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Abstract
This paper introduces a methodology designed to augment the inverse design optimization process in scenarios constrained 
by limited compute, through the strategic synergy of multi-fidelity evaluations, machine learning models, and optimization 
algorithms. The proposed methodology is analyzed on two distinct engineering inverse design problems: airfoil inverse 
design and the scalar field reconstruction problem. It leverages a machine learning model trained with low-fidelity simula-
tion data, in each optimization cycle, thereby proficiently predicting a target variable and discerning whether a high-fidelity 
simulation is necessitated, which notably conserves computational resources. Additionally, the machine learning model is 
strategically deployed prior to optimization to compress the design space boundaries, thereby further accelerating conver-
gence toward the optimal solution. The methodology has been employed to enhance two optimization algorithms, namely 
Differential Evolution and Particle Swarm Optimization. Comparative analyses illustrate performance improvements across 
both algorithms. Notably, this method is adaptable across any inverse design application, facilitating a synergy between 
a representative low-fidelity ML model, and high-fidelity simulation, and can be seamlessly applied across any variety of 
population-based optimization algorithms.

Keywords  Multi-fidelity optimization · Machine learning · Inverse design · Particle swarm optimization · Differential 
evolution

1  Introduction

Inverse design problems represent a frontier in the field of 
engineering and science, where the objective is to discover 
the necessary system inputs to achieve a desired known out-
put. Rather than following the traditional forward design 
process–which starts with given parameters and attempts to 
predict the outcome–inverse design turns the procedure on 

its head, beginning with the desired outcome and working 
backward to determine the optimal parameters to realize it. 
Particularly in scenarios with computationally expensive 
or hierarchical simulations, multi-fidelity evaluations play 
a pivotal role, offering a trade-off between accuracy and 
computational cost.

Multi-fidelity (MF) methods, that range from faster and 
approximate or low-fidelity (LF) objective function evalua-
tions to detailed–high fidelity (HF), computationally inten-
sive ones have been explored in-depth for optimization 
purposes [5, 19, 21, 49]. In the context of inverse design 
optimization, which is the focus of this work, coupled with 
a multi-fidelity approach, an additional layer of complexity 
is introduced when the target output is a distribution. Bayes-
ian and surrogate-based optimization methods have provided 
great insights in this specific domain, especially when the 
inverse design problem is rooted in uncertainty or when 
prior knowledge is available [18, 44, 55]. However, due to 
the curse of dimensionality, these optimization approaches 
can encounter computational challenges.
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Variable-fidelity methods have further enhanced the effi-
ciency of inverse design optimization by adapting the fidelity 
level dynamically based on the current stage of the optimiza-
tion process [19]. This ensures a balance between computa-
tional efficiency and solution accuracy, leading to faster con-
vergence rates and reduced computational costs. The success 
of variable-fidelity methods is evident in their widespread 
application across various engineering disciplines [5, 22, 
24]. These methods usually either employ LF models during 
the initial exploratory phases and gradually transition to HF 
models as the solution converges or they have an adaptive 
mechanism for fidelity selection. These mechanics include 
monitoring convergence conditions [36, 40], correction tech-
niques [13, 20], space mapping [54], model error monitoring 
[32, 45], etc. Furthermore, the dominant surrogate model 
algorithms used in variable-fidelity optimization approaches 
are Kriging (or Gaussian Process Regression), Co-Kriging, 
Polynomial Chaos Expansion (PCE), and Moving Least 
Squares [19]. Additionally, Deep Neural Networks (DNN) 
are commonly used for multi-fidelity inverse design as a 
surrogate model for optimization purposes ([14, 17]), but 
not as a part of the variable-fidelity optimization mechanism.

LF warm-start optimization techniques have also dem-
onstrated their efficacy in improving the convergence of 
optimization algorithms [25, 51]. By initializing the opti-
mization process with solutions generated with LF machine 
learning (ML) models, warm starting leverages prior knowl-
edge to reduce the number of evaluations required to reach 
optimal solutions. This approach is particularly useful in 
scenarios where optimization problems or targets share simi-
larities, such as in iterative design processes or when dealing 
with parametric variations [10, 12, 37].

The essence of MF simulations is to harmoniously 
integrate models of varying accuracy and computational 
expense. By leveraging the strengths of both HF simula-
tions and LF ML models, it is possible to achieve accurate 
solutions while conserving computational resources. This is 
especially pivotal in scenarios where computational budg-
ets are limited, but the accuracy cannot be compromised. 
Kriging, Co-Kriging, and PCE have the major benefit of 
having reliable uncertainty estimates, however, they do 
not scale well with an increase of data without an increase 
in computational complexity ([29, 38]), and they require 
retraining when additional data is available. Furthermore, 
most methods switch between LF and HF simulations, how-
ever, the execution time of the LF simulation could also be 
non-trivial.

Hence, in this paper, in order to tackle the aforementioned 
issues, an innovative inverse design framework is presented 
and investigated. The framework integrates metaheuristic 
algorithms with a pre-trained LF ML model used for design 
approximation and decision making in order to discern 
whether there is a need for a HF simulation. This decision 

is achieved by comparing the discrepancy between its pre-
dicted approximation and the inverse design target value. 
This innovation stands out from prior research by facilitating 
the predictive power of the ML model regarding the neces-
sity for HF simulations, leveraging LF data. Additionally, 
the other, equally important task of the LF ML model is its 
capability of design space boundary refinement before the 
optimization process starts. This can be considered a form 
of optimization process warm starting, and the purpose is to 
enhance the rate of convergence of the inverse design opti-
mization algorithms. Two different strategies for boundary 
refinement are investigated and separately applied to two dif-
ferent problems. Finally, the ultimate benefit of this frame-
work is that the LF ML model can enhance the optimization 
for any target design within its applicable domain, thereby 
substantially extending its reach and impact. This is possible 
since the ML models that are investigated are DNNs, and 
Gradient Boosting (GB) algorithms. Both of these algorithm 
types can be continually trained (provided there is not a large 
data distribution shift), and scale well with additional data.

