
Vol.:(0123456789)

Engineering with Computers (2024) 40:4081–4108
https://doi.org/10.1007/s00366-024-02053-4

ORIGINAL ARTICLE

Efficient inverse design optimization through multi‑fidelity
simulations, machine learning, and boundary refinement strategies

Luka Grbcic1 · Juliane Müller2 · Wibe Albert de Jong1

Received: 4 December 2023 / Accepted: 22 August 2024 / Published online: 9 September 2024
© The Author(s) 2024

Abstract
This paper introduces a methodology designed to augment the inverse design optimization process in scenarios constrained
by limited compute, through the strategic synergy of multi-fidelity evaluations, machine learning models, and optimization
algorithms. The proposed methodology is analyzed on two distinct engineering inverse design problems: airfoil inverse
design and the scalar field reconstruction problem. It leverages a machine learning model trained with low-fidelity simula-
tion data, in each optimization cycle, thereby proficiently predicting a target variable and discerning whether a high-fidelity
simulation is necessitated, which notably conserves computational resources. Additionally, the machine learning model is
strategically deployed prior to optimization to compress the design space boundaries, thereby further accelerating conver-
gence toward the optimal solution. The methodology has been employed to enhance two optimization algorithms, namely
Differential Evolution and Particle Swarm Optimization. Comparative analyses illustrate performance improvements across
both algorithms. Notably, this method is adaptable across any inverse design application, facilitating a synergy between
a representative low-fidelity ML model, and high-fidelity simulation, and can be seamlessly applied across any variety of
population-based optimization algorithms.

Keywords  Multi-fidelity optimization · Machine learning · Inverse design · Particle swarm optimization · Differential
evolution

1  Introduction

Inverse design problems represent a frontier in the field of
engineering and science, where the objective is to discover
the necessary system inputs to achieve a desired known out-
put. Rather than following the traditional forward design
process–which starts with given parameters and attempts to
predict the outcome–inverse design turns the procedure on

its head, beginning with the desired outcome and working
backward to determine the optimal parameters to realize it.
Particularly in scenarios with computationally expensive
or hierarchical simulations, multi-fidelity evaluations play
a pivotal role, offering a trade-off between accuracy and
computational cost.

Multi-fidelity (MF) methods, that range from faster and
approximate or low-fidelity (LF) objective function evalua-
tions to detailed–high fidelity (HF), computationally inten-
sive ones have been explored in-depth for optimization
purposes [5, 19, 21, 49]. In the context of inverse design
optimization, which is the focus of this work, coupled with
a multi-fidelity approach, an additional layer of complexity
is introduced when the target output is a distribution. Bayes-
ian and surrogate-based optimization methods have provided
great insights in this specific domain, especially when the
inverse design problem is rooted in uncertainty or when
prior knowledge is available [18, 44, 55]. However, due to
the curse of dimensionality, these optimization approaches
can encounter computational challenges.

 *	 Luka Grbcic
	 lgrbcic@lbl.gov

	 Juliane Müller
	 juliane.mueller@nrel.gov

	 Wibe Albert de Jong
	 wadejong@lbl.gov

1	 Applied Mathematics and Computational Research Division,
Lawrence Berkeley National Laboratory, 1 Cyclotron Rd,
Berkeley, CA 94720, USA

2	 Computational Science Center, National Renewable
Energy Laboratory, 15013 Denver West Parkway, Golden,
CO 80401, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-024-02053-4&domain=pdf

4082	 Engineering with Computers (2024) 40:4081–4108

Variable-fidelity methods have further enhanced the effi-
ciency of inverse design optimization by adapting the fidelity
level dynamically based on the current stage of the optimiza-
tion process [19]. This ensures a balance between computa-
tional efficiency and solution accuracy, leading to faster con-
vergence rates and reduced computational costs. The success
of variable-fidelity methods is evident in their widespread
application across various engineering disciplines [5, 22,
24]. These methods usually either employ LF models during
the initial exploratory phases and gradually transition to HF
models as the solution converges or they have an adaptive
mechanism for fidelity selection. These mechanics include
monitoring convergence conditions [36, 40], correction tech-
niques [13, 20], space mapping [54], model error monitoring
[32, 45], etc. Furthermore, the dominant surrogate model
algorithms used in variable-fidelity optimization approaches
are Kriging (or Gaussian Process Regression), Co-Kriging,
Polynomial Chaos Expansion (PCE), and Moving Least
Squares [19]. Additionally, Deep Neural Networks (DNN)
are commonly used for multi-fidelity inverse design as a
surrogate model for optimization purposes ([14, 17]), but
not as a part of the variable-fidelity optimization mechanism.

LF warm-start optimization techniques have also dem-
onstrated their efficacy in improving the convergence of
optimization algorithms [25, 51]. By initializing the opti-
mization process with solutions generated with LF machine
learning (ML) models, warm starting leverages prior knowl-
edge to reduce the number of evaluations required to reach
optimal solutions. This approach is particularly useful in
scenarios where optimization problems or targets share simi-
larities, such as in iterative design processes or when dealing
with parametric variations [10, 12, 37].

The essence of MF simulations is to harmoniously
integrate models of varying accuracy and computational
expense. By leveraging the strengths of both HF simula-
tions and LF ML models, it is possible to achieve accurate
solutions while conserving computational resources. This is
especially pivotal in scenarios where computational budg-
ets are limited, but the accuracy cannot be compromised.
Kriging, Co-Kriging, and PCE have the major benefit of
having reliable uncertainty estimates, however, they do
not scale well with an increase of data without an increase
in computational complexity ([29, 38]), and they require
retraining when additional data is available. Furthermore,
most methods switch between LF and HF simulations, how-
ever, the execution time of the LF simulation could also be
non-trivial.

Hence, in this paper, in order to tackle the aforementioned
issues, an innovative inverse design framework is presented
and investigated. The framework integrates metaheuristic
algorithms with a pre-trained LF ML model used for design
approximation and decision making in order to discern
whether there is a need for a HF simulation. This decision

is achieved by comparing the discrepancy between its pre-
dicted approximation and the inverse design target value.
This innovation stands out from prior research by facilitating
the predictive power of the ML model regarding the neces-
sity for HF simulations, leveraging LF data. Additionally,
the other, equally important task of the LF ML model is its
capability of design space boundary refinement before the
optimization process starts. This can be considered a form
of optimization process warm starting, and the purpose is to
enhance the rate of convergence of the inverse design opti-
mization algorithms. Two different strategies for boundary
refinement are investigated and separately applied to two dif-
ferent problems. Finally, the ultimate benefit of this frame-
work is that the LF ML model can enhance the optimization
for any target design within its applicable domain, thereby
substantially extending its reach and impact. This is possible
since the ML models that are investigated are DNNs, and
Gradient Boosting (GB) algorithms. Both of these algorithm
types can be continually trained (provided there is not a large
data distribution shift), and scale well with additional data.

The metaheuristic algorithms used within the inverse
design framework are: Particle Swarm Optimization (PSO)
and Differential Evolution (DE). Even though any kind
of optimization algorithm could be incorporated into the
framework, PSO and DE were chosen since they generally
require a high number of evaluations, and they’ve been
previously used for similar tasks [7, 50]. To the best of
the authors’ knowledge, no approaches in the literature
combine metaheuristic algorithms with ML techniques for
both boundary refinement techniques and MF optimization
within a single framework.

The importance of this research is emphasized by its
application to airfoil inverse design (AID) and scalar
field reconstruction (SFR) challenges. The AID problem
is chosen since it occupies a pivotal role in engineering,
particularly in the realm of aeronautics [4, 27] and wind
energy generation [56], and it has been extensively studied
in the field of multi-fidelity inverse design optimization
[16, 27, 36, 39, 41, 50, 59, 66]. The SFR problem emerges
as an inverse design challenge across various scientific
and engineering domains, representing a specific variant
of the inverse boundary value problem [60]. This problem
centers on deducing the distribution of a scalar field from
sparse measurements [3, 23, 28, 46, 53, 63–65]. Solving
the SFR problem utilizing optimization algorithms has
been of research interest [8, 9, 33, 57].

Finally, the goals of this research are to: (i) show that the
proposed framework can accelerate the rate of convergence
of both optimization algorithms, and on both inverse design
tasks, (ii) show that the LF ML models can be re-used when
the inverse design target is changed, without retraining, and
(iii) quantify the amount of data needed for the LF ML mod-
els to be of use through detailed analysis.

4083Engineering with Computers (2024) 40:4081–4108	

The manuscript is structured to offer a thorough under-
standing of the research. Following the introduction, Sect. 2
delves into the ML-enhanced inverse design framework.
Sections 3 and 4 provide an in-depth examination of the
AID and the SFR problems, respectively, as well as their
boundary refinement strategies. Finally, Sect. 5 presents a
comprehensive discussion of the results of the ML model,
techniques for boundary refinement, and a meticulous analy-
sis of the ML-enhanced framework, contrasting it with tra-
ditional optimization algorithms.

2 � ML‑enhanced inverse design framework

In this section we introduce our ML-enhanced inverse design
framework. The methodology consists of two primary
stages: training an ML model and applying it to refine the
boundaries of optimization problem thus enabling accelera-
tion and the rate of convergence improvement, and finally,
executing the ML-enhanced optimization process to find the
design corresponding to the target performance. The frame-
work uniquely combines LF simulation data for ML model
training with HF simulations for optimization, creating a
versatile MF system. Once trained, the ML model can be
utilized to augment the inverse design for a given problem.
This, however, is applicable to the solutions that lie within
the boundaries of the dataset used for training the model.
The general workflow of the inverse design framework and
the components is displayed in Fig. 1.

2.1 � Inverse design optimization and objective
function definition

The inverse design problem can be mathematically articu-
lated as

here, x ∈ ℝ
m represents the design parameters and y ∈ ℝ

q
is the known target value. The objective is to ascertain the
design parameters x that generate y when evaluated with
the inverse of the objective function f ∶ ℝ

m
→ ℝ

q . This is
in stark contrast to forward problems, where y is typically
unknown. Inverse design problems tend to be ill-posed, com-
monly encountering the problem of multiple viable solu-
tions, which complicates the process of identifying a unique
and optimal solution.

In Eq. (2) the inverse design optimization problem is
defined as

here, � ∶ ℝ
q ×ℝ

q
→ ℝ is the error-based objective function

that returns a scalar value in ℝ . The goal of this optimization
problem is to minimize the discrepancy between the desired
output y and the outcome derived from the proposed design
x . The design parameters x are constrained within a compact
design space, defined by the lower and upper boundaries
xlb ∈ ℝ

m and xub ∈ ℝ
m respectively, which represent the

feasible range of the design variables.
In this study, the root mean square error is used as �:

where x = (x1,… , xm)
T is the optimization design vector in

the decision space ℝm , m is the dimension of the general opti-
mization design vector, PC(x) = (PC

1
(x),… ,PC

q
(x))T ∈ ℝ

q
denotes the computed performance vector based on the
design vector x , while T = (T1,… , Tq)

T ∈ ℝ
q signifies the

user-defined target performance vector. Both PC(x) and T
are of dimension q . Ideally, an exact match between these
values would result in an objective function value of zero.

2.2 � ML‑enhanced optimization

As shown in Fig. 1, the requirement for the ML-enhanced
optimization process is to train an ML model using simu-
lation data generated with Latin Hypercube Sampling
(LHS). Each simulation yields an input design vector and
a simulation result vector. These design vectors, which
are of the same size and within the same bounds as those
evaluated during the optimization process, are used as
inputs to the ML model. The outputs are statistical meas-
ures (mean, minimum, maximum, etc.) derived from the
simulation result vectors. Once trained, this ML model can
be reused within the inverse design framework when the

(1)x = f −1(y)

(2)
minimize

x
�(f (x), y)

subject to xlb ≤ x ≤ xub

(3)
minimize

x
�(x) =

�
1

q
‖PC(x) − T‖2

2

subject to xlb ≤ x ≤ xub,

LF reduced-
order data (1)

Trained ML
Model (2)

Boundary Re-
finement (4)

ML-enhanced
Inverse Design
Framework (5)

User Defined
Target Per-
formance (3)

Fig. 1   The creation of the ML model commences with the generation
of LF data (1), used for training the ML model (2). Once the model is
trained and its accuracy is determined, it enables the boundary refine-
ment (4) and the ML-enhanced optimization methodology (5). The
inverse design procedure requires the specification of a target per-
formance or vector (3). Blocks highlighted in light green (4) and (5)
denote stages involving an optimization process

4084	 Engineering with Computers (2024) 40:4081–4108

target performance changes. The details of the ML model
can be found in Sect. 2.4.

