Image-Based Failure Assessment of Li-ion Batteries

Kristen Susukil

Advisor: J.S. Chenl
Collaborators: Jeff Allen?

L University of California San Diego, Department of Structural Engineering
2 National Renewable Energy Laboratory, Computational Science Center

%= ASC Conference — San Diego, CA— Oct 22, 2024
ZNREL :

=t NREL/PR-2C00-91494

Transforming ENERGY



Heterogeneous Electrode Microstructures
and Electro-Chemo-Mechanical Cracking

2 UC San Diego

Jacobs School of Engﬁ*ueering



Electrode Microstructure and
Electro-Chemo-Mechanical Cracking

N
Cathode Composition:
* Randomly-oriented grains .
* Anisotropic grain material properties >0 pm Crystal
Nickel Manganese Cobalt orientation
(NMC) positive electrode
Charge Cycling: Tmen0s
e Lithium movement between electrodes causes Time: 21948 s
nonuniform grain expansion and contraction
Electro-chemo-mechanical cracking:
* Inhibited lithium flow via tortuous diffusion path w TE

* Reduced battery life
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Governing Equations
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Lithium transport balance = lithium concentration ¢

c+V-J=0 inQ
J=-D-Vc

c,®
D-Vc-n=—](—) only

\_ F

Solid-phase electrostatic potential balance = potential ®

¢ V-(kV®) =0 inQ
KV -n = —(]_(C; D) +]_applied) on th)

“n:outward

Cathode Particle
(Electrode)

(o}

J \_

Electrochemical
Model

S:hrface of particle
[},: natural boundary

J
o _ Diffusion-induced mechanical deformation = displacement u Butler-Volmer interface condition
23 )
© 5 — ] — ](C, q))
_":5 o u V-o —eO in () € =€ —€P )  nF a,nF
8 E o = Ce GD — ﬁAC =]0 exp RT —exp| — RT
= o-n=0 only,

\ n(c,¢>)=¢—¢>p,—Eeq( \ /

\lmax/

4. G.L. Plett, Battery Management Systems, Volume I: Battery Modeling, Artech House, 2015. UC S a
4 an Diego

5. Doyle, M., T. Fuller, J. Newman, “Modeling of Galvanistic Charge and Discharge of the Lithium/Polymer/Insertion Cell”, J Electrochem Soc. 140 (1993). o= B2 b
6. Richardson, G.W. , J.M. Foster, R. Ranom, C.P. Please, A.M. Ramos, “Charge transport modelling of Lithium-ion batteries”, Eur J Appl Math. 33 (2022). Jacobs School of Engineering




Reproducing Kernel Particle Method
(RKPM)
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Reproducing Kernel (RK) Approximation

FEM Approximation: NEN Shape Function Construction: ¥;(x)
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Strategic Correction of Kernel Functions, ¢, :
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Interface-Modified RK (IM-RK) Approximation for Weak and Strong Discontinuities

Y, (X): RK Shape
Function for Bulk
Nndes
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Grain Boundary Nodes

Neighboring Nodes
Neighboring Nodes
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O Kernel Support of Nodes

C? continuity
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boundary
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Kernel Function Modifications for Grain Boundaries: max|[tanh(dist), 0]

IM-RK with Weak Discontinuity: Scaling with node on interface

Weak discontinuity introduced only for ‘T’,n,:erface
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Image-Based Modeling of Statistically-Driven
Li-ion Battery Microstructures
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Strain Evolution Under Multiphysics Loading
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Strain Evolution Under Multiphysics Loading
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Multiphysics Damage Evolution with Evolving IM-RKPM
(Weak IM-RKPM — Strong IM-RKPM)
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Neural Network Enhanced Reproducing Kernel (NN-RK) Approximation

Solution decomposition
u = a" + u”

Neural network NN
(NN) approximation ~ U™" (X) = Z bp" (x; Wg) + by":block-level NN approximation

B=1

smooth rough
background + local Block-level NN Nk

solution  solution 2pproximation bIN(x; W) = Z Ps(y(x W5), Wis)p(x; Wp) « NK: the number of

K=1 \ JA ) NN kernels per block

Smooth solution approximation Y Y

~h _ RK _ NP g NN Kernel function captures NN Polynomial introduces

u"(X) = u™(X) = Xz, ¥ (Xd, * Location and orientation of « Monomial completeness

e N Eg:r’;‘;t;f;d localization for further accuracy
o \ * Shape of solution transition
a W (X)