The metaheuristic algorithms used within the inverse 
design framework are: Particle Swarm Optimization (PSO) 
and Differential Evolution (DE). Even though any kind 
of optimization algorithm could be incorporated into the 
framework, PSO and DE were chosen since they generally 
require a high number of evaluations, and they’ve been 
previously used for similar tasks [7, 50]. To the best of 
the authors’ knowledge, no approaches in the literature 
combine metaheuristic algorithms with ML techniques for 
both boundary refinement techniques and MF optimization 
within a single framework.

The importance of this research is emphasized by its 
application to airfoil inverse design (AID) and scalar 
field reconstruction (SFR) challenges. The AID problem 
is chosen since it occupies a pivotal role in engineering, 
particularly in the realm of aeronautics [4, 27] and wind 
energy generation [56], and it has been extensively studied 
in the field of multi-fidelity inverse design optimization 
[16, 27, 36, 39, 41, 50, 59, 66]. The SFR problem emerges 
as an inverse design challenge across various scientific 
and engineering domains, representing a specific variant 
of the inverse boundary value problem [60]. This problem 
centers on deducing the distribution of a scalar field from 
sparse measurements [3, 23, 28, 46, 53, 63–65]. Solving 
the SFR problem utilizing optimization algorithms has 
been of research interest [8, 9, 33, 57].

Finally, the goals of this research are to: (i) show that the 
proposed framework can accelerate the rate of convergence 
of both optimization algorithms, and on both inverse design 
tasks, (ii) show that the LF ML models can be re-used when 
the inverse design target is changed, without retraining, and 
(iii) quantify the amount of data needed for the LF ML mod-
els to be of use through detailed analysis.
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The manuscript is structured to offer a thorough under-
standing of the research. Following the introduction, Sect. 2 
delves into the ML-enhanced inverse design framework. 
Sections 3 and 4 provide an in-depth examination of the 
AID and the SFR problems, respectively, as well as their 
boundary refinement strategies. Finally, Sect. 5 presents a 
comprehensive discussion of the results of the ML model, 
techniques for boundary refinement, and a meticulous analy-
sis of the ML-enhanced framework, contrasting it with tra-
ditional optimization algorithms.

2 � ML‑enhanced inverse design framework

In this section we introduce our ML-enhanced inverse design 
framework. The methodology consists of two primary 
stages: training an ML model and applying it to refine the 
boundaries of optimization problem thus enabling accelera-
tion and the rate of convergence improvement, and finally, 
executing the ML-enhanced optimization process to find the 
design corresponding to the target performance. The frame-
work uniquely combines LF simulation data for ML model 
training with HF simulations for optimization, creating a 
versatile MF system. Once trained, the ML model can be 
utilized to augment the inverse design for a given problem. 
This, however, is applicable to the solutions that lie within 
the boundaries of the dataset used for training the model. 
The general workflow of the inverse design framework and 
the components is displayed in Fig. 1.

2.1 � Inverse design optimization and objective 
function definition

The inverse design problem can be mathematically articu-
lated as

here, x ∈ ℝ
m represents the design parameters and y ∈ ℝ

q 
is the known target value. The objective is to ascertain the 
design parameters x that generate y when evaluated with 
the inverse of the objective function f ∶ ℝ

m
→ ℝ

q . This is 
in stark contrast to forward problems, where y is typically 
unknown. Inverse design problems tend to be ill-posed, com-
monly encountering the problem of multiple viable solu-
tions, which complicates the process of identifying a unique 
and optimal solution.

In Eq. (2) the inverse design optimization problem is 
defined as

here, � ∶ ℝ
q ×ℝ

q
→ ℝ is the error-based objective function 

that returns a scalar value in ℝ . The goal of this optimization 
problem is to minimize the discrepancy between the desired 
output y and the outcome derived from the proposed design 
x . The design parameters x are constrained within a compact 
design space, defined by the lower and upper boundaries 
xlb ∈ ℝ

m and xub ∈ ℝ
m respectively, which represent the 

feasible range of the design variables.
In this study, the root mean square error is used as �:

where x = (x1,… , xm)
T is the optimization design vector in 

the decision space ℝm , m is the dimension of the general opti-
mization design vector, PC(x) = (PC

1
(x),… ,PC

q
(x))T ∈ ℝ

q 
denotes the computed performance vector based on the 
design vector x , while T = (T1,… , Tq)

T ∈ ℝ
q signifies the 

user-defined target performance vector. Both PC(x) and T 
are of dimension q . Ideally, an exact match between these 
values would result in an objective function value of zero.