The ML model has two main tasks: (i) refine the lower
and upper optimization boundaries (denoted as lbR and
ubR , respectively), and (ii) decide whether to run a HF
simulation based on a design x being evaluated during the
optimization process. The details of the boundary refine-
ment procedure are given in Sect. 2.3. Furthermore, the
pseudo-code of the ML-enhanced optimization process
(ii), and all the necessary parameters are detailed in Alg. 1.

When the ML model is trained, the optimization pro-
cess begins by defining a target vector ( T ) and deriving a
target scalar value ( Tinfo ∈ ℝ ), where Tinfo =

1

q

∑q

i=1
Ti (the

mean of T ) or Tinfo = max(T) (the maximum of T ), depend-
ing on the application case in this study. During each
evaluation of the objective function � (defined in Eq. 2),
the pre-trained ML model ( M(x) ) predicts the value
( Minfo ∈ ℝ ) for a given optimization design vector x . The
scalar values Minfo and Tinfo must represent the same statis-
tically derived quantities in the space ℝ , ensuring consist-
ency in the comparison of predicted and target perfor-
mance metrics. Subsequently, the absolute error ( Δ )
between the ML predicted value ( Minfo ) and the target
scalar value ( Tinfo ) is then computed. If Δ exceeds a pre-
established threshold ( � ), the objective function ( � ) is
assigned the value � ⋅ eΔ ( � = 2 ). If Δ is less than or equal
to � , � is evaluated with a HF simulation and the result is
compared with T through a discrepancy metric.

The threshold parameter ( � ) is calculated using a user-
defined scaling factor (c) and the error of the ML model
( �M ), such as root mean square error or mean absolute
error obtained through ML model analysis. In regions of
the design space where the ML model is less accurate, the
framework tends to focus more on exploitation rather than
exploration. The initial design vector xinit ∈ ℝ

m is a vec-
tor randomly initialized within the optimization bounda-
ries ( lbR and ubR ) by the optimization algorithms. The
remaining budget (RB) denotes the remaining HF simula-
tion budget, which is used as a comparison metric with
unenhanced optimization algorithms. A higher RB value
indicates enhanced performance, reflecting increased com-
putational efficiency and savings. The optimization pro-
cess stops when the simulation budget is exceeded.

The proposed ML-enhanced inverse design framework
can be used in conjunction with any population-based
global optimization algorithm. In this study, it is investi-
gated how the ML model enhances two population-based
algorithms, namely, DE and PSO. The fundamental goal of
this framework is to enhance the robustness and efficiency
of the optimization algorithms through the use of ML-
generated boundary refinement and ML-guided evaluation
of HF simulations.

Algorithm 1   Pseudo-code of the ML-Enhanced optimization algorithm within the inverse design framework.

4085Engineering with Computers (2024) 40:4081–4108	

2.3 � ML‑generated boundary refinement

The ML model is used to narrow down the optimization
boundaries through a boundary refinement method, shown
in Alg. 2. This approach aims to significantly minimize the
demand for computational resources, an essential factor
when operating within a stringent computational budget.
The requirements for the boundary refinement are Tinfo and
Minfo values. The objective of each of the N optimization
runs in the algorithm is to minimize the absolute difference
between these two values. The N value is predefined by the
user and ultimately will determine the number of optimiza-
tion solutions that will be used to refine the boundaries for
the ML-enhanced inverse design framework. More specifi-
cally, to narrow down the boundaries through the boundary
refinement method, it is necessary to determine the optimal
solution defined as in Eq. (4):

The solution vector x∗ ∈ ℝ
m represents an optimized design

based on the absolute difference between Tinfo and Minfo (that
is predicted by M(x)).

(4)
x
∗ = argmin

x

|M(x) − Tinfo|
subject to xlb ≤ x ≤ xub

Given the inherent ill-posedness of most inverse design
problems, this optimization procedure is repeatedly exe-
cuted, resulting in a matrix of optimal solutions S . Repeat-
ing the optimization process N times yields various solutions
due to the multi-modal landscape and the stochastic nature
of the used optimizer (DE), which converges to different
local optima. The condition in Eq. (4) is especially sensitive
to this because it relies on partial information (ML predic-
tion of a single scalar value instead of a complete array),
further reducing the fidelity of the ML model trained with
LF simulation data.

More specifically, each row of S represents one of the
optimal solutions N, while each column is one of the design
variables m as defined in:

where x∗
N,m

 is the design point in dimension m of the opti-
mized solution N, and x∗

N
 is the Nth solution vector.

(5)S =

⎡
⎢⎢⎢⎣

x
∗
1

x
∗
2

⋮

x
∗
N

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

x∗
1,1

x∗
1,2

⋯ x∗
1,m

x∗
2,1

x∗
2,2

⋯ x∗
2,m

⋮ ⋮ ⋱ ⋮

x∗
N,1

x∗
N,2

⋯ x∗
N,m

⎤
⎥⎥⎥⎥⎦

Algorithm 2   The boundary refinement algorithm.

The obtained solutions within the matrix S are then sub-
jected to statistical processing that depends on the specific
inverse design problem being solved (see Sects. 3 and 4),
which yields the compressed lower and upper boundaries
lbR and ubR , respectively.

2.4 � ML model

The ML model M(x) takes as input the optimization design
vector x and maps it to Minfo which is then compared with
the Tinfo value, thereby minimizing the necessity for HF
simulations. The performance of three different ML algo-
rithms is analyzed within this methodology – a DNN, and

4086	 Engineering with Computers (2024) 40:4081–4108

two different GB algorithms – LightGBM (LGB) [34] and
XGBoost (XGB) [11]. XGBoost or eXtreme Gradient
Boosting (XGB) is a scalable tree boosting framework that
effectively integrates a sparsity-aware algorithm alongside a
weighted quantile sketch, thereby facilitating an approximate
tree learning process. The combination of cache access pat-
terns, elevated data compression, and sharding empowers
XGBoost to construct an efficient and powerful tree boost-
ing system.

LightGBM (LGB) is a robust and efficient gradient boost-
ing framework aimed at enhanced performance and speed.
It incorporates innovative strategies such as gradient-based
one-side sampling and exclusive feature bundling to expe-
dite processing and improve efficiency. LightGBM has a
unique leaf-wise tree growth strategy, which deviates from
the conventional level-wise approach seen in other boosting
algorithms, and contributes to improved model accuracy by
minimizing loss, thereby achieving faster convergence.

A DNN configured as an MLP is fundamentally com-
posed of three distinct types of layers: the input, hidden,
and output layers. These layers are constituted by artificial
neuron nodes. The MLP model can incorporate multiple
hidden layers as part of its neural architecture. Each neuron
residing within the hidden and output layers utilizes a non-
linear activation function, echoing the complex processing
mechanisms observed in the human brain [48]. This struc-
ture effectively facilitates the MLP’s ability to model and
solve intricate nonlinear problems.

The accuracy of all trained ML models was assessed
using the RMSE (Eq. (6)) since it is used to evaluate the
� value within the ML-enhanced framework (as shown in
Alg. 1).

The variables yl , ŷl , and L represent the lth actual value, the
lth ML model prediction, and the test set size, respectively.
More specifically, the variable yl represents the lth data point
that is the result of the lth LF simulation, and yl must repre-
sent the same statistically derived information as the T info
value. The K-Fold cross-validation procedure ( k = 5 ) was
used to evaluate the accuracy and uncertainty of all three
investigated algorithms. For the K-Fold analysis of the ML
model, the test set size L is varied as 500, 1000, 5000, and
15000.

2.5 � Metaheuristic optimization algorithms

Two distinct metaheuristic optimization algorithms will be
compared: Particle Swarm Optimization (PSO) and Dif-
ferential Evolution (DE). Both algorithms belong to the
broader categories of swarm intelligence and evolutionary

(6)RMSE =

�∑L

l=1
(yl − ŷl)

2

L

algorithms. Fundamentally, these categories rely on popula-
tions of agents that abide by specific rules to identify optimal
solutions. Using both PSO and DE will demonstrate the gen-
eral applicability of the ML-enhancement.

PSO is a population-based stochastic optimization algo-
rithm, inspired by the social behavior of bird flocking or
fish schooling [35]. In PSO, each individual particle in the
swarm population represents a solution in the design space.
Every particle updates its position based on its local best
position, as well as the global best solution of the swarm.
This cooperative search process, conducted through the
iterative adjustment of velocities and positions increases
the rate of convergence of the swarm towards the local or
global optimum.

DE is a population-based stochastic search technique,
commonly used for global optimization problems over
continuous optimization design vectors [58]. In DE, the
potential solutions are evolved over time via a simple arith-
metic operation: a combination of mutation, crossover, and
selection operations. Each individual in the population is
a potential solution, and the evolution of these individuals
is performed based on the differences between randomly
sampled pairs of individuals within the population. The dif-
ferential evolution of the population ensures a good rate of
convergence; however, converging to a global optimum is
not guaranteed. The success-history-based parameter adap-
tation (SHADE) variant of DE is used in this investigation.
In the SHADE variant, the scaling factor and crossover rate
are adaptively adjusted for each individual in the population
based on a history of successful parameters. This dynamic
adaptation allows for more effective exploration and exploi-
tation of the design space, potentially improving the perfor-
mance of the algorithm.

For the investigated problems, the swarm size and the
population size parameters for the PSO and DE algorithms
were both set to 10. Both DE and PSO implementations in
the Indago 0.4.5 Python module for numerical optimization
were used [30]. For the PSO algorithm, the inertia param-
eter was set at 0.8. The cognitive and social rates of the
swarm were standardized to 1, mainly based on the default
recommendations with the Python module. For DE, the key
hyperparameters, such as the archive size factor, historical

Table 1   Mapping of problem-
specific parameters for the AID
to their corresponding general
parameters used in the objective
function and the boundary
refinement process

General param-
eter

Problem
specific
parameter

Tinfo CT
pmin

T C
T
p

P
C
(x) C

C
p
(x)

Minfo Cpmin

m Nc

4087Engineering with Computers (2024) 40:4081–4108	

memory size, and mutation rate, were configured to 2.6, 4,
and 0.11, respectively, following recommendations from the
utilized Python module.

3 � Airfoil inverse design

This section defines the AID problem through the optimiza-
tion design vector, constraints, and the boundary refinement
strategy.

3.1 � AID problem description

The goal of the AID problem is to determine the optimal
geometry of an airfoil given a set of target pressure coeffi-
cients on the surface of the airfoil. The parameters used for
the AID and the boundary refinement in the context of Eq. (3)
and Eq. (4) are presented in Table 1. Each evaluation of the
function � (Eq. (3)) necessitates executing a flow simulation
over a generated design.

C
C
p
(x) ∈ ℝ

q denotes the computed pressure distribution
around an airfoil based on the design vector x , while CT

p
∈ ℝ

q
signifies the user-defined target pressure coefficient distribu-
tion measured at the same locations on the surface of the air-
foil. For all target cases, q = 300 . For each evaluation of
x ∈ ℝ

Nc , the computed pressure distribution CC
p
(x) is linearly

interpolated to match the target pressure distribution in both
the size and airfoil surface location for each individual com-
ponent q. CT

pmin
∈ ℝ denotes the target minimum pressure coef-

ficient obtained from CT
p
 , and because the minimum pressure

coefficient is used, the ML model’s task is to map the optimi-
zation design vector x to the minimum pressure coefficient
Cpmin

∈ ℝ measured on the surface of the airfoil.

The AID optimization problem uses B-Spline approxima-
tion of the NACA​0012 airfoil geometry for the lower and upper
boundary definition, as this method offers superior shape para-
metrization [52]. Utilizing the splrep function from the scipy
1.9.1 module [61], the B-Splines are defined with coefficients,
knots, a maximum degree of 5, and a smoothness parameter
set at 0.00001. The knots generated by the splrep function as
well as the degree and the smoothness of the splines remain
unchanged throughout the optimization procedure.