N

«  WZE: NN weight set controlling .
the location and orientation of

;Qimg_‘_‘%g:‘"ﬁ- / W : NN monomial coefficient set
: )i v»«aff‘\r ¥
50,5 hs
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I X AN [V - the kernel.
\\._ 7 o e | -« WS5: NN weight set controlling * The NN control parameters WX, W5,
SINL @ ot upportof e the shape of transition. and W? are automatically determined

via loss function minimization.
Neural Network (NN) Enrichment

o (x) ~ u"N(X) = X2 b (X; W)
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A block-level neural network is a modified deep neural network

Block-Level Neural Network Architecture with increased interpretability.
Parametrization sub-block NN kernel sub-block
A A
'e \ ( \
Intermediate ;
Input layer Intermediate
(physical ?;;Eaur;ftyr?cr 8\? ltlplgetrlr?gﬁg

coordinate) coordinate)

Output layer
(Block-level NN
approx.)

Multiplication
& Normalization

softplus activation

Polynomial
weights

N .th t. .
@ euron with parametric Polynomial sub-block

Neuron with tanh
activation

Parameterized
coordinate y
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Damage Evolution with Simple Shear Loading
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Mixed-mode Fracture of Doubly Notched Crack Branching in Isotropic Media
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Future Work: Multi-scale NN-RK for Degradation Modeling of Li-ion Batteries

Coarse discretization for i with bulk
material pixel point subset t=0: Lithiiin Concentration
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Grain Boundary Node
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Conclusions

* Interface-modified RK (IM-RK) discontinuity shows significant Gibbs oscillation reduction and
sharper solution transitions with no additional degrees of freedom.

* Evolving IM-RK approximation can adaptively incorporate various discontinuities by leveraging
kernel scaling and strategic interface node placement.

* Neural network-enhanced RK (NN-RK) approximation is designed to be computationally efficient by
superimposing a coarse background solution with a localized NN enrichment for fine/localized
features.

* NN block-level approximations are designed to capture low order topology but can be
superimposed to capture complex topological geometries.

19 UC San Diego
Jacobs School of Engineering



Thank you

Kristen Susuki — ksusuki@ucsd.edu

Susuki, K., J. Allen, J.S. Chen. 2024. “Image-based Failure Assessment of Li-ion Batteries.” ASC Technical
Conference Proceedings.

Susuki, K., J. Allen, J.S. Chen. 2024. “Image-based Modeling of Coupled Electro-Chemo-Mechanical Behavior of Li-
ion Battery Cathode Using an Interface-Modified Reproducing Kernel Particle Method.” Eng Comput.
https://doi.org/10.1007/s00366-024-02016-9

Baek, J., J.S. Chen, K. Susuki. 2022. “A neural network-enhanced reproducing kernel particle method for modeling
strain localization.” Int J Numer Methods Eng. 123(18): 4422-4454.

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No.
DE-AC36-08G028308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy. The views expressed in the article do not necessarily represent the
views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a
nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

=3 N R E L ASC Conference — San Diego, CA— Oct 22, 2024
= Transforming ENERGY NREL/PR_2C00_91494


https://urldefense.com/v3/__https:/doi.org/10.1007/s00366-024-02016-9__;!!Mih3wA!B_w6DG-IU2DYCi_BO6IFDcjwoTCWLpfnODnfgLAinK8qkpZ24OBYq_QkI8ya3nPX4vtk6d2RMo1mvRA$

	Heterogeneous Electrode Microstructures and Electro-Chemo-Mechanical Cracking
	Electrode Microstructure and
 Electro-Chemo-Mechanical Cracking
	Governing Equations

	Reproducing Kernel Particle Method (RKPM)
	Reproducing Kernel (RK) Approximation
	Interface-Modified RK (IM-RK) Approximation for Weak and Strong Discontinuities
	Kernel Function Modifications for Grain Boundaries:   max  tanh  𝑑𝑖𝑠𝑡  ,0 

	Image-Based Modeling of Statistically-Driven Li-ion Battery Microstructures
	Strain Evolution Under Multiphysics Loading
	Strain Evolution Under Multiphysics Loading
	Multiphysics Damage Evolution with Evolving IM-RKPM �(Weak IM-RKPM → Strong IM-RKPM)

	Neural Network-Enhanced RKPM
	Neural Network Enhanced Reproducing Kernel (NN-RK) Approximation
	Block-Level Neural Network Architecture
	Damage Evolution with Simple Shear Loading
	Mixed-mode Fracture of Doubly Notched Crack Branching in Isotropic Media
	Future Work: Multi-scale NN-RK for Degradation Modeling of Li-ion Batteries

	Conclusions