2.2 � ML‑enhanced optimization

As shown in Fig. 1, the requirement for the ML-enhanced 
optimization process is to train an ML model using simu-
lation data generated with Latin Hypercube Sampling 
(LHS). Each simulation yields an input design vector and 
a simulation result vector. These design vectors, which 
are of the same size and within the same bounds as those 
evaluated during the optimization process, are used as 
inputs to the ML model. The outputs are statistical meas-
ures (mean, minimum, maximum, etc.) derived from the 
simulation result vectors. Once trained, this ML model can 
be reused within the inverse design framework when the 

(1)x = f −1(y)

(2)
minimize

x
�(f (x), y)

subject to xlb ≤ x ≤ xub

(3)
minimize

x
�(x) =

�
1

q
‖PC(x) − T‖2

2

subject to xlb ≤ x ≤ xub,

LF reduced-
order data (1)

Trained ML
Model (2)

Boundary Re-
finement (4)

ML-enhanced
Inverse Design
Framework (5)

User Defined
Target Per-
formance (3)

Fig. 1   The creation of the ML model commences with the generation 
of LF data (1), used for training the ML model (2). Once the model is 
trained and its accuracy is determined, it enables the boundary refine-
ment (4) and the ML-enhanced optimization methodology (5). The 
inverse design procedure requires the specification of a target per-
formance or vector (3). Blocks highlighted in light green (4) and (5) 
denote stages involving an optimization process
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target performance changes. The details of the ML model 
can be found in Sect. 2.4.

The ML model has two main tasks: (i) refine the lower 
and upper optimization boundaries (denoted as lbR and 
ubR , respectively), and (ii) decide whether to run a HF 
simulation based on a design x being evaluated during the 
optimization process. The details of the boundary refine-
ment procedure are given in Sect. 2.3. Furthermore, the 
pseudo-code of the ML-enhanced optimization process 
(ii), and all the necessary parameters are detailed in Alg. 1.

When the ML model is trained, the optimization pro-
cess begins by defining a target vector ( T ) and deriving a 
target scalar value ( Tinfo ∈ ℝ ), where Tinfo =

1

q

∑q

i=1
Ti (the 

mean of T ) or Tinfo = max(T) (the maximum of T ), depend-
ing on the application case in this study. During each 
evaluation of the objective function � (defined in Eq. 2), 
the pre-trained ML model ( M(x) ) predicts the value 
( Minfo ∈ ℝ ) for a given optimization design vector x . The 
scalar values Minfo and Tinfo must represent the same statis-
tically derived quantities in the space ℝ , ensuring consist-
ency in the comparison of predicted and target perfor-
mance metrics. Subsequently, the absolute error ( Δ ) 
between the ML predicted value ( Minfo ) and the target 
scalar value ( Tinfo ) is then computed. If Δ exceeds a pre-
established threshold ( � ), the objective function ( � ) is 
assigned the value � ⋅ eΔ ( � = 2 ). If Δ is less than or equal 
to � , � is evaluated with a HF simulation and the result is 
compared with T through a discrepancy metric.

The threshold parameter ( � ) is calculated using a user-
defined scaling factor (c) and the error of the ML model 
( �M ), such as root mean square error or mean absolute 
error obtained through ML model analysis. In regions of 
the design space where the ML model is less accurate, the 
framework tends to focus more on exploitation rather than 
exploration. The initial design vector xinit ∈ ℝ

m is a vec-
tor randomly initialized within the optimization bounda-
ries ( lbR and ubR ) by the optimization algorithms. The 
remaining budget (RB) denotes the remaining HF simula-
tion budget, which is used as a comparison metric with 
unenhanced optimization algorithms. A higher RB value 
indicates enhanced performance, reflecting increased com-
putational efficiency and savings. The optimization pro-
cess stops when the simulation budget is exceeded.

The proposed ML-enhanced inverse design framework 
can be used in conjunction with any population-based 
global optimization algorithm. In this study, it is investi-
gated how the ML model enhances two population-based 
algorithms, namely, DE and PSO. The fundamental goal of 
this framework is to enhance the robustness and efficiency 
of the optimization algorithms through the use of ML-
generated boundary refinement and ML-guided evaluation 
of HF simulations.

Algorithm 1   Pseudo-code of the ML-Enhanced optimization algorithm within the inverse design framework.
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2.3 � ML‑generated boundary refinement

The ML model is used to narrow down the optimization 
boundaries through a boundary refinement method, shown 
in Alg. 2. This approach aims to significantly minimize the 
demand for computational resources, an essential factor 
when operating within a stringent computational budget. 
The requirements for the boundary refinement are Tinfo and 
Minfo values. The objective of each of the N  optimization 
runs in the algorithm is to minimize the absolute difference 
between these two values. The N value is predefined by the 
user and ultimately will determine the number of optimiza-
tion solutions that will be used to refine the boundaries for 
the ML-enhanced inverse design framework. More specifi-
cally, to narrow down the boundaries through the boundary 
refinement method, it is necessary to determine the optimal 
solution defined as in Eq. (4):

The solution vector x∗ ∈ ℝ
m represents an optimized design 

based on the absolute difference between Tinfo and Minfo (that 
is predicted by M(x)).

(4)
x
∗ = argmin

x

|M(x) − Tinfo|
subject to xlb ≤ x ≤ xub

Given the inherent ill-posedness of most inverse design 
problems, this optimization procedure is repeatedly exe-
cuted, resulting in a matrix of optimal solutions S . Repeat-
ing the optimization process N times yields various solutions 
due to the multi-modal landscape and the stochastic nature 
of the used optimizer (DE), which converges to different 
local optima. The condition in Eq. (4) is especially sensitive 
to this because it relies on partial information (ML predic-
tion of a single scalar value instead of a complete array), 
further reducing the fidelity of the ML model trained with 
LF simulation data.

More specifically, each row of S represents one of the 
optimal solutions N, while each column is one of the design 
variables m as defined in:

where x∗
N,m

 is the design point in dimension m of the opti-
mized solution N, and x∗

N
 is the Nth solution vector.

