stochastic models. aHistograms for outer
shells. b Histograms for grain architectures. The ground truth data of NMC811
particles (blue) is compared with histograms computed for simulated data drawn
from the respective models (orange). The 3D descriptors dmax, γ, AR, and Ψ

characterizing the outer shell (a) are computed by means of the radius function
representation given in Eq. (1), whereas the four 2D descriptors of the inner grain
architecture (b) are computed by means of pixel-based planar sections.

Fig. 11 | Histograms of grain orientations for different cut heights. Planar sec-
tions with a larger distance to the particle center show less preferred grain
orientation.
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the planar section with respect to the particle center, would have to be
acquired by laboratory measurements.

The proposed multi-scale model currently accounts only for pore-free
polycrystalline particles. However, the investigation of polycrystalline par-
ticles with pores, particularly those resulting from cracking during cycling
(i.e., degradation), is of significant interest. The implementation of an
additional scale for the proposedmodel65 to stereologically simulate internal
pores and cracks caused by degradation will be explored in future work.

In the proposed multi-scale model, we assumed that the inner grain
architecture can be modeled independently of the outer shell. While this
may be true for large particles, it will not be true for particleswith very small
radii, i.e., particles that consist only of hundreds of grains. To investigate this
issue further and, consequently, adapt themodeling approach, EBSDdata of
differently sized particles has to be acquired. Importantly, these rather small
particles account for a smallmass percentage of an electrode and, thus, their
inclusion/exclusion is not expected to significantly influence predicted
electrode performance.

Conclusion
The multi-scale modeling approach described here enables realistic 3D
particle geometries with sub-particle grain detail. The 3D sub-particle grain
morphologies were generated by only using 2D EBSD data, facilitating
characterization of 3D grain morphological properties from 2D experi-
mental information. Representative particle generation capabilities are not
only required for characterizing otherwise challenging 3D morphological
properties but are also required for high-fidelity cathode degradation
models that require significant test geometries to mitigate stochastic effects
resulting fromparticle geometry variations. Notably, it is significantly easier
and faster to simulate chemo-mechanics on hundreds of generated geo-
metries, as compared to relying solely ona sparse setof empirical imagedata.
A bulk of such simulated NMC811 particles with inner grain architectures,
suitable for numerical simulations, is made publicly available. Previous
cathode degradationmodeling efforts focusedmostly onNMC532 particles
with randomly distributed grains, which was primarily due to the avail-
ability of full 3D imagery3. Now, with the capability of inferring 3D geo-
metries of grain architectures with curved grain boundaries from only 2D
EBSD slices, it is possible to model NMC811 degradation and consider
radially oriented grain geometries, which will be the focus of future work.
Additionally, the proposed method can enable quicker development of
generation methods for new and emerging electrode chemistries.

In the future, we plan to expand the model not only to capture the
geometry of the grains but also to describe their crystallographic orientation
as well as pores within the grain architecture that arise during cycling65.
These modifications will be the basis of future numerical-simulation-based
analysis of microstructure-property relationships in NMC811 particles
during battery cycling, i.e., different degradation levels. Additionally, we
intend to adjust thefitting for the outer shellmodel such that calibration can
be performed from 2D image data to achieve a fully stereological multi-
scale model.

Methods
Overview of experimental approach
To supply sufficient high-quality image data on particle and grain
architectures, a multi-modal approach was deployed. Electron back-
scatter diffraction (EBSD) was used, as previously described in ref. 66, to
facilitate grain and grain boundary segmentation, as well as populate the
segmented grains with local crystallographic orientation information.
Note, there is a distinction between crystallographic and morphological
grain orientation; crystallographic orientation refers to the orientation of
the c-axis of the NMC811 crystal, whereas morphological grain orien-
tation refers to the direction of the major axes of the best fitting elongated
spheroid shapes of the grains with respect to the particle center. Con-
ducting EBSD on a small number of particles provides a view of hun-
dreds of grain planar sections. However, extending EBSD to 3D via

focused ion beam (FIB)-EBSD and acquiring morphological data on
hundreds of full particles is not yet practical experimentally. Instead, the
(secondary-) particle morphological information, or outer shell, was
captured in detail for many particles by X-ray nano-computed tomo-
graphy (nano-CT) at the cost of a lack of inner grain architecture
information. The outer shell and sub-particle grain architectures are
independent and therefore must each be quantified with a sufficient
number of samples to be representative. The combination of 2D EBSD
and 3D nano-CT facilitated detailed information on the sub-particle
grain features and full particle outer shell morphological detail, respec-
tively, with sufficient volume to achieve representivity in both.

Materials
A pristine sample of NMC811 electrode was used for this work. The elec-
trode consisted of 96wt%TargrayNMC811, 2wt%TimcalC-45, and 2wt%
Solvay 5130 PVDF binder. The Al foil was 20 μm thick, and the coating
thickness was 58 μmwith a porosity of 33% and areal capacity of 3.07 mAh
cm−2. These cathodes have been extensively studied in fast-charge appli-
cations for electric vehicles2,12,67,68. Thepreferential radial orientationof these
particles is argued to significantly increase these cathodes rate performance
and cycle-life resiliency12.

X-ray nano-computed tomography (nano-CT)
For X-ray nano-CT imaging, cylindrical pillars of ca. 90 μm diameter were
prepared using a micro-machining laser ablation approach described pre-
viously in ref. 69. The pillars were then imaged in a Zeiss Xradia Ultra 810
X-ray nano-CT system in Large Field of View (LFOV) absorption mode
with binning 2, giving a voxel size of 128 nm. The field of view was
64 μm × 64 μm. 1601 images were acquired for the reconstruction of each
tomogram.

SEM and EBSD imaging
The NMC811 cathode sample was argon-milled with a JEOL CP ion beam
planar section polisher (JEOL, USA). This provided a wide (ca. 2mm)
smooth planar section of the NMC811 electrode. Scanning electron
microscopy (SEM)andEBSD imageswere takenon several planar sectioned
particles using an FEINovaNanoSEM630 equippedwith anEBSDdetector
(EDAX, USA). EBSD data was collected using step sizes of 50 nm rastered
across the surface of particle planar sections. EBSD data was processed with
OIM Analysis v.8 (EDAX, USA). Diffraction patterns were fit to a trigonal
crystal system (space groupR-3m)with a = b = 2.875Å and c = 14.248Å to
obtain the orientation of the crystal at each, where a, b, c denote the side
lengths of the rhombohedral unit cell associated with the crystal’s atomic
lattice. The software produced text files containing a spatially resolved
confidence index, image quality (IQ), and Bunge-Euler angle data. These
data were then converted into images, where individual grains are labeled
separately.

Data availability
The datasets generated during and/or analyzed during the current study are
available from the corresponding authors on reasonable request. A database
of simulated 3D NMC811 particles can be found at https://batterydata.
energy.gov/dataset/nmc811-3d-particle-grain-geometries-virtual-library.

Code availability
All formulations and algorithms necessary to reproduce the results of this
study are described in the “Stochastic multi-scale model” section.
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