The optimization design vector for the AID problem ��
is defined as:

where it is defined as being comprised of the 15 lower and
15 upper surface B-spline coefficient vectors ( �� and �� ),
meaning that Nc = 30 . In detail, �� with its individual com-
ponents ( cli and cui ) is defined as:

The bounds of the lower and upper B-spline coefficients are
determined by the NACA​0012 lower and upper B-Spline
coefficient vectors denoted as ������ and ������ , respec-
tively, scaled by a multiplication factor � = 3 . The extracted
lower boundary B-Spline coefficients in ������ are negative.
Subsequently, there is an overlap in the initial lower and
upper B-Spline coefficients ( ������ and ������ ) generated by
B-Spline interpolation of the NACA0012 geometry, where
some coefficients in these vectors converge to zero. To
address this potential overlap and to enable optimization in

(7)

�� = [��, ��]
T ∈ ℝ

Nc ,

{
� ⋅ (������ − 1 ⋅ 10−5) ≤ �� ≤ 0

0 ≤ �� ≤ � ⋅ (������ + 1 ⋅ 10−5)

(8)

�� =

[
cl1, cl2, … , c

l
Nc

2

, c
u
Nc

2
+1
, c

u
Nc

2
+2
, … , cuNc

]T
∈ ℝ

Nc ,

{
� ⋅ (cL0012i − 1 ⋅ 10−5) ≤ cli ≤ 0 for i = 1, 2,… ,

Nc

2

0 ≤ cui ≤ � ⋅ (cU0012i
+ 1 ⋅ 10−5) for i =

Nc

2
+ 1,

Nc

2
+ 2,… ,Nc

Fig. 2   Optimization boundaries
generated by multiplying the
NACA​0012 baseline B-Spline
coefficients by a factor of
3. The �x and �y axis are the
chord-length normalized x and y
coordinates

4088	 Engineering with Computers (2024) 40:4081–4108

the near-zero space, we adjust the values of ������ and ������
by subtracting and adding a small value of 1 × 10−5 to these
vectors, respectively.

The constraints on �� and �� in Eq. (7) represent the ini-
tial lower and upper bounds ( xlb and xub ) used for the ML-
generated boundary refinement (Eq. (4)) as well as the lower
and upper boundaries used by the unenhanced optimization
algorithms (stand-alone DE and PSO). The lower and upper
boundaries of the optimization design vector based on the
scale factor � and the B-Splines of NACA​0012 are shown in
Fig. 2. Details of the airfoil targets, flow simulation solver,
and the dataset used to train the ML models are provided in
the Appendix A.

3.2 � AID boundary refinement

After the boundary refinement technique is applied, a whole
matrix of solutions S is obtained, as detailed in the Sect. 2.3.
By statistically analyzing the matrix of optimal solutions
derived from the ML model, the column-averaged values of
the solution matrix S provide a meaningful representation
of the refined design space. More specifically, the matrix of
solutions for the AID problem SA is defined as:

where xopt
AN

 is the Nth optimized solution of the AID problem,
and it consists of optimal lower and upper B-Spline coeffi-
cients (Eq. (8)). Subsequently, the averaged design vector x̄A
is defined by column-averaging the matrix SA:

Furthermore, the averaged design vector x̄A is scaled by a
safety factor � to ensure that the target design is within the
new boundaries:

(9)

SA =

⎡⎢⎢⎢⎢⎣

x
opt

A1

x
opt

A2

⋮

x
opt

AN

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

c
opt1
l1

c
opt1
l2

… c
opt1

l
Nc

2

c
opt1

u
Nc

2
+1

c
opt1

u
Nc

2
+2

… c
opt1
uNc

c
opt2
l1

c
opt2
l2

… c
opt2

l
Nc

2

c
opt2

u
Nc

2
+1

c
opt2

u
Nc

2
+2

… c
opt2
uNc

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

c
optN
l1

c
optN
l2

… c
optN

l
Nc

2

c
optN

u
Nc

2
+1

c
optN

u
Nc

2
+2

… c
optN
uNc

⎤⎥⎥⎥⎥⎥⎦

(10)
x̄A

=
[

1
N
∑N

i=1 c
opti
l1 , … , 1

N
∑N

i=1 c
opti
l Nc2

, 1
N
∑N

i=1 c
opti
u Nc2 +1

, … , 1
N
∑N

i=1 c
opti
uNc

]

Finally, the design vector ���
 represents an airfoil shape

itself, i.e., its design variables are the lower and upper
B-Spline coefficients, hence, new lower and upper bounda-
ries ( lbR and ubR ) are constructed based on this design vec-
tor for the AID problem. Different values of hyperparameter
� are investigated to assess their impact on the performance
of the ML enhanced optimization, more specifically,
� ∈ {1, 1.1, 1.2, 1.3} . These values showcase a range from
less efficient to more efficient performance to provide a com-
prehensive view of the method’s effectiveness.

4 � Scalar field reconstruction

This section defines the SFR problem through the optimi-
zation design vector, constraints, and the boundary refine-
ment strategy.

4.1 � SFR problem description

The goal of the SFR problem is to determine the scalar
boundary values based on a set of target scalar measure-
ments on a given domain. The essence lies in optimizing
the boundary conditions for a diffusion partial differential
equation (PDE). This mathematical model describes how
a scalar quantity spreads within a given domain. Instead
of prescribing boundary conditions outright, the problem
aims to find the ideal boundary conditions that, when
applied to the diffusion PDE, result in a reconstructed
scalar field that closely aligns with measured data. The
diffusion PDE is defined as:

where s is the non-dimensional scalar value, D is the diffu-
sion coefficient set to 1 (m2/s), t denotes the time (s), while
tmax denotes the maximum or end time of the simulation,
and Ω is the domain. For the purposes of demonstrating the
ML-enhanced inverse design framework, tmax is set to 0.1 s
and is treated as a converged state, i.e. the scalar diffusion is
treated as a quasi-transient problem.

The parameters used for the SFR and the boundary
refinement in the context of Eq. (3) and Eq. (4) are pre-
sented in Table 2.

sC(x ) denotes the computed scalar distribution in ℝq
(with q = 30 ) on a given domain Ω based on the design
vector x (denoted as �� for the SFR problem) which is used
to define the boundary condition, while sT , also in ℝq , sig-
nifies the user-defined target scalar field measured at the

(11)���
= 𝜂 ⋅ x̄A

(12)
�s

�t
= D∇2s in Ω, t ∈ [0, tmax]

Table 2   Mapping of problem-
specific parameters for the SFR
problem to their corresponding
general parameters used in
the objective function and the
boundary refinement process

General param-
eter

Problem
specific
parameter

Tinfo sT
max

T sT

P
C
(x) sC(x)

Minfo smax

m I

4089Engineering with Computers (2024) 40:4081–4108	

same locations. sT
max

 denotes the target maximum scalar
value obtained from sT in ℝ . The design vector constraint
for the SFR problem is defined in Eq. (13). The ML model
maps the design vector �� to the maximum scalar value smax
observed in the domain, with smax being in ℝ.

The scalar design vector �� consists of scalar values si that
collectively form a boundary condition for a given domain.
The minimum scalar value at the boundary is defined as 0
and the maximum value sub is set to 30. For a HF simulation,
the number of scalar values i defined at the top of the domain
Ω is 80 ( I = 80 ). However, with each evaluation of �� , it is
necessary to obtain the Minfo value, and a discrepancy arises
due to the ML model being trained with LF data where the
number of scalar values was set to 20 ( I = 20 ). To evaluate
�� with I = 80 using the ML model, �� is linearly interpo-
lated. The scalar values at the LF boundary points ( I = 20 )
are then extracted and used by the ML model to predict smax .
In accordance with the diffusion PDE (Eq. (12)), the scalar
boundary values are defined as the Dirichlet boundary con-
dition (Eq. (14)) for the top part of the domain �Ωtop:

Other parts of the domain �Ωother (left, right, bottom) are
defined as the Neumann boundary condition:

where n is the unit normal vector pointing outward from the
domain. Finally, the mathematical domain Ω for the given
SFR problem along with the appropriate boundary condi-
tions is shown in Fig. 3. Details of the solver, inverse design
target parameters for the SFR problem, and the dataset used
to train the ML models are provided in the Appendix B.

(13)
�� = [s1, s2,… , sI]

T ∈ ℝ
I ,

0 ≤ si ≤ sub for i = 1, 2,… , I.

(14)s = g(��, t) on �Ωtop, t ∈ [0, T].

(15)
�s

�n
= 0 on �Ωother, t ∈ [0, T],

4.2 � SFR boundary refinement

In addressing the SFR problem, the design space size pre-
sents a significant challenge. Compared to the AID problem,
the SFR problem is less constrained and more ill-posed. This
means that, based on the objective function and the lower
and upper boundaries of the design space, the optimiza-
tion landscape is more multi-modal for the SFR problem.
This difference requires a more robust strategy for bound-
ary refinement. Firstly, the LF solution matrix SsLF of opti-
mized design vectors (obtained through Eq. (4)) that contain
boundary condition scalar values is defined as:

where xoptsN
 is the Nth optimized design vector. Each row of

SsLF
 contains an optimized scalar value for each point on

the LF domain boundary ( I = 20 ). Subsequently, the design
vectors in each row of matrix SsLF are subjected to regression
model fitting. Since the shape of the BC is unknown, and
considering the number of possible solutions, in order to
cover a variety of BC shapes, this fitting utilizes polynomi-
als of degree d ∈ {1, 2, 3, 4} for each n = 1, 2,… ,N design
vector, forming the new regression model solution matrix
Ssreg as:

(16)SsLF
=

⎡⎢⎢⎢⎣

x
opt
s1

x
opt
s2

⋮

x
opt
sN

⎤⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

s
opt1
1

s
opt1
2

… s
opt1
20

s
opt2
1

s
opt2
2

… s
opt2
20

⋮ ⋮ ⋱ ⋮

s
optN
1

s
optN
2

… s
optN
20

⎤⎥⎥⎥⎥⎦

(17)Ssreg =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1(x
opt
s1
)

P2(x
opt
s1
)

P3(x
opt
s1
)

P4(x
opt
s1
)

⋮

P1(x
opt
sN
)

P2(x
opt
sN
)

P3(x
opt
sN
)

P4(x
opt
sN
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑1

k=0
a
opt1
k,1

ŝk∑2

k=0
a
opt1
k,2

ŝk∑3

k=0
a
opt1
k,3

ŝk∑4

k=0
a
opt1
k,4

ŝk

⋮∑1

k=0
a
optN
k,1

ŝk∑2

k=0
a
optN
k,2

ŝk∑3

k=0
a
optN
k,3

ŝk∑4

k=0
a
optN
k,4

ŝk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 3   The mathematical
domain Ω of the scalar recon-
struction problem. The top
boundary condition is the Dir-
ichlet boundary condition where
the optimization design vector
�� is set, while the bottom, left,
and right parts are defined as
the Neumann boundary condi-
tion. The height and width are
presented in meters

4090	 Engineering with Computers (2024) 40:4081–4108

where P4(x
opt
sN
) is the 4 th degree polynomial of the optimized

Nth vector xoptsN
 . More specifically, the term

∑4

k=0
a
optN
k,4

ŝk rep-
resents the 4 th degree polynomial regression model for the
Nth optimized design vector, where aoptN

k,4
 are the polynomial

regression coefficients and ŝ is the unknown variable. As
the matrix Ssreg is defined, each regression model is utilized
to evaluate the HF discretized space ( I = 80 ) with equally
spaced points between 0 and 1, resulting in the final SsHF
matrix:

where soptN ,4
N,1

 is the first scalar value at the boundary of the
HF domain obtained from the Nth design vector using the
4 th degree polynomial model, and soptN ,4

N,80
 is the last scalar

(18)SsHF
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s
opt1,1

1,1
s
opt1,1

1,2
… s

opt1,1

1,80

s
opt1,2

1,1
s
opt1,2

1,2
… s

opt1,2

1,80

s
opt1,3

1,1
s
opt1,3

1,2
… s

opt1,3

1,80

s
opt1,4

1,1
s
opt1,4

1,2
… s

opt1,4

1,80

⋮ ⋮ ⋱ ⋮

s
optN ,1

N,1
s
optN ,1

N,2
… s

optN ,1

N,80

s
optN ,2

N,1
s
optN ,2

N,2
… s

optN ,2

N,80

s
optN ,3

N,1
s
optN ,3

N,2
… s

optN ,3

N,80

s
optN ,4

N,1
s
optN ,4

N,2
… s

optN ,4

N,80

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 4   SFR boundary refine-
ment example. The grey lines
are the N solutions within the
matrix Ss , the black line is the
average value of the solutions
in matrix Ss , the green line is
the true boundary condition
that corresponds to the T field
measurements, and the blue
line is the new upper boundary
ubR obtained with the boundary
refinement procedure described
in this section

Fig. 5   The mean (solid lines)
and standard deviation (shaded
areas) K-Fold RMSE for the
three investigated ML algo-
rithms for the AID problem.
Lower RMSE values are better

4091Engineering with Computers (2024) 40:4081–4108	

value obtained from the same regression model of the same
degree.

Polynomial regression coefficients are determined
using the numpy 1.24.3 function polyfit for 20 equally
spaced points between 0 and 1 (which corresponds to the
LF discretization), and this regression model, generated
by the function poly1d, is subsequently evaluated for the
HF discretization ( I = 80 ) with equally spaced points
between 0 and 1, resulting in the final Ssreg set. Finally, to
determine the new optimization boundaries for the SFR
problem, the maximum scalar value is extracted from the
flattened matrix SsHF : max(SsHF) defines the upper optimi-
zation boundary value for each dimension I = 80 , thus
forming the new upper boundary ubR . For safety reasons,
the lower boundary lbR remains as specified in Eq. (13),
i.e., 0.