(5)S =

⎡
⎢⎢⎢⎣

x
∗
1

x
∗
2

⋮

x
∗
N

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

x∗
1,1

x∗
1,2

⋯ x∗
1,m

x∗
2,1

x∗
2,2

⋯ x∗
2,m

⋮ ⋮ ⋱ ⋮

x∗
N,1

x∗
N,2

⋯ x∗
N,m

⎤
⎥⎥⎥⎥⎦

Algorithm 2   The boundary refinement algorithm.

The obtained solutions within the matrix S are then sub-
jected to statistical processing that depends on the specific 
inverse design problem being solved (see Sects. 3 and 4), 
which yields the compressed lower and upper boundaries 
lbR and ubR , respectively.

2.4 � ML model

The ML model M(x) takes as input the optimization design 
vector x and maps it to Minfo which is then compared with 
the Tinfo value, thereby minimizing the necessity for HF 
simulations. The performance of three different ML algo-
rithms is analyzed within this methodology – a DNN, and 
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two different GB algorithms – LightGBM (LGB) [34] and 
XGBoost (XGB) [11]. XGBoost or eXtreme Gradient 
Boosting (XGB) is a scalable tree boosting framework that 
effectively integrates a sparsity-aware algorithm alongside a 
weighted quantile sketch, thereby facilitating an approximate 
tree learning process. The combination of cache access pat-
terns, elevated data compression, and sharding empowers 
XGBoost to construct an efficient and powerful tree boost-
ing system.

LightGBM (LGB) is a robust and efficient gradient boost-
ing framework aimed at enhanced performance and speed. 
It incorporates innovative strategies such as gradient-based 
one-side sampling and exclusive feature bundling to expe-
dite processing and improve efficiency. LightGBM has a 
unique leaf-wise tree growth strategy, which deviates from 
the conventional level-wise approach seen in other boosting 
algorithms, and contributes to improved model accuracy by 
minimizing loss, thereby achieving faster convergence.

A DNN configured as an MLP is fundamentally com-
posed of three distinct types of layers: the input, hidden, 
and output layers. These layers are constituted by artificial 
neuron nodes. The MLP model can incorporate multiple 
hidden layers as part of its neural architecture. Each neuron 
residing within the hidden and output layers utilizes a non-
linear activation function, echoing the complex processing 
mechanisms observed in the human brain [48]. This struc-
ture effectively facilitates the MLP’s ability to model and 
solve intricate nonlinear problems.

The accuracy of all trained ML models was assessed 
using the RMSE (Eq. (6)) since it is used to evaluate the 
� value within the ML-enhanced framework (as shown in 
Alg. 1).

The variables yl , ŷl , and L represent the lth actual value, the 
lth ML model prediction, and the test set size, respectively. 
More specifically, the variable yl represents the lth data point 
that is the result of the lth LF simulation, and yl must repre-
sent the same statistically derived information as the T info 
value. The K-Fold cross-validation procedure ( k = 5 ) was 
used to evaluate the accuracy and uncertainty of all three 
investigated algorithms. For the K-Fold analysis of the ML 
model, the test set size L is varied as 500, 1000, 5000, and 
15000.

2.5 � Metaheuristic optimization algorithms

Two distinct metaheuristic optimization algorithms will be 
compared: Particle Swarm Optimization (PSO) and Dif-
ferential Evolution (DE). Both algorithms belong to the 
broader categories of swarm intelligence and evolutionary 

(6)RMSE =

�∑L

l=1
(yl − ŷl)

2

L

algorithms. Fundamentally, these categories rely on popula-
tions of agents that abide by specific rules to identify optimal 
solutions. Using both PSO and DE will demonstrate the gen-
eral applicability of the ML-enhancement.

PSO is a population-based stochastic optimization algo-
rithm, inspired by the social behavior of bird flocking or 
fish schooling [35]. In PSO, each individual particle in the 
swarm population represents a solution in the design space. 
Every particle updates its position based on its local best 
position, as well as the global best solution of the swarm. 
This cooperative search process, conducted through the 
iterative adjustment of velocities and positions increases 
the rate of convergence of the swarm towards the local or 
global optimum.

DE is a population-based stochastic search technique, 
commonly used for global optimization problems over 
continuous optimization design vectors [58]. In DE, the 
potential solutions are evolved over time via a simple arith-
metic operation: a combination of mutation, crossover, and 
selection operations. Each individual in the population is 
a potential solution, and the evolution of these individuals 
is performed based on the differences between randomly 
sampled pairs of individuals within the population. The dif-
ferential evolution of the population ensures a good rate of 
convergence; however, converging to a global optimum is 
not guaranteed. The success-history-based parameter adap-
tation (SHADE) variant of DE is used in this investigation. 
In the SHADE variant, the scaling factor and crossover rate 
are adaptively adjusted for each individual in the population 
based on a history of successful parameters. This dynamic 
adaptation allows for more effective exploration and exploi-
tation of the design space, potentially improving the perfor-
mance of the algorithm.

For the investigated problems, the swarm size and the 
population size parameters for the PSO and DE algorithms 
were both set to 10. Both DE and PSO implementations in 
the Indago 0.4.5 Python module for numerical optimization 
were used [30]. For the PSO algorithm, the inertia param-
eter was set at 0.8. The cognitive and social rates of the 
swarm were standardized to 1, mainly based on the default 
recommendations with the Python module. For DE, the key 
hyperparameters, such as the archive size factor, historical 

Table 1   Mapping of problem-
specific parameters for the AID 
to their corresponding general 
parameters used in the objective 
function and the boundary 
refinement process

General param-
eter

Problem 
specific 
parameter

Tinfo CT
pmin

T C
T
p

P
C
(x) C

C
p
(x)

Minfo Cpmin

m Nc



4087Engineering with Computers (2024) 40:4081–4108	

memory size, and mutation rate, were configured to 2.6, 4, 
and 0.11, respectively, following recommendations from the 
utilized Python module.