Figure 4 illustrates an instance of the boundary refine-
ment process. The green line represents the true solution,
the blue line shows the reduction of the design space
(approximately 50% pruned) as described above and the
black line represents the average of N optimized boundary
conditions for comparison. The green curve lies below
the black curve, suggesting that the boundary refinement
methodology used for the AID problem might be similarly
effective here.

5 � Results and discussion

In this section, the results and analyses for the ML model,
boundary refinement, and ML-enhanced framework for
both demonstration problems are detailed. An in-depth
hyperparameter analysis of the ML-enhanced framework is
showcased, followed by overarching recommendations for
optimal utilization. The section concludes by highlighting
the advantages and limitations of the proposed technique.
The details of all ML model hyperparameters, the hyperpa-
rameter tuning procedure, and the Python modules used are
given in Appendix C.

5.1 � ML models results

In this subsection, the ML model results for both the AID
and SFR problems are presented through the accuracy met-
rics given in Sect. 2.4.

5.1.1 � AID ML model results

Figure 5 presents the RMSE scores for the three ML algo-
rithms applied to the AID problem for varying dataset sizes.
The dataset size was varied in order to assess the influence
it has on the ML-enhanced framework, and to obtain the
learning curve for each algorithm. All models show that
the larger the dataset size, the better (lower) the resulting
RMSE. It can be seen that for smaller datasets, XGB has

Table 3   XGB RMSE values
used for calculating the �
threshold parameter for each
scenario and dataset size

Dataset size RMSE

500 0.81
1000 0.61
5000 0.39
15000 0.34

Fig. 6   The mean (solid lines)
and standard deviation (shaded
areas) K-Fold RMSE for the
three investigated ML algo-
rithms for the SFR problem

Table 4   MLP RMSE values
used for calculating the �
threshold parameter for each of
the two SFR BC scenarios and
dataset size

Dataset size RMSE

500 7.63
1000 4.27
5000 0.78

4092	 Engineering with Computers (2024) 40:4081–4108

better performance than LGB and MLP, but its accuracy
marginally lags when leveraging all 15000 data instances for
training and cross-validation. Given its overall top perfor-
mance, XGB (trained with four different dataset sizes) was
selected as the ML model for the inverse design framework,
and the K-fold cross-validation RMSE values used for further
analysis are presented in Table 3.

5.1.2 � SFR ML model results

Figure 6 shows the RMSE values of the three ML algorithms
when applied to the SFR problem using different dataset
sizes. The results show the MLP’s superior performance
over both LGB and XGB across all dataset sizes. As a
result, the MLP was selected as the ML model within the
inverse design framework for the SFR problem. The specific
K-fold cross-validation RMSE values for the MLP, which
were used to compute the � parameter for the SFR prob-
lem, are detailed in Table 4. Given the minimal performance

Fig. 7   Boundary refinement
technique results generated by
the XGB model: (a) NACA​2410
with dataset size 500 (b) NACA​
2410 with dataset size 15000 (c)
RAE2822 with dataset size 500
(d) RAE2822 with dataset size
15000. The white lines indicate
the narrowed boundaries, i.e.
lbR and ubR for different values
of � . There is no noticeable
difference between the white
lines when the dataset size is
increased, indicating that a sig-
nificant boundary compression
is achievable even with an ML
model trained on a small dataset

Fig. 8   The boundary refinement
technique developed for the
SFR problem implemented on
two distinct cases: (a) Sinu-
soidal BC (b) Linear BC. The
green line represents the BC
utilized to derive the HF target
solution, while the blue lines
indicate the upper boundaries of
the design space produced using
varied dataset sizes for training
the MLP

4093Engineering with Computers (2024) 40:4081–4108	

difference between the models trained with 5000 and 15000
instances, only three distinct models trained on three differ-
ent amounts of data were compared within the ML-enhanced
framework.

5.2 � Boundary refinement with the ML model

In this subsection, the results of the boundary refinement
technique for both investigated problems are presented. To
generate the new boundaries lbR and ubR , models trained
on different dataset sizes were compared. The DE was
employed to solve Eq. (4) 150 times ( N = 150 solutions).
The DE algorithm was configured with a maximum of 800
function evaluations, and the population size was set to equal
the dimensionality of the optimization vector i.e., 20 for SFR
and 30 for AID. A comparative analysis of different N values
is provided in Appendix D.

5.2.1 � AID boundary refinement

In Sect. 5.1, the choice of the XGB algorithm was justified
by its marginal superiority over other algorithms, especially
when various training data sizes are taken into account. For
the purpose of boundary refinement, the XGB was trained
using data instances of sizes 500, 1000, 5000, and 15000.
The results of the edge cases of the XGB-produced bounda-
ries lbR and ubR are illustrated in Fig. 7. Since every solution
in the matrix SA represents an airfoil itself with lower and

upper shape coefficients, the new lower and upper bounda-
ries were derived solely by averaging the solution matrix
SA where � = 1 encompasses the genuine target designs. A
notable overlap is observed in a section of the upper trailing
edge between the target and the new boundary ( 𝜁x > 0.8 ).
When the safety factor is increased to its maximum investi-
gated value of � = 1.3 , this overlap at 𝜁x > 0.8 significantly
diminishes, and a noticeable distinction is achieved between
the new and the original boundaries (Figs. 7b and 7d).

When training the XGB model with different numbers
of instances, only minor variations in results emerge. This
suggests that the ML model trained with a small dataset
suffices to prune a segment of the design space for such
problems. This observation holds for both NACA​2410 and
RAE2822 boundary refinement procedures, as illustrated in
Fig. 7. Finally, an analysis of how the number of solutions
N affects the change in the airfoil shape and the boundary
refinement is shown in Fig. 19 (Appendix D).

5.2.2 � SFR boundary refinement

For the SFR problem, the MLP outperformed the other
investigated algorithms in modeling smax . Figure 8 displays
the MLP results of the boundary refinement. The MLP was
trained with dataset sizes 500, 1000, and 5000. Across
both BC scenarios, all three MLP models significantly
reduce the size of the design space, confining the ubR value
between s = 13 and s = 18 (43% to 60% of the design space

Fig. 9   Results from the ML-
enhanced framework for NACA​
2410 that include the boundary
refinement for the following
configurations: (a) PSOML−EN ,
� = 1 (b) PSOML−EN , � = 1.3 (c)
DEML−EN , � = 1 (d) DEML−EN ,
� = 1.3. The markers denote the
different dataset sizes used to
train the ML model, while the
coloring of the markers repre-
sents the remaining simulation
budget (RB) values. A higher
RB signifies greater savings in
the computational budget (less
requirements for HF simula-
tions), while low fitness values
imply a better approximation
of the target performance. The
markers are slightly offset for
each c value to improve vis-
ibility

4094	 Engineering with Computers (2024) 40:4081–4108

pruned). Compared to the airfoil problem, these newly pro-
duced boundaries exhibit greater sensitivity to changes
in dataset size, but all three can be reliably incorporated
into the ML-enhanced inverse design framework without
losing the true solutions. Additionally, Fig. 20 (Appendix
D) presents an analysis of how the number of solutions,
N, impacts both cases of the SFR problem.

5.3 � ML‑enhanced inverse design framework results

This section provides a comprehensive analysis of the ML-
enhanced inverse design framework, detailing the hyperpa-
rameters (c values, � , ML dataset size) for both problem
categories. Following this, a meticulous comparison is pre-
sented between the conventional inverse design approach
which employs classic optimization algorithms like DE and
PSO, and the ML-enhanced optimization algorithms. Both
strategies aim to minimize the objective function described
in Eq. (3) subject to the constraints specified in Eq. (7) and
Eq. (13) for the AID and SFR challenges, respectively.
Given the stringent computational budget, both methodolo-
gies are restricted to 200 HF simulations for each problem.
Furthermore, to account for the inherent randomness of
the population-based algorithms in use, all hyperparam-
eter combinations are subjected to 30 runs, facilitating a
robust uncertainty analysis. The term fitness is introduced to
align with the conventions of PSO and DE, and it is equal to

RMSE, which is the optimization objective used to evaluate
the quality of solutions.

Within the ML-enhanced inverse design framework, the
boundaries resulting from the boundary refinement tech-
niques are utilized, i.e., when the ML model is trained with
a particular dataset size, the lbR and ubR corresponding to
that ML model are applied. The user-defined hyperparameter
c is utilized to scale the K-fold cross-validation RMSE values
of the ML models. For the AID problem, the explored values
are c ∈ {1, 2, 4, 6, 8} , while for the SFR problem, they are
c ∈ {0.25, 0.5, 1, 2, 4} . The differing ranges for c between
the two problems arise from the variance in magnitude of
their RMSE values. However, there is an overlap in the sets,
which aids in formulating a generalized recommendation.
The RMSE metric of the ML models was used to calcu-
late the � threshold as defined in Sect. 2. This decision is
motivated by the intuitiveness and interpretability offered by
the RMSE value. By reflecting the degree of discrepancy in
the model’s predictions, it provides a clear and meaningful
measure of the model’s performance.

5.3.1 � AID results

The results of the ML-enhanced inverse design framework
utilizing the XGB model and the boundary refinement
technique ( � = 1 and � = 1.3) applied to the AID problem
for the NACA​2410 and RAE2822 airfoils in Figs. 9 and 10.
PSOML−EN and DEML−EN denote the ML-enhanced versions

Fig. 10   Results from the
ML-enhanced framework
for RAE2822 that include
the boundary refinement
for the following configura-
tions: (a) PSOML−EN , � = 1
(b) PSOML−EN , � = 1.3 (c)
DEML−EN , � = 1 (d) DEML−EN ,
� = 1.3. The markers denote the
different dataset sizes used to
train the ML model, while the
coloring of the markers repre-
sents the remaining simulation
budget (RB) values. A higher
RB signifies greater savings in
the computational budget, while
low fitness values imply a better
approximation of the target
performance. The markers are
slightly offset for each c value to
improve visibility

4095Engineering with Computers (2024) 40:4081–4108	

of the optimization algorithms. For comparison, the aver-
age and standard deviation over the results of 30 runs of the
unehanced PSO and DE algorithms are shown as horizontal
black and grey lines, respectively. The markers indicate the
dataset size used to train the XGB model, which was then
incorporated into the ML-enhanced optimization algorithm
and used to form lbR and ubR . These markers are color-coded
based on the RB values, implying that the fitness values
were obtained from a number of HF simulations defined as
TSB − RB , where TSB represents the total simulation budget,
specifically set at 200. The full results, which include the
lbR and ubR formed with � = 1.1 and � = 1.2 are given in
Figs. 21 and 22 (Appendix E), respectively.

First, a clear observation is that the DE algorithm, in both
its unenhanced and ML-enhanced forms, outperforms the
PSO algorithm. Moreover, across most tested hyperparam-
eters, airfoil types, and optimization algorithms, the ML-
enhanced variant consistently surpasses the performance of
its unenhanced counterpart. There are a few instances where
DE or PSO exhibit competitive performance in terms of raw

fitness (RMSE) value, particularly when the c value is set to
1 and the XGB models trained with dataset sizes of 5000 and
15000 are employed. However, note that both PSOML−EN and
DEML−EN have consumed only about 60% of their HF simu-
lation budgets (remaining budget RB ∼ 70 − 80 ), whereas
their unenhanced versions have fully exhausted theirs.

Once the user defined RMSE scaling parameter c value
reaches and exceeds 4, the RB value becomes zero for most
dataset sizes and � values. Given that the RB value is zero, it
indicates that only HF simulations were utilized for assess-
ing the design vector. Consequently, it can be inferred that, in
this particular scenario, employing unenhanced algorithms
alongside the refined boundaries would yield equivalent
results. ML-enhanced algorithms, especially when employ-
ing models trained on dataset sizes of 5000 and 15000 and
when c = 2 (observable in Figs. 9 and 10), not only converge
to a better solution but also economize on the total HF com-
putational budget ( RB ∼ 30 − 50 ) when compared with the
unenhanced versions.