3 � Airfoil inverse design

This section defines the AID problem through the optimiza-
tion design vector, constraints, and the boundary refinement 
strategy.

3.1 � AID problem description

The goal of the AID problem is to determine the optimal 
geometry of an airfoil given a set of target pressure coeffi-
cients on the surface of the airfoil. The parameters used for 
the AID and the boundary refinement in the context of Eq. (3) 
and Eq. (4) are presented in Table 1. Each evaluation of the 
function � (Eq. (3)) necessitates executing a flow simulation 
over a generated design.

C
C
p
(x) ∈ ℝ

q denotes the computed pressure distribution 
around an airfoil based on the design vector x , while CT

p
∈ ℝ

q 
signifies the user-defined target pressure coefficient distribu-
tion measured at the same locations on the surface of the air-
foil. For all target cases, q = 300 . For each evaluation of 
x ∈ ℝ

Nc , the computed pressure distribution CC
p
(x) is linearly 

interpolated to match the target pressure distribution in both 
the size and airfoil surface location for each individual com-
ponent q. CT

pmin
∈ ℝ denotes the target minimum pressure coef-

ficient obtained from CT
p
 , and because the minimum pressure 

coefficient is used, the ML model’s task is to map the optimi-
zation design vector x to the minimum pressure coefficient 
Cpmin

∈ ℝ measured on the surface of the airfoil.

The AID optimization problem uses B-Spline approxima-
tion of the NACA​0012 airfoil geometry for the lower and upper 
boundary definition, as this method offers superior shape para-
metrization [52]. Utilizing the splrep function from the scipy 
1.9.1 module [61], the B-Splines are defined with coefficients, 
knots, a maximum degree of 5, and a smoothness parameter 
set at 0.00001. The knots generated by the splrep function as 
well as the degree and the smoothness of the splines remain 
unchanged throughout the optimization procedure.

The optimization design vector for the AID problem �� 
is defined as:

where it is defined as being comprised of the 15 lower and 
15 upper surface B-spline coefficient vectors ( �� and �� ), 
meaning that Nc = 30 . In detail, �� with its individual com-
ponents ( cli and cui ) is defined as:

The bounds of the lower and upper B-spline coefficients are 
determined by the NACA​0012 lower and upper B-Spline 
coefficient vectors denoted as ������ and ������ , respec-
tively, scaled by a multiplication factor � = 3 . The extracted 
lower boundary B-Spline coefficients in ������ are negative. 
Subsequently, there is an overlap in the initial lower and 
upper B-Spline coefficients ( ������ and ������ ) generated by 
B-Spline interpolation of the NACA0012 geometry, where 
some coefficients in these vectors converge to zero. To 
address this potential overlap and to enable optimization in 

(7)

�� = [��, ��]
T ∈ ℝ

Nc ,

{
� ⋅ (������ − 1 ⋅ 10−5) ≤ �� ≤ 0

0 ≤ �� ≤ � ⋅ (������ + 1 ⋅ 10−5)

(8)

�� =

[
cl1, cl2, … , c

l
Nc

2

, c
u
Nc

2
+1
, c

u
Nc

2
+2
, … , cuNc

]T
∈ ℝ

Nc ,

{
� ⋅ (cL0012i − 1 ⋅ 10−5) ≤ cli ≤ 0 for i = 1, 2,… ,

Nc

2

0 ≤ cui ≤ � ⋅ (cU0012i
+ 1 ⋅ 10−5) for i =

Nc

2
+ 1,

Nc

2
+ 2,… ,Nc

Fig. 2   Optimization boundaries 
generated by multiplying the 
NACA​0012 baseline B-Spline 
coefficients by a factor of 
3. The �x and �y axis are the 
chord-length normalized x and y 
coordinates
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the near-zero space, we adjust the values of ������ and ������ 
by subtracting and adding a small value of 1 × 10−5 to these 
vectors, respectively.

The constraints on �� and �� in Eq. (7) represent the ini-
tial lower and upper bounds ( xlb and xub ) used for the ML-
generated boundary refinement (Eq. (4)) as well as the lower 
and upper boundaries used by the unenhanced optimization 
algorithms (stand-alone DE and PSO). The lower and upper 
boundaries of the optimization design vector based on the 
scale factor � and the B-Splines of NACA​0012 are shown in 
Fig. 2. Details of the airfoil targets, flow simulation solver, 
and the dataset used to train the ML models are provided in 
the Appendix A.

3.2 � AID boundary refinement

After the boundary refinement technique is applied, a whole 
matrix of solutions S is obtained, as detailed in the Sect. 2.3. 
By statistically analyzing the matrix of optimal solutions 
derived from the ML model, the column-averaged values of 
the solution matrix S provide a meaningful representation 
of the refined design space. More specifically, the matrix of 
solutions for the AID problem SA is defined as:

where xopt
AN

 is the Nth optimized solution of the AID problem, 
and it consists of optimal lower and upper B-Spline coeffi-
cients (Eq. (8)). Subsequently, the averaged design vector x̄A 
is defined by column-averaging the matrix SA:

Furthermore, the averaged design vector x̄A is scaled by a 
safety factor � to ensure that the target design is within the 
new boundaries:

(9)
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(10)
x̄A

=
[

1
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Finally, the design vector ���
 represents an airfoil shape 

itself, i.e., its design variables are the lower and upper 
B-Spline coefficients, hence, new lower and upper bounda-
ries ( lbR and ubR ) are constructed based on this design vec-
tor for the AID problem. Different values of hyperparameter 
� are investigated to assess their impact on the performance 
of the ML enhanced optimization, more specifically, 
� ∈ {1, 1.1, 1.2, 1.3} . These values showcase a range from 
less efficient to more efficient performance to provide a com-
prehensive view of the method’s effectiveness.

4 � Scalar field reconstruction

This section defines the SFR problem through the optimi-
zation design vector, constraints, and the boundary refine-
ment strategy.

4.1 � SFR problem description

The goal of the SFR problem is to determine the scalar 
boundary values based on a set of target scalar measure-
ments on a given domain. The essence lies in optimizing 
the boundary conditions for a diffusion partial differential 
equation (PDE). This mathematical model describes how 
a scalar quantity spreads within a given domain. Instead 
of prescribing boundary conditions outright, the problem 
aims to find the ideal boundary conditions that, when 
applied to the diffusion PDE, result in a reconstructed 
scalar field that closely aligns with measured data. The 
diffusion PDE is defined as:

where s is the non-dimensional scalar value, D is the diffu-
sion coefficient set to 1 (m2/s), t denotes the time (s), while 
tmax denotes the maximum or end time of the simulation, 
and Ω is the domain. For the purposes of demonstrating the 
ML-enhanced inverse design framework, tmax is set to 0.1 s 
and is treated as a converged state, i.e. the scalar diffusion is 
treated as a quasi-transient problem.

The parameters used for the SFR and the boundary 
refinement in the context of Eq. (3) and Eq. (4) are pre-
sented in Table 2.

sC(x ) denotes the computed scalar distribution in ℝq 
(with q = 30 ) on a given domain Ω based on the design 
vector x (denoted as �� for the SFR problem) which is used 
to define the boundary condition, while sT , also in ℝq , sig-
nifies the user-defined target scalar field measured at the 

(11)���
= 𝜂 ⋅ x̄A

(12)
�s

�t
= D∇2s in Ω, t ∈ [0, tmax]

Table 2   Mapping of problem-
specific parameters for the SFR 
problem to their corresponding 
general parameters used in 
the objective function and the 
boundary refinement process

General param-
eter

Problem 
specific 
parameter

Tinfo sT
max

T sT

P
C
(x) sC(x)

Minfo smax

m I
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same locations. sT
max

 denotes the target maximum scalar 
value obtained from sT in ℝ . The design vector constraint 
for the SFR problem is defined in Eq. (13). The ML model 
maps the design vector �� to the maximum scalar value smax 
observed in the domain, with smax being in ℝ.

The scalar design vector �� consists of scalar values si that 
collectively form a boundary condition for a given domain. 
The minimum scalar value at the boundary is defined as 0 
and the maximum value sub is set to 30. For a HF simulation, 
the number of scalar values i defined at the top of the domain 
Ω is 80 ( I = 80 ). However, with each evaluation of �� , it is 
necessary to obtain the Minfo value, and a discrepancy arises 
due to the ML model being trained with LF data where the 
number of scalar values was set to 20 ( I = 20 ). To evaluate 
�� with I = 80 using the ML model, �� is linearly interpo-
lated. The scalar values at the LF boundary points ( I = 20 ) 
are then extracted and used by the ML model to predict smax . 
In accordance with the diffusion PDE (Eq. (12)), the scalar 
boundary values are defined as the Dirichlet boundary con-
dition (Eq. (14)) for the top part of the domain �Ωtop:

Other parts of the domain �Ωother (left, right, bottom) are 
defined as the Neumann boundary condition:

where n is the unit normal vector pointing outward from the 
domain. Finally, the mathematical domain Ω for the given 
SFR problem along with the appropriate boundary condi-
tions is shown in Fig. 3. Details of the solver, inverse design 
target parameters for the SFR problem, and the dataset used 
to train the ML models are provided in the Appendix B.

(13)
�� = [s1, s2,… , sI]

T ∈ ℝ
I ,

0 ≤ si ≤ sub for i = 1, 2,… , I.

(14)s = g(��, t) on �Ωtop, t ∈ [0, T].

(15)
�s

�n
= 0 on �Ωother, t ∈ [0, T],

4.2 � SFR boundary refinement

In addressing the SFR problem, the design space size pre-
sents a significant challenge. Compared to the AID problem, 
the SFR problem is less constrained and more ill-posed. This 
means that, based on the objective function and the lower 
and upper boundaries of the design space, the optimiza-
tion landscape is more multi-modal for the SFR problem. 
This difference requires a more robust strategy for bound-
ary refinement. Firstly, the LF solution matrix SsLF of opti-
mized design vectors (obtained through Eq. (4)) that contain 
boundary condition scalar values is defined as:

where xoptsN
 is the Nth optimized design vector. Each row of 

SsLF
 contains an optimized scalar value for each point on 

the LF domain boundary ( I = 20 ). Subsequently, the design 
vectors in each row of matrix SsLF are subjected to regression 
model fitting. Since the shape of the BC is unknown, and 
considering the number of possible solutions, in order to 
cover a variety of BC shapes, this fitting utilizes polynomi-
als of degree d ∈ {1, 2, 3, 4} for each n = 1, 2,… ,N design 
vector, forming the new regression model solution matrix 
Ssreg as:
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ŝk