Fig. 11   A comparative analysis of ML-enhanced algorithm configu-
rations (dataset size = 1000 for both rows, � = 1.1 for top and � = 1.3
for bottom row, respectively) versus their unenhanced optimization
equivalents: (a) Optimal achieved NACA​2410 airfoil geometry for the
PSO and PSOML−EN (b) Optimal set of pressure coefficients for the
same configuration juxtaposed with target values (c) Convergence of
all 30 runs for PSO and PSOML−EN (d) Optimal achieved RAE2822
airfoil geometry for DE and DEML−EN (e) Corresponding optimal

pressure coefficients set against target values for the RAE2822 air-
foil (f) Average convergence and standard deviation of all 30 runs
for both algorithm variants. The thicker lines in the first and second
column represent the average optimized designs and pressure coeffi-
cients from the 30 runs, while the transparent shaded region in the
second column depicts the standard deviation of the pressure coeffi-
cients

4096	 Engineering with Computers (2024) 40:4081–4108

For a general recommendation on the use of ML-
enhanced optimization algorithms for the AID problem
within a limited HF computational budget, any of the inves-
tigated � factors can be employed. However, to ensure the
target design falls within the refined boundaries, an � value
of 1.3 is preferable. This choice allows for convergence
across all configurations. In terms of achieving optimal fit-
ness and conserving the computational budget, the c value of
2 appears to be the best across all dataset sizes and algorithm
combinations. Furthermore, a c value of 1 can be consid-
ered for exploratory inverse designs, as it requires fewer HF
simulation runs to attain comparable or superior results to
the unenhanced algorithms.

The ML models trained on smaller datasets (500 and
1000) suffice to expedite the inverse design process, achiev-
ing ( RB ∼ 20 − 50 ) for c = 1 and c = 2. These ML models
also lead to effective boundary refinement when the entire
simulation budget is used up in pursuit of the optimal design.

Figure 11 offers a comparison between selected ML-
enhanced algorithm configurations and their unenhanced
optimization counterparts. The first column displays the
optimal achieved airfoil geometry, while the second pre-
sents the optimal set of pressure coefficients, both set against
the target values. The third column illustrates the conver-
gence graphs of all 30 runs for both algorithm variants. The
first row corresponds to the PSO algorithm and the NACA​
2410 airfoil, while the second shows an example of the DE
algorithm and the RAE2822 airfoil. Considering all three

visual metrics, both DEML−EN and PSOML−EN surpass their
unenhanced counterparts. Yet, neither algorithm achieves
an exact alignment with the target designs, in terms of geom-
etry and pressure coefficient sets. This discrepancy arises
because the framework is assessed under strict computa-
tional budgets, with a specific focus on only 200 HF simu-
lations, however, further improvements for both approaches
are likely with larger computational budgets.

5.3.2 � SFR results

Figure 12 presents the hyperparameter analysis for the ML-
framework applied to the SFR problem. It also provides a
comparison with the unenhanced algorithms showing the
average and standard deviation of the fitness, indicated by
the horizontal black and grey lines, respectively. The ML-
enhanced algorithms consistently outshine their traditional
counterparts. Drawing parallels with the AID problem, it
is observed that while elevating the c parameter allows the
framework to focus on improving the target performance
approximation (reducing the fitness value), it does so at the
expense of fully utilizing the entire simulation budget.

The ML-enhanced optimizers with the MLP model
trained on the dataset size 1000 exhibit superior perfor-
mance in terms of fitness value compared to their counter-
parts trained on dataset sizes 500 and 5000, respectively.
This difference can be attributed to the more effective
boundary refinement achieved by the 1000-instance model,

Fig. 12   ML-enhanced frame-
work results for the surface field
reconstruction problem: (a)
PSOML−EN for the sinusoidal BC
(b) DEML−EN for the sinusoidal
BC (c) PSOML−EN for the linear
BC (d) DEML−EN for the linear
BC. The markers denote the
different dataset sizes used to
train the ML model, while the
coloring of the markers repre-
sents the remaining simulation
budget (RB) values. A higher
RB signifies greater savings in
the computational budget, while
low fitness values imply a better
approximation of the target
performance. The markers are
slightly offset for each c value to
improve visibility

4097Engineering with Computers (2024) 40:4081–4108	

Fig. 13   A comparative analysis
of ML-enhanced PSO algorithm
configurations with c = 1 (MLP
training dataset size = 1000 for
top row, and 500 for bottom
row) versus their unenhanced
optimization equivalents: (a)
PSO and PSOML−EN comparison
of the reconstructed sinusoidal
BC juxtaposed with the true
BC (b) Sinusoidal BC case 30
runs average convergence and
standard deviation plot of PSO
and PSOML−EN (c) PSO and
PSOML−EN comparison of the
reconstructed linear boundary
condition juxtaposed with the
true BC (d) Linear BC case
30 runs average convergence
and standard deviation plot
of PSO and PSOML−EN . The
thicker lines in the first column
represent the average BCs of the
30 runs. There are four thicker
lines shown since the solutions
were approximated with four
different degrees of regression

Fig. 14   Reconstructed scalar fields with the average optimized design
vectors presented in Fig. 13: (a) True sinusoidal boundary condition
(b) PSOML−EN reconstructed sinusoidal boundary condition (4-th
degree regression model) (c) PSO reconstructed sinusoidal boundary

condition (4-th degree regression model) (d) True linear boundary
condition (e) PSOML−EN reconstructed linear boundary condition (lin-
ear regression model) (f) PSO reconstructed linear boundary condi-
tion (linear regression model)

4098	 Engineering with Computers (2024) 40:4081–4108

as evidenced by Figs. 8a and 8b. The applied boundary
refinement notably contributes to reducing fitness uncer-
tainty across all hyperparameter combinations as observed
through the standard deviation lines corresponding to each
marker. This advantage becomes even more pronounced
when compared to the standard deviation observed in the
unenhanced algorithms.

For dataset sizes of 500 and 1000, a c value of 1 or
greater causes the ML-enhanced algorithms to consume
the entire budget of HF simulations. Notably, when opti-
mizers are paired with the MLP model trained on 5000
instances, the fitness scales almost linearly with the c value.
The 5000-instance trained ML-enhanced optimizers strike
a good trade-off between achieving low fitness (RMSE)
values and conserving HF simulations. Considering results
from both BC scenarios, the hyperparameter settings that
would achieve a trade-off between a good target performance
approximation and simulation budget would be the 1000
dataset model at c = 0.25 or the 5000 dataset model at c
= 1. If the goal is to substantially narrow down the design
space, a noisy model, like the one trained on 500 instances,
proves sufficient.

Figure 13 displays examples of the optimized BCs for
both test instances. The results from PSOML−EN for the
sinusoidal BC employed an MLP trained on 1000 instances
with c = 1, while for the linear BC an MLP trained on 500
instances with c = 1 was used. Different reconstructed aver-
aged BCs are depicted for both instances and algorithms.
This variety arises because the final optimized average
design vectors, which contained raw scalar values for each
Ωtop coordinate, underwent regression model fitting ranging
from degrees 1 to 4, described in Sect. 4.2. In both cases
presented in Fig. 13, both the average reconstructed BCs

(for all regression model degrees) and the convergence plot
clearly demonstrate the superiority of PSOML−EN over PSO.

In Fig. 14, the reconstructed scalar fields generated by
the BCs presented in Fig. 13 are shown. The top row shows
the fields for the sinusoidal BC, while the bottom row shows
the fields for the linear BC. The first column shows the
ground truth, while the second and third columns show the
PSOML−EN and PSO reconstructed scalar fields. It is obvious
that the BCs generated by the ML-enhanced algorithm align
much more closely with the true solution. Finally, Fig. 15
shows the absolute error between the true scalar fields (for
both BC cases) and those obtained by PSOML−EN and PSO-
optimized boundary conditions. The absolute error was
calculated for every point in the HF domain, and with the
range of the absolute error being the same for both results
shown, it is apparent that the PSOML−EN generated BC is
more accurate.

5.4 � Advantages and limitations of the ML‑enhanced
framework

While the ML-enhanced inverse design method shows
improved performance, it is not without limitations. Pri-
marily, the framework requires a pre-trained ML model to
estimate the M info value. To harness this model effectively
for boundary refinement and to cut back on the number of
HF simulations, it is vital to understand and determine the
pertinent reduced-order information related to the optimiza-
tion challenge.

The main advantage of the proposed method is that an
ML model is trained independently of the optimization loop
using LF data only, and can then be exploited for different

Fig. 15   Absolute error between
the true scalar field and the
scalar field obtained by the aver-
age optimized design vectors
presented in Fig. 13 for both BC
cases: (a) True and PSOML−EN
scalar field absolute error for the
sinusoidal BC (b) True and PSO
scalar field absolute error for
the sinusoidal BC (c) True and
PSOML−EN scalar field absolute
error for the linear BC (d) True
and PSO scalar field absolute
error for the linear BC

4099Engineering with Computers (2024) 40:4081–4108	

inverse design instances of the same type of problem (e.g.,
one ML model for airfoils enables the efficient optimization
of multiple different types of airfoils). Furthermore, the ML
model does not have to be highly accurate as highlighted in
the detailed hyperparameter analysis for both investigated
problems, which is advantageous in cases where obtaining
LF data is computationally non-trivial.

Another limitation of the framework lies in its depend-
ence on multiple hyperparameters. Both the boundary refine-
ment technique, as applied to AID, and the ML-enhanced
framework itself require safety hyperparameters ( � and c
respectively). Although this study demonstrates that the c
value can correlate with the RMSE of the model suggesting
values of c ∈ {0.5, 1, 2} for both problems, a more exhaus-
tive analysis encompassing a broader set of similar problems
is essential. However, pinpointing the appropriate c param-
eter could be accomplished through an exploratory analysis
leveraging an ML model and exclusively LF simulations.
Finally, investigating the error metric of the ML model in
the ML-enhanced framework is a potential research direc-
tion, as it would be beneficial to remove the error scaling
hyperparameter.

6 � Conclusion

The paper presents an ML-enhanced inverse design frame-
work for problems with stringent simulation budgets.
This framework, applied to two distinct engineering chal-
lenges–AID and SFR–leveraged a pre-trained ML model.
The goal was to reduce the size of the optimization design
space and decrease the need for costly HF simulations to
arrive at an optimal design. In this ML-enhanced frame-
work, both the DE and PSO optimization algorithms, which
have an extensive demand for objective function evaluations,
were enhanced with the ML model and contrasted with their
conventional versions.

The main contributions of the study can be summarized
in several points:

•	 An ML model trained on a small set of LF data effec-
tively narrows the optimization design space. This facili-
tates a better rate of convergence of both PSO and DE
towards a better approximation of the target performance
within a predefined HF simulation budget.

•	 The ML-framework proves highly effective for both min-
imizing the number of HF simulations and approximating
user-defined target designs. A relationship between the

Fig. 16   Investigated airfoil geom-
etries (top row) and the HF vs LF
pressure coefficient distribution
around the target CT

pmin
 area (bot-

tom row): (a) RAE2822 airfoil (b)
NACA​2410 airfoil (c) RAE2822
LF vs HF pressure distribution
(d) NACA​2410 LF vs HF pressure
distribution. Due to the optimiza-
tion constraints being generated
based on the NACA​0012 airfoil
as well as the ML model dataset
(Sect. A.2), the RAE2822 shape
provides a harder optimization
challenge due to its larger devia-
tion from the camber line

4100	 Engineering with Computers (2024) 40:4081–4108

ML model’s error metric (RMSE) and the mechanism
for minimizing HF simulations has been established and
explored. For the AID and SFR problems, the hyperpa-
rameter c which is used to multiply the RMSE, is recom-
mended to be in the range c ∈ {0.5, 1, 2}.

•	 The solutions obtained with population-based stochastic
global optimization algorithms, such as DE and PSO, can
be significantly improved when guided by ML models.

•	 The effectiveness of the ML-enhanced inverse design
framework was demonstrated on two conceptually dif-
ferent engineering challenges.

For the AID problem, future studies could delve into the
integration of sophisticated computational fluid dynamics
models like RANS or LES as the main HF simulators in
the optimization loop, complemented by the ML model.
Regarding the SFR problem, research emphasis should be
on increasing the problem complexity, e.g., by employing
a fully transient simulation model, integrating the diffu-
sion coefficient value into both the ML model and inverse
design, and potentially utilizing the RANS model for flow
field reconstruction [6]. Furthermore, an analysis of the
influence of the number of field measurements should
be conducted.

Generally, the ML-enhanced framework proposed here
could find application in any problem where meaningful
reduced-order information can be obtained and approxi-
mated using an ML model. Multiple scientific applica-
tions fall into this problem category including simulations
in climate and combustion that can be run with differ-
ent grid resolutions and time step sizes. The proposed
framework could be implemented within a larger hybrid
metaheuristic-Bayesian optimization framework to fur-
ther minimize the number of HF function evaluations, and
it could be further investigated with other derivative-free
optimization algorithms.

AID numerical experiments and dataset

This section details the target airfoil designs, flow con-
ditions, and the flow simulation solver. Additionally, it
describes the dataset used to train the ML models for the
AID problem.