⋮∑1

k=0
a
optN
k,1

ŝk∑2

k=0
a
optN
k,2
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Fig. 3   The mathematical 
domain Ω of the scalar recon-
struction problem. The top 
boundary condition is the Dir-
ichlet boundary condition where 
the optimization design vector 
�� is set, while the bottom, left, 
and right parts are defined as 
the Neumann boundary condi-
tion. The height and width are 
presented in meters
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where P4(x
opt
sN
) is the 4 th degree polynomial of the optimized 

Nth vector xoptsN
 . More specifically, the term 

∑4

k=0
a
optN
k,4

ŝk rep-
resents the 4 th degree polynomial regression model for the 
Nth optimized design vector, where aoptN

k,4
 are the polynomial 

regression coefficients and ŝ is the unknown variable. As 
the matrix Ssreg is defined, each regression model is utilized 
to evaluate the HF discretized space ( I = 80 ) with equally 
spaced points between 0 and 1, resulting in the final SsHF 
matrix:

where soptN ,4
N,1

 is the first scalar value at the boundary of the 
HF domain obtained from the Nth design vector using the 
4 th degree polynomial model, and soptN ,4

N,80
 is the last scalar 
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Fig. 4   SFR boundary refine-
ment example. The grey lines 
are the N solutions within the 
matrix Ss , the black line is the 
average value of the solutions 
in matrix Ss , the green line is 
the true boundary condition 
that corresponds to the T field 
measurements, and the blue 
line is the new upper boundary 
ubR obtained with the boundary 
refinement procedure described 
in this section

Fig. 5   The mean (solid lines) 
and standard deviation (shaded 
areas) K-Fold RMSE for the 
three investigated ML algo-
rithms for the AID problem. 
Lower RMSE values are better
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value obtained from the same regression model of the same 
degree.

Polynomial regression coefficients are determined 
using the numpy 1.24.3 function polyfit for 20 equally 
spaced points between 0 and 1 (which corresponds to the 
LF discretization), and this regression model, generated 
by the function poly1d, is subsequently evaluated for the 
HF discretization ( I = 80 ) with equally spaced points 
between 0 and 1, resulting in the final Ssreg set. Finally, to 
determine the new optimization boundaries for the SFR 
problem, the maximum scalar value is extracted from the 
flattened matrix SsHF : max(SsHF ) defines the upper optimi-
zation boundary value for each dimension I = 80 , thus 
forming the new upper boundary ubR . For safety reasons, 
the lower boundary lbR remains as specified in Eq. (13), 
i.e., 0.

Figure 4 illustrates an instance of the boundary refine-
ment process. The green line represents the true solution, 
the blue line shows the reduction of the design space 
(approximately 50% pruned) as described above and the 
black line represents the average of N optimized boundary 
conditions for comparison. The green curve lies below 
the black curve, suggesting that the boundary refinement 
methodology used for the AID problem might be similarly 
effective here.

5 � Results and discussion

In this section, the results and analyses for the ML model, 
boundary refinement, and ML-enhanced framework for 
both demonstration problems are detailed. An in-depth 
hyperparameter analysis of the ML-enhanced framework is 
showcased, followed by overarching recommendations for 
optimal utilization. The section concludes by highlighting 
the advantages and limitations of the proposed technique. 
The details of all ML model hyperparameters, the hyperpa-
rameter tuning procedure, and the Python modules used are 
given in Appendix C.

5.1 � ML models results

In this subsection, the ML model results for both the AID 
and SFR problems are presented through the accuracy met-
rics given in Sect. 2.4.

5.1.1 � AID ML model results

Figure 5 presents the RMSE scores for the three ML algo-
rithms applied to the AID problem for varying dataset sizes. 
The dataset size was varied in order to assess the influence 
it has on the ML-enhanced framework, and to obtain the 
learning curve for each algorithm. All models show that 
the larger the dataset size, the better (lower) the resulting 
RMSE. It can be seen that for smaller datasets, XGB has 

Table 3   XGB RMSE values 
used for calculating the � 
threshold parameter for each 
scenario and dataset size

Dataset size RMSE

500 0.81
1000 0.61
5000 0.39
15000 0.34

Fig. 6   The mean (solid lines) 
and standard deviation (shaded 
areas) K-Fold RMSE for the 
three investigated ML algo-
rithms for the SFR problem

Table 4   MLP RMSE values 
used for calculating the � 
threshold parameter for each of 
the two SFR BC scenarios and 
dataset size

Dataset size RMSE

500 7.63
1000 4.27
5000 0.78
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better performance than LGB and MLP, but its accuracy 
marginally lags when leveraging all 15000 data instances for 
training and cross-validation. Given its overall top perfor-
mance, XGB (trained with four different dataset sizes) was 
selected as the ML model for the inverse design framework, 
and the K-fold cross-validation RMSE values used for further 
analysis are presented in Table 3.