Airfoils and aerodynamic flow analysis

The airfoils RAE2822 and NACA​2410 are used for the
numerical analysis. They both exhibit asymmetry along
the chord line unlike the base NACA​0012 airfoil which was
used to construct the original lower and upper boundaries
of the decision vector. The NACA​2410 airfoil is a member
of the same family as the NACA​0012, which serves as a

reference for defining the B-Spline coefficient constraints.
The RAE2822 airfoil is one of the most widely used bench-
mark airfoils in the field of aerodynamic shape optimization
and inverse design [14, 26, 42, 43]. The shapes of both air-
foils are shown in the top row of Fig. 16, and the difference
between the HF and LF simulation results for both airfoils
through the Cp distribution graph are shown in the bottom
row of Fig. 16.

For both investigated airfoils, the flow simulation
parameters–Reynolds number (Re), Angle of Attack
(AoA), and Mach number (Ma)–were set to 5 ⋅107 , 4, and
0, respectively. The target pressure coefficients were
derived from these flow conditions and the specific air-
foils, including the CT

pmin
 values. Specifically, for the

RAE2822, CT
pmin

= −2.27 and for the NACA​2410,
CT
pmin

= −1.58 . The aerodynamic flow analysis was con-
ducted using XFOIL. This software package, specifically
designed for subsonic airfoil analysis, served as the pri-
mary tool for assessing the pressure coefficients around
the airfoil [15]. The Python wrapper for XFOIL simula-
tions – xfoil 1.1.1 [62] was utilized.

XFOIL operates on a numerical panel method, which
is integrated with a boundary layer model, facilitating
accurate predictions of flow behavior around an airfoil.
Through an iterative process, XFOIL effectively solves
the potential flow equation for inviscid flows and the inte-
gral boundary layer equations for momentum and energy
in viscous flows. It is optimally designed to accommodate
incompressible flow scenarios with a Reynolds number
between 106 and 108 . The number of discretization panels
used for XFOIL simulations determines the fidelity of
the simulation. It has been shown by [47] that XFOIL is
more accurate than other methods for high lift low Reyn-
olds number airfoils. In HF simulations, the discretization
panel value is set to 300, while in LF simulations it is
reduced to 100.

For each analysis, XFOIL takes as input the airfoil design,
which is represented by the coordinates generated by the
optimization variables–B-Spline coefficients, as well as
B-Spline degree, and knots. Additional parameters, such as
Re, AoA, and Ma must be specified for each simulation.
Each XFOIL evaluation outputs the pressure coefficients
measured around the airfoil which are compared with the
target pressure coefficients. The number of iterations was
set to 400 for every simulation, while the panel bunching
parameter was set to 1, the trailing and leading edge density
ratio was set to 0.15, and the refined-area-leading edge panel
density ratio was set to 0.2.

While the proposed inverse design framework can lev-
erage various computational fluid dynamics (CFD) analy-
sis tools, XFOIL has been selected for its computational
efficiency and as a proof-of-concept. The difference in

4101Engineering with Computers (2024) 40:4081–4108	

execution time between the HF and LF simulations gen-
erated by XFOIL is not significant, however, the quality
of solution does differ (shown in Fig. 16). In the future,
this methodology can easily be expanded to incorporate

more sophisticated approaches, such as Reynolds-aver-
aged Navier–Stokes (RANS) or Large Eddy Simulation
(LES), which both have significantly higher computa-
tional demands.

Minimum pressure coefficient dataset

In order to train the ML model, a suitable dataset must
be generated. As defined in Table 1, the Minfo value cor-
responds to the minimum pressure coefficient, denoted
Cpmin

 , necessitating the simulation of aerodynamic prop-
erties across a wide array of geometries and their map-
ping to respective Cpmin

 values. This dataset was assembled
utilizing the LHS design of experiment technique. Input
features for training the ML model were generated using
LHS as B-Spline coefficients ( �� and �� in Eq. (7)). Each
B-spline coefficient was subsequently transformed into an
airfoil geometry to obtain the corresponding Cpmin

 value.
All data were generated utilizing LF simulations, employ-
ing 100 discretization panels, with the flow parameters
defined in Sect. A.1. A total of 15000 LF simulations were
conducted, meaning a total of 15000 B-Spline and C pmin
pairs were generated.

SFR numerical experiments and dataset

This section provides details on the inverse design targets
and the solver used for simulating the scalar diffusion pro-
cess. It also includes information on the scalar measurement
locations and the random generator algorithm for the scalar
boundary values. Additionally, it describes the specifics of
the ML dataset generated for the SFR problem.

Scalar diffusion boundary conditions and solver

Two distinct boundary conditions (BC) were investigated
to demonstrate the versatility of a single ML model across
various scenarios. As depicted in Fig. 17, one BC exhibits
a sinusoidal pattern, whereas the other adheres to a linear
trend. Both BCs were used to generate sT arrays. The val-
ues were measured at locations given in Sect. B.3 (Fig. 18

Fig. 17   Two investigated boundary condition cases: (a) Sinusoi-
dal boundary condition (b) Linear boundary condition. The x-axis
defines the top boundary domain which ranges from 0 to 1, while the
y-axis is the scalar value for each Ωtop

Table 5   “Total cells” refers to the number of cells within the com-
putational domain. “Top BC cells” signifies the quantity of cells
along the Ω

x
-axis direction, where the Dirichlet boundary condition

is applied. Scalar values at the boundary are set in the cell centers.
�Ω

x
 and �Ω

y
 represent the cell sizes in the Ω

x
 and Ω

y
 axis directions,

respectively

Type Total cells Top BC cells �Ω
x

�Ω
y s

T

max
 Sinusoidal BC s

T

max
 Linear BC

LF 400 20 0.05 0.025 5.72 8.67
HF 6400 80 0.0125 0.00625 5.67 9.10

4102	 Engineering with Computers (2024) 40:4081–4108

and Table 6). The sT
max

 ( Tinfo ) value for the sinusoidal BC
(Fig. 17a) was 5.67, while for the linear BC (Fig. 17b) it
was 9.1.

To simulate the BCs over the domain, the open source
computational fluid dynamics library OpenFOAM 9 was
used [31]. More specifically, the laplacianFoam diffusion
PDE solver was used. The details about the LF and HF
domains are presented in Table 5, as well as the difference
in the LF and HF modeled values of sT

max
 . The LF scalar dif-

fusion equation is solved on a computational grid that is 16
times smaller than the HF computational grid in terms of
total finite volume cells. Moreover, both LF and HF Open-
FOAM simulation execution times are similar, however, due
to a difference between the obtained results, the cases can
be utilized for investigation as a proof-of-concept for the
ML-enhanced framework.

Maximum scalar dataset

The Minfo for the SFR requires identification of the maximum
scalar value, smax within the domain. To curate a dataset,
variations were made in the BC scalar values. For every
distinct scalar value set, a simulation was executed, captur-
ing the corresponding smax value. An in-depth analysis of
the methodology employed to generate diverse BCs for this
reconstruction problem can be found in Alg. 3 presented in
Sect. B.4. For dataset creation, 15000 LF simulations were

Fig. 18   SFR problem domain Ω with probe locations marked as red
points. The boundary condition values are given at the top of the
domain ( Ωy = 0.5 m)

Table 6   Ω
x
-axis and Ω

y
-axis

values for all probe locations
within the domain Ω for the
SFR problem

Probe Ω
x

Ω
x

1 0.168 0.263
2 0.063 0.043
3 0.867 0.445
4 0.711 0.292
5 0.412 0.329
6 0.593 0.193
7 0.096 0.227
8 0.670 0.104
9 0.814 0.064
10 0.109 0.083
11 0.666 0.216
12 0.024 0.399
13 0.560 0.276
14 0.322 0.374
15 0.250 0.009
16 0.210 0.343
17 0.277 0.128
18 0.957 0.136
19 0.933 0.496
20 0.151 0.175
21 0.461 0.409
22 0.385 0.470
23 0.785 0.032
24 0.511 0.091
25 0.488 0.458
26 0.619 0.307
27 0.355 0.361
28 0.865 0.425
29 0.976 0.163
30 0.765 0.249

Table 7   XGB model
hyperparameters tuned with
the Optuna Python framework.
The best solution of 100 trials
is shown. The first column
denotes the names of the tuned
hyperparameters, while the
second column shows the values
obtained for the AID problem,
and the third column shows the
parameter values for the SFR
problem

Hyperparameter AID SFR

max_depth 4 5
n_estimators 500 500
learning_rate 0.07 0.06
colsample_bytree 0.94 0.19
subsample 0.54 0.36
gamma 0.42 1.33
reg_alpha 2.44 0.51
reg_lambda 4.16 0.20

Table 8   LGB model hyperparameters tuned with the Optuna Python
framework (the best solution out of 100 for each problem). The first
column denotes the names of the tuned hyperparameters, the second
column shows the values obtained for the AID problem, and the third
column shows the parameter values for the SFR problem

Hyperparameter AID SFR

num_iterations 2500 2500
learning_rate 0.0187 0.0190
lambda_l1 1.78 0.40
lambda_l2 7.43 6.71
num_leaves 41 68
min_child_samples 37 99
feature_fraction 0.77 0.56
bagging_fraction 0.45 0.52

4103Engineering with Computers (2024) 40:4081–4108	

executed using OpenFOAM 9, with full details provided in
Sect. B.1.

Scalar field domain probe locations

In this section, the scalar measurement locations within the
domain Ω , used as post-processing points for each Open-
FOAM simulation, are presented. For the achievement of
the target performance (scalar distribution) in both BC sce-
narios and for the training of ML models, the probe locations
depicted in Fig. 18 and listed in Table 6 are to be used.

Scalar boundary condition generator

Alg. 3 illustrates the method used to generate the BC for
SFR. The method begins with the values LFn and sΩtop

 , which
represent the number of LF discretization points at the top
of the boundary and maximum scalar value that can be set
at the top of the domain Ω , respectively. The vector BCinit
represents the initial BC. It consists of points that are equally
spaced and sized LFn . These points are derived from linear
interpolation of values ranging from 1 to LFn . A value R is
randomly chosen from a uniform distribution, representing
one of three states that signify different BC variations: lin-
ear, parabolic, or sinusoidal. Gnoise is a random vector, gener-
ated from a normal distribution, with a length of LFn . Its
standard deviation, � , is drawn from a uniform distribution.
This vector is added to the transformed BC to enhance

model robustness, simulate real-world scenarios, and ensure
better generalization in imperfect or noisy environments.

For each run, one of the three BC types is chosen and
BCinit is transformed using the corresponding equation (lin-
ear, parabolic, or sinusoidal) incorporating randomly gener-
ated values rand1 , rand2 , and rand3 from a uniform distribu-
tion. If the resultant BC with added noise Gnoise has values
exceeding smax , they are substituted with a random value
between 0 and smax . To further diversify the generated BCs,
if a random value between 0 and 1 is less than 0.5, the BC
is reversed.

Algorithm 3   The algorithm for generating the scalar
reconstruction problem BC for the purpose of ML model
training dataset creation.

Table 9   MLP hyperparameters tuned with the Optuna Python frame-
work (the best solution out of 100 trials is shown for each problem).
The first column denotes the names of the tuned hyperparameters, the
second column shows the values obtained for the AID problem, and
the third column shows the parameter values for the SFR problem

Hyperparameter AID SFR

Layers 3 2
Neurons per layer 92,116,34 388,322
Dropout per layer 0.1,0.1,0.0 0.1,0.0
Activation function LeakyReLU ReLU
Optimizer Adam Adam
Epochs 100 500
Batch size 128 64
Learning rate 0.00083 0.00060

4104	 Engineering with Computers (2024) 40:4081–4108

ML algorithms hyperparameters

In this section, the optimized hyperparameters of all inves-
tigated ML algorithms are presented. The best perform-
ing algorithm was further used as a part of the enhanced
inverse design framework. All three ML algorithms were
optimized using the Python framework for hyperparameter
optimization Optuna 3.1.0 [2]. The number of trials for all
three algorithms was 100, and Optuna-based hyperparameter

optimization goal was to minimize the average RMSE of
a shuffled K-Fold ( k = 3 ) cross-validation procedure. The
ML algorithms were separately tuned for both investigated
problems/datasets (described in Sect. A.2 and Sect. B.2), and
15000 LF data instances were used for optimization. The
optimal set of hyperparameters was independently selected

Fig. 19   Boundary refinement technique for different datasets sizes
used to train the XGB model versus the average �y for (a) NACA​2410
airfoil and (b) RAE2822 airfoil. The number of solutions N (denoted
as runs) was varied to analyze how it affects the average �y . The
markers are slightly offset for each c value to improve visibility

Fig. 20   Boundary refinement technique for different datasets sizes
used to train the MLP model versus the average scalar value of the
BC s for the (a) Sinusoidal BC and (b) Linear BC. The number of
solutions N (denoted as runs) was varied to observe its influence on
the average s value. The markers are slightly offset for each c value to
improve visibility

4105Engineering with Computers (2024) 40:4081–4108	

for each of the three investigated algorithms, based on the
results from 100 trials conducted using Optuna.

The XGB algorithm hyperparameters used are presented
in Table 7. The max_depth parameter controls the depth

of each tree, the n_estimators defines the total number of
gradient boosted trees in the model, learning_rate scales
the contribution of each tree when it is added to the ensem-
ble of trees, colsample_bytree and subsample parameters

Fig. 21   Results from the
ML-enhanced framework for
NACA2410 include the fol-
lowing boundary refinement
configurations: (a) PSOML−EN , �
= 1.1 (b) PSOML−EN , � = 1.2 (c)
DEML−EN , � = 1.1 (d) DEML−EN ,
� = 1.2. The markers denote the
different dataset sizes used to
train the ML model, while the
coloring of the markers repre-
sents the remaining simulation
budget (RB) values. A higher
RB signifies greater savings in
the computational budget, while
low fitness values imply a better
approximation of the target
performance. The markers are
slightly offset for each c value to
improve visibility

Fig. 22   Results from the
ML-enhanced framework for
RAE2822 include the following
boundary refinement configura-
tions: (a) PSOML−EN , � = 1.1
(b) PSOML−EN , � = 1.2 (c)
DEML−EN , � = 1.1 (d) DEML−EN ,
� = 1.2. The markers denote the
different dataset sizes used to
train the ML model, while the
coloring of the markers repre-
sents the remaining simulation
budget (RB) values. A higher
RB signifies greater savings in
the computational budget, while
low fitness values imply a better
approximation of the target
performance. The markers are
slightly offset for each c value to
improve visibility

4106	 Engineering with Computers (2024) 40:4081–4108

specify the fraction of the randomly sampled features and
data instances used to construct each tree, respectively, and
gamma, reg_alpha and reg_lambda are regularization
parameters. The Python module xgboost 1.7.4 was used.

The LGB model hyperparameters are presented in
Table 8. The num_iterations parameter controls the num-
ber of boosting iterations performed. Each iteration builds
a new tree that boosts the performance of the model. The
learning_rate scales the contribution of each tree when it
is added to the model (similarly to XGB), lambda_l1 and
lambda_l2 are L1 and L2 regularization parameters added
in order to reduce overfitting. The parameter num_leaves
controls the complexity of the model, and min_child_sam-
ples refers to the minimum number of data instances a leaf
node must have after a split, as a form of regularization.
The feature_fraction parameter defines the fraction of fea-
tures used at each training iteration, while bagging_fraction
determines the number of data instances used at each itera-
tion. Both parameters are also used as a form of regulariza-
tion. The Python module LightGBM 3.3.5 was used.

The hyperparameters for the MLP are detailed in Table 9.
The LeakyReLU activation function was applied to all hid-
den layers in the AID problem, whereas the SFR used
ReLU. Monte Carlo dropout layers were integrated into the
architecture to reduce overfitting. During training for both
problems, 30% of the data was reserved for validation. An
early stopping criterion with a patience value of 20 was set
based on the validation loss to further combat overfitting.
The MLP was implemented in Tensorflow 2.11.0 [1].

Boundary refinement convergence

Figure 19 illustrates the impact of both the dataset size used
for training the XGB model and the number of solutions,
N, derived from the boundary refinement technique on the
formation of the new lower and upper boundaries, lbR and
ubR , respectively. Since these new boundaries can be inter-
preted as an airfoil shape, the effect of the dataset size and
the N value is articulated through the average and stand-
ard deviation of the �y values (the chord length-normalized
y-coordinates of the airfoil defined by lbR and ubR).

For 10, 50, and 150 runs (or solutions), the average �y and
its standard deviation bandwidth exhibit only minor varia-
tions as the dataset size increases. This trend is discernible
for both NACA​2410 and RAE2822 in Figs. 19a and 19b.
This implies that even a boundary refinement formulated
by an XGB model trained with just 500 data instances and
merely 10 repeated runs could be beneficial, as the bounda-
ries remain relatively consistent despite increases in both
parameters.

Figure 20 demonstrates the impact of the number of solu-
tions, N, and the dataset size on the average scalar value s

of the BC. Mirroring observations from the AID boundary
refinement, neither the dataset size nor the number of solu-
tions exert a significant effect on s.

AID results for � = 1.1 and � = 1.2

The results of the ML-enhanced inverse design framework
utilizing the XGB model and the boundary refinement tech-
nique ( � = 1.1 and � = 1.2) applied to the AID problem for
the NACA​2410 and RAE2822 airfoils are shown in Figs. 21
and 22.

Acknowledgements  This work was supported by the Laboratory
Directed Research and Development Program of Lawrence Berke-
ley National Laboratory under U.S. Department of Energy Contract
No. DE-AC02-05CH11231. Müller’s time was supported under U.S.
Department of Energy Contract No. DE-AC36-08GO28308. Funding
for math developments was provided by U.S. Department of Energy
Office of Science, Office of Advanced Scientific Computing Research,
Scientific Discovery through Advanced Computing (SciDAC) program
through the FASTMath Institute. Funding for analysis of applications
was provided by the Laboratory Directed Research and Development
Program of the National Renewable Energy Laboratory.

Data availability  All data required to reproduce the study is available
in an online public repository: https://​github.​com/​lukag​rbcic/​MLInv​
erseD​esign​Frame​workD​ata

Declarations 

Conflict of interests  The authors have no relevant financial or non-
financial interests to disclose.

Open Access  This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and repro-
duction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material.
You do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://crea-
tivecommons.org/licenses/by-nc-nd/4.0/.

References

	 1.	 Abadi M, Agarwal A, Barham P, et al (2016) Tensorflow: Large-
scale machine learning on heterogeneous distributed systems.
arXiv preprint arXiv:​1603.​04467, https://​doi.​org/​10.​48550/​arXiv.​
1603.​04467

	 2.	 Akiba T, Sano S, Yanase T, et al (2019) Optuna: A next-generation
hyperparameter optimization framework. In: Proceedings of the

https://github.com/lukagrbcic/MLInverseDesignFrameworkData
https://github.com/lukagrbcic/MLInverseDesignFrameworkData
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://arxiv.org/abs/1603.04467
https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/10.48550/arXiv.1603.04467

4107Engineering with Computers (2024) 40:4081–4108	

25th ACM SIGKDD international conference on knowledge dis-
covery & data mining, pp 2623–2631, https://​doi.​org/​10.​1145/​
32925​00.​33307​01

	 3.	 Aster RC, Borchers B, Thurber CH (2018) Parameter estimation
and inverse problems. Elsevier, Amsterdam

	 4.	 Bartoli N, Lefebvre T, Dubreuil S et al (2019) Adaptive modeling
strategy for constrained global optimization with application to
aerodynamic wing design. Aerosp Sci Technol 90:85–102. https://​
doi.​org/​10.​1016/j.​ast.​2019.​03.​041

	 5.	 Beran PS, Bryson D, Thelen AS, et al (2020) Comparison of
multi-fidelity approaches for military vehicle design. In: AIAA
Aviation 2020 Forum, p 3158

	 6.	 Brunton SL, Noack BR, Koumoutsakos P (2020) Machine learn-
ing for fluid mechanics. Annu Rev Fluid Mech 52:477–508.
https://​doi.​org/​10.​1146/​annur​ev-​fluid-​010719-​060214

	 7.	 Chakraborty S, Chatterjee T, Chowdhury R et al (2017) A surro-
gate based multi-fidelity approach for robust design optimization.
Appl Math Model 47:726–744

	 8.	 Chen H, Zhou H (2018) Identification of boundary conditions for
non-fourier heat conduction problems by differential transforma-
tion drbem and improved cuckoo search algorithm. Numer Heat
Transfer Part B Fundam 74(6):818–839. https://​doi.​org/​10.​1080/​
10407​790.​2019.​15918​59

	 9.	 Chen Hl YuB, Hl Zhou et al (2018) Identification of transient
boundary conditions with improved cuckoo search algorithm and
polynomial approximation. Eng Anal Bound Elem 95:124–141.
https://​doi.​org/​10.​1016/j.​engan​abound.​2018.​07.​006

	10.	 Chen Q, Wang J, Pope P et al (2022) Inverse design of two-dimen-
sional airfoils using conditional generative models and surrogate
log-likelihoods. J Mech Des 144(2):021712

	11.	 Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting
system. In: Proceedings of the 22nd acm sigkdd international con-
ference on knowledge discovery and data mining, pp 785–794,
https://​doi.​org/​10.​1145/​29396​72.​29397​85

	12.	 Chen W, Chiu K, Fuge MD (2020) Airfoil design parameterization
and optimization using bézier generative adversarial networks.
AIAA J 58(11):4723–4735

	13.	 Demange J, Savill AM, Kipouros T (2016) Multifidelity optimi-
zation for high-lift airfoils. In: 54th AIAA Aerospace Sciences
Meeting, p 0557

	14.	 Deng F, Yi J (2023) Fast inverse design of transonic airfoils by
combining deep learning and efficient global optimization. Aero-
space 10(2):125. https://​doi.​org/​10.​3390/​aeros​pace1​00201​25

	15.	 Drela M (1989) Xfoil: An analysis and design system for low
reynolds number airfoils. In: Low Reynolds Number Aerody-
namics: Proceedings of the Conference Notre Dame, Indiana,
USA, 5–7 June 1989, Springer, pp 1–12

	16.	 Du X, Ren J, Leifsson L (2019) Aerodynamic inverse design
using multifidelity models and manifold mapping. Aerosp Sci
Technol 85:371–385. https://​doi.​org/​10.​1016/j.​ast.​2018.​12.​008

	17.	 Du X, He P, Martins JR (2021) Rapid airfoil design optimiza-
tion via neural networks-based parameterization and surrogate
modeling. Aerosp Sci Technol 113:106701. https://​doi.​org/​10.​
1016/j.​ast.​2021.​106701

	18.	 Eldred M, Dunlavy D (2006) Formulations for surrogate-based
optimization with data fit, multifidelity, and reduced-order
models. In: 11th AIAA/ISSMO multidisciplinary analysis and
optimization conference, p 7117, https://​doi.​org/​10.​2514/6.​
2006-​7117

	19.	 Fernández-Godino MG (2016) Review of multi-fidelity models.
arXiv preprint arXiv:​1609.​07196

	20.	 Fischer CC, Grandhi RV (2016) Multi-fidelity design optimiza-
tion via low-fidelity correction technique. In: 17th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, p 4293

	21.	 Forrester A, Sobester A, Keane A (2008) Engineering design via
surrogate modelling: a practical guide. John Wiley & Sons, New
York. https://​doi.​org/​10.​1002/​97804​70770​801

	22.	 Fusi F, Guardone A, Quaranta G et al (2015) Multifidelity physics-
based method for robust optimization applied to a hovering rotor
airfoil. AIAA J 53(11):3448–3465

	23.	 Gordillo G, Morales-Hernández M, García-Navarro P (2020) A
gradient-descent adjoint method for the reconstruction of bound-
ary conditions in a river flow nitrification model. Environ Sci
Process Impacts 22(2):381–397. https://​doi.​org/​10.​1039/​C9EM0​
0500E

	24.	 Guo Q, Hang J, Wang S et al (2021) Design optimization of vari-
able stiffness composites by using multi-fidelity surrogate models.
Struct Multidiscip Optim 63:439–461

	25.	 Habibi M, Wang J, Fuge M (2023) When is it actually worth
learning inverse design? In: International Design Engineering
Technical Conferences and Computers and Information in Engi-
neering Conference, American Society of Mechanical Engineers,
p V03AT03A025

	26.	 Han ZH, Görtz S, Zimmermann R (2013) Improving variable-
fidelity surrogate modeling via gradient-enhanced kriging
and a generalized hybrid bridge function. Aerosp Sci Technol
25(1):177–189. https://​doi.​org/​10.​1016/j.​ast.​2012.​01.​006

	27.	 Han ZH, Chen J, Zhang KS et al (2018) Aerodynamic shape
optimization of natural-laminar-flow wing using surrogate-based
approach. AIAA J 56(7):2579–2593. https://​doi.​org/​10.​2514/1.​
J0566​61

	28.	 Hanna S, Russell A, Wilkinson J et al (2005) Monte carlo estima-
tion of uncertainties in beis3 emission outputs and their effects on
uncertainties in chemical transport model predictions. J Geophys
Res Atmos 110:1. https://​doi.​org/​10.​1029/​2004J​D0049​86