5.1.2 � SFR ML model results

Figure 6 shows the RMSE values of the three ML algorithms 
when applied to the SFR problem using different dataset 
sizes. The results show the MLP’s superior performance 
over both LGB and XGB across all dataset sizes. As a 
result, the MLP was selected as the ML model within the 
inverse design framework for the SFR problem. The specific 
K-fold cross-validation RMSE values for the MLP, which 
were used to compute the � parameter for the SFR prob-
lem, are detailed in Table 4. Given the minimal performance 

Fig. 7   Boundary refinement 
technique results generated by 
the XGB model: (a) NACA​2410 
with dataset size 500 (b) NACA​
2410 with dataset size 15000 (c) 
RAE2822 with dataset size 500 
(d) RAE2822 with dataset size 
15000. The white lines indicate 
the narrowed boundaries, i.e. 
lbR and ubR for different values 
of � . There is no noticeable 
difference between the white 
lines when the dataset size is 
increased, indicating that a sig-
nificant boundary compression 
is achievable even with an ML 
model trained on a small dataset

Fig. 8   The boundary refinement 
technique developed for the 
SFR problem implemented on 
two distinct cases: (a) Sinu-
soidal BC (b) Linear BC. The 
green line represents the BC 
utilized to derive the HF target 
solution, while the blue lines 
indicate the upper boundaries of 
the design space produced using 
varied dataset sizes for training 
the MLP
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difference between the models trained with 5000 and 15000 
instances, only three distinct models trained on three differ-
ent amounts of data were compared within the ML-enhanced 
framework.

5.2 � Boundary refinement with the ML model

In this subsection, the results of the boundary refinement 
technique for both investigated problems are presented. To 
generate the new boundaries lbR and ubR , models trained 
on different dataset sizes were compared. The DE was 
employed to solve Eq. (4) 150 times ( N = 150 solutions). 
The DE algorithm was configured with a maximum of 800 
function evaluations, and the population size was set to equal 
the dimensionality of the optimization vector i.e., 20 for SFR 
and 30 for AID. A comparative analysis of different N values 
is provided in Appendix D.

5.2.1 � AID boundary refinement

In Sect. 5.1, the choice of the XGB algorithm was justified 
by its marginal superiority over other algorithms, especially 
when various training data sizes are taken into account. For 
the purpose of boundary refinement, the XGB was trained 
using data instances of sizes 500, 1000, 5000, and 15000. 
The results of the edge cases of the XGB-produced bounda-
ries lbR and ubR are illustrated in Fig. 7. Since every solution 
in the matrix SA represents an airfoil itself with lower and 

upper shape coefficients, the new lower and upper bounda-
ries were derived solely by averaging the solution matrix 
SA where � = 1 encompasses the genuine target designs. A 
notable overlap is observed in a section of the upper trailing 
edge between the target and the new boundary ( 𝜁x > 0.8 ). 
When the safety factor is increased to its maximum investi-
gated value of � = 1.3 , this overlap at 𝜁x > 0.8 significantly 
diminishes, and a noticeable distinction is achieved between 
the new and the original boundaries (Figs. 7b and 7d).

When training the XGB model with different numbers 
of instances, only minor variations in results emerge. This 
suggests that the ML model trained with a small dataset 
suffices to prune a segment of the design space for such 
problems. This observation holds for both NACA​2410 and 
RAE2822 boundary refinement procedures, as illustrated in 
Fig. 7. Finally, an analysis of how the number of solutions 
N affects the change in the airfoil shape and the boundary 
refinement is shown in Fig. 19 (Appendix D).

5.2.2 � SFR boundary refinement

For the SFR problem, the MLP outperformed the other 
investigated algorithms in modeling smax . Figure 8 displays 
the MLP results of the boundary refinement. The MLP was 
trained with dataset sizes 500, 1000, and 5000. Across 
both BC scenarios, all three MLP models significantly 
reduce the size of the design space, confining the ubR value 
between s = 13 and s = 18 (43% to 60% of the design space 

Fig. 9   Results from the ML-
enhanced framework for NACA​
2410 that include the boundary 
refinement for the following 
configurations: (a) PSOML−EN , 
� = 1 (b) PSOML−EN , � = 1.3 (c) 
DEML−EN , � = 1 (d) DEML−EN , 
� = 1.3. The markers denote the 
different dataset sizes used to 
train the ML model, while the 
coloring of the markers repre-
sents the remaining simulation 
budget (RB) values. A higher 
RB signifies greater savings in 
the computational budget (less 
requirements for HF simula-
tions), while low fitness values 
imply a better approximation 
of the target performance. The 
markers are slightly offset for 
each c value to improve vis-
ibility
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pruned). Compared to the airfoil problem, these newly pro-
duced boundaries exhibit greater sensitivity to changes 
in dataset size, but all three can be reliably incorporated 
into the ML-enhanced inverse design framework without 
losing the true solutions. Additionally, Fig. 20 (Appendix 
D) presents an analysis of how the number of solutions, 
N, impacts both cases of the SFR problem.

5.3 � ML‑enhanced inverse design framework results

This section provides a comprehensive analysis of the ML-
enhanced inverse design framework, detailing the hyperpa-
rameters (c values, � , ML dataset size) for both problem 
categories. Following this, a meticulous comparison is pre-
sented between the conventional inverse design approach 
which employs classic optimization algorithms like DE and 
PSO, and the ML-enhanced optimization algorithms. Both 
strategies aim to minimize the objective function described 
in Eq. (3) subject to the constraints specified in Eq. (7) and 
Eq. (13) for the AID and SFR challenges, respectively. 
Given the stringent computational budget, both methodolo-
gies are restricted to 200 HF simulations for each problem. 
Furthermore, to account for the inherent randomness of 
the population-based algorithms in use, all hyperparam-
eter combinations are subjected to 30 runs, facilitating a 
robust uncertainty analysis. The term fitness is introduced to 
align with the conventions of PSO and DE, and it is equal to 

RMSE, which is the optimization objective used to evaluate 
the quality of solutions.

Within the ML-enhanced inverse design framework, the 
boundaries resulting from the boundary refinement tech-
niques are utilized, i.e., when the ML model is trained with 
a particular dataset size, the lbR and ubR corresponding to 
that ML model are applied. The user-defined