	29.	 Hensman J, Fusi N, Lawrence ND (2013) Gaussian processes for
big data. arXiv preprint arXiv:​1309.​6835

	30.	 Ivic S, Druzeta S, Grbcic L (2023) Indago 0.4.5. PyPI, https://​
pypi.​org/​proje​ct/​Indago/, accessed: 1 May 2023

	31.	 Jasak H, Jemcov A, Tukovic Z, et al (2007) Openfoam: A c++
library for complex physics simulations. In: International work-
shop on coupled methods in numerical dynamics, pp 1–20

	32.	 Jo Y, Yi S, Choi S et al (2016) Adaptive variable-fidelity
analysis and design using dynamic fidelity indicators. AIAA J
54(11):3564–3579

	33.	 Karr CL, Yakushin I, Nicolosi K (2000) Solving inverse initial-
value, boundary-value problems via genetic algorithm. Eng
Appl Artif Intell 13(6):625–633. https://​doi.​org/​10.​1016/​S0952-​
1976(00)​00025-7

	34.	 Ke G, Meng Q, Finley T et al (2017) Lightgbm: a highly efficient
gradient boosting decision tree. Adv Neural Inf Process Syst 30:5

	35.	 Kennedy J, Eberhart R (1995) Particle swarm optimization. In:
Proceedings of ICNN’95-international conference on neural net-
works, IEEE, pp 1942–1948, https://​doi.​org/​10.​1109/​ICNN.​1995.​
488968

	36.	 Koziel S, Leifsson L (2013) Surrogate-based aerodynamic shape
optimization by variable-resolution models. AIAA J 51(1):94–
106. https://​doi.​org/​10.​2514/1.​J0515​83

	37.	 Kudyshev ZA, Kildishev AV, Shalaev VM et al (2020) Machine
learning-assisted global optimization of photonic devices. Nano-
photonics 10(1):371–383

	38.	 Lederer A, Conejo AJO, Maier K, et al (2020) Real-time regres-
sion with dividing local gaussian processes. arXiv preprint arXiv:​
2006.​09446

	39.	 Lei R, Bai J, Wang H et al (2021) Deep learning based multi-
stage method for inverse design of supercritical airfoil. Aerosp Sci
Technol 119:107101. https://​doi.​org/​10.​1016/j.​ast.​2021.​107101

	40.	 Leifsson L, Koziel S (2010) Multi-fidelity design optimization
of transonic airfoils using physics-based surrogate modeling and
shape-preserving response prediction. J Comput Sci 1(2):98–106

https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1016/j.ast.2019.03.041
https://doi.org/10.1016/j.ast.2019.03.041
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.1080/10407790.2019.1591859
https://doi.org/10.1080/10407790.2019.1591859
https://doi.org/10.1016/j.enganabound.2018.07.006
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.3390/aerospace10020125
https://doi.org/10.1016/j.ast.2018.12.008
https://doi.org/10.1016/j.ast.2021.106701
https://doi.org/10.1016/j.ast.2021.106701
https://doi.org/10.2514/6.2006-7117
https://doi.org/10.2514/6.2006-7117
http://arxiv.org/abs/1609.07196
https://doi.org/10.1002/9780470770801
https://doi.org/10.1039/C9EM00500E
https://doi.org/10.1039/C9EM00500E
https://doi.org/10.1016/j.ast.2012.01.006
https://doi.org/10.2514/1.J056661
https://doi.org/10.2514/1.J056661
https://doi.org/10.1029/2004JD004986
http://arxiv.org/abs/1309.6835
https://pypi.org/project/Indago/
https://pypi.org/project/Indago/
https://doi.org/10.1016/S0952-1976(00)00025-7
https://doi.org/10.1016/S0952-1976(00)00025-7
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.2514/1.J051583
http://arxiv.org/abs/2006.09446
http://arxiv.org/abs/2006.09446
https://doi.org/10.1016/j.ast.2021.107101

4108	 Engineering with Computers (2024) 40:4081–4108

	41.	 Leifsson L, Koziel S, Ogurtsov S (2011) Inverse design of tran-
sonic airfoils using variable-resolution modeling and pressure
distribution alignment. Proc Comput Sci 4:1234–1243. https://​
doi.​org/​10.​1016/j.​procs.​2011.​04.​133

	42.	 Li J, Du X, Martins JR (2022) Machine learning in aerodynamic
shape optimization. Prog Aerosp Sci 134:100849. https://​doi.​org/​
10.​1016/j.​paero​sci.​2022.​100849

	43.	 Li J, He S, Martins JR et al (2023) Efficient data-driven off-design
constraint modeling for practical aerodynamic shape optimization.
AIAA J 2:1–13. https://​doi.​org/​10.​2514/1.​J0626​29

	44.	 Marzouk Y, Xiu D (2009) A stochastic collocation approach to
bayesian inference in inverse problems. Commun Comput Phys
6(4):826–847

	45.	 Mehmani A, Chowdhury S, Messac A (2014) Managing variable
fidelity models in population-based optimization using adaptive
model switching. In: 15th AIAA/ISSMO Multidisciplinary Analy-
sis and Optimization Conference, p 2436

	46.	 Mohasseb S, Moradi M, Sokhansefat T et al (2017) A novel
approach to solve inverse heat conduction problems: coupling
scaled boundary finite element method to a hybrid optimization
algorithm. Eng Anal Boundary Elem 84:206–212. https://​doi.​org/​
10.​1016/j.​engan​abound.​2017.​08.​018

	47.	 Morgado J, Vizinho R, Silvestre M et al (2016) Xfoil vs cfd per-
formance predictions for high lift low reynolds number airfoils.
Aerosp Sci Technol 52:207–214. https://​doi.​org/​10.​1016/j.​ast.​
2016.​02.​031

	48.	 Nielsen MA (2015) Neural networks and deep learning, vol 25.
Determination Press, San Francisco

	49.	 Peherstorfer B, Willcox K, Gunzburger M (2018) Survey of multi-
fidelity methods in uncertainty propagation, inference, and optimi-
zation. SIAM Rev 60(3):550–591. https://​doi.​org/​10.​1137/​16M10​
82469

	50.	 Pehlivanoglu YV (2019) Efficient accelerators for pso in an
inverse design of multi-element airfoils. Aerosp Sci Technol
91:110–121. https://​doi.​org/​10.​1016/j.​ast.​2019.​05.​028

	51.	 Poloczek M, Wang J, Frazier PI (2016) Warm starting bayesian
optimization. In: 2016 Winter simulation conference (WSC),
IEEE, pp 770–781

	52.	 Rajnarayan D, Ning A, Mehr JA (2018) Universal airfoil para-
metrization using b-splines. In: 2018 Applied Aerodynamics
Conference, p 3949, https://​doi.​org/​10.​2514/6.​2018-​3949

	53.	 Ren T, Li H, Modest MF et al (2021) Efficient two-dimensional
scalar fields reconstruction of laminar flames from infrared hyper-
spectral measurements with a machine learning approach. J Quant
Spectrosc Radiat Transfer 271:107724. https://​doi.​org/​10.​1016/j.​
jqsrt.​2021.​107724

	54.	 Robinson T, Willcox K, Eldred M, et al (2006) Multifidelity opti-
mization for variable-complexity design. In: 11th AIAA/ISSMO
multidisciplinary analysis and optimization conference, p 7114

	55.	 Sarkar S, Mondal S, Joly M et al (2019) Multifidelity and mul-
tiscale bayesian framework for high-dimensional engineering
design and calibration. J Mech Des 141(12):121001. https://​doi.​
org/​10.​1115/1.​40445​98

	56.	 Sharma P, Gupta B, Pandey M et al (2021) Recent advancements
in optimization methods for wind turbine airfoil design: a review.
Mater Today Proc 47:6556–6563. https://​doi.​org/​10.​1016/j.​matpr.​
2021.​02.​231

	57.	 Słota D (2008) Solving the inverse stefan design problem using
genetic algorithms. Inverse Probl Sci Eng 16(7):829–846. https://​
doi.​org/​10.​1080/​17415​97080​19251​70

	58.	 Storn R, Price K (1997) Differential evolution-a simple and effi-
cient heuristic for global optimization over continuous spaces. J
Global Optim 11:341–359. https://​doi.​org/​10.​1023/A:​10082​02821​
328

	59.	 Tandis E, Assareh E (2017) Inverse design of airfoils via an intel-
ligent hybrid optimization technique. Eng Comput 33(3):361–374.
https://​doi.​org/​10.​1007/​s00366-​016-​0478-6

	60.	 Tarantola A (2005) Inverse problem theory and methods for model
parameter estimation. SIAM 10(1137/1):9780898717921

	61.	 Virtanen P, Gommers R, Oliphant TE et al (2020) Scipy 1.0: fun-
damental algorithms for scientific computing in python. Nat Meth-
ods 17(3):261–272. https://​doi.​org/​10.​1038/​s41592-​019-​0686-2

	62.	 de Vries D (2023) xfoil-python 1.1.1. PyPI, https://​pypi.​org/​proje​
ct/​xfoil/, accessed: 6 June 2023

	63.	 Wang Z, Wang G, Guo X et al (2022) Reconstruction of high-res-
olution sea surface salinity over 2003–2020 in the south china sea
using the machine learning algorithm lightgbm model. Remote
Sens 14(23):6147. https://​doi.​org/​10.​3390/​rs142​36147

	64.	 Winter J, Abaidi R, Kaiser J et al (2023) Multi-fidelity bayesian
optimization to solve the inverse stefan problem. Comput Methods
Appl Mech Eng 410:115946. https://​doi.​org/​10.​1016/j.​cma.​2023.​
115946

	65.	 Xu Y, Choi J, Dass S et al (2016) Bayesian prediction and adaptive
sampling algorithms for mobile sensor networks: Online environ-
mental field reconstruction in space and time. Springer, Berlin.
https://​doi.​org/​10.​1007/​978-3-​319-​21921-9

	66.	 Zhu Y, Ju Y, Zhang C (2020) Proper orthogonal decomposition
assisted inverse design optimisation method for the compressor
cascade airfoil. Aerosp Sci Technol 105:105955. https://​doi.​org/​
10.​1016/j.​ast.​2020.​105955

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.procs.2011.04.133
https://doi.org/10.1016/j.procs.2011.04.133
https://doi.org/10.1016/j.paerosci.2022.100849
https://doi.org/10.1016/j.paerosci.2022.100849
https://doi.org/10.2514/1.J062629
https://doi.org/10.1016/j.enganabound.2017.08.018
https://doi.org/10.1016/j.enganabound.2017.08.018
https://doi.org/10.1016/j.ast.2016.02.031
https://doi.org/10.1016/j.ast.2016.02.031
https://doi.org/10.1137/16M1082469
https://doi.org/10.1137/16M1082469
https://doi.org/10.1016/j.ast.2019.05.028
https://doi.org/10.2514/6.2018-3949
https://doi.org/10.1016/j.jqsrt.2021.107724
https://doi.org/10.1016/j.jqsrt.2021.107724
https://doi.org/10.1115/1.4044598
https://doi.org/10.1115/1.4044598
https://doi.org/10.1016/j.matpr.2021.02.231
https://doi.org/10.1016/j.matpr.2021.02.231
https://doi.org/10.1080/17415970801925170
https://doi.org/10.1080/17415970801925170
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1007/s00366-016-0478-6
https://doi.org/10.1038/s41592-019-0686-2
https://pypi.org/project/xfoil/
https://pypi.org/project/xfoil/
https://doi.org/10.3390/rs14236147
https://doi.org/10.1016/j.cma.2023.115946
https://doi.org/10.1016/j.cma.2023.115946
https://doi.org/10.1007/978-3-319-21921-9
https://doi.org/10.1016/j.ast.2020.105955
https://doi.org/10.1016/j.ast.2020.105955

	Abstract
	1 Introduction
	2 ML-enhanced inverse design framework
	2.1 Inverse design optimization and objective function definition
	2.2 ML-enhanced optimization
	2.3 ML-generated boundary refinement
	2.4 ML model
	2.5 Metaheuristic optimization algorithms

	3 Airfoil inverse design
	3.1 AID problem description
	3.2 AID boundary refinement

	4 Scalar field reconstruction
	4.1 SFR problem description
	4.2 SFR boundary refinement

	5 Results and discussion
	5.1 ML models results
	5.2 Boundary refinement with the ML model
	5.3 ML-enhanced inverse design framework results
	5.4 Advantages and limitations of the ML-enhanced framework

	6 Conclusion
	AID numerical experiments and dataset
	SFR numerical experiments and dataset
	ML algorithms hyperparameters
	Boundary refinement convergence
	AID results for = 1.1 and = 1.2
	Acknowledgements
	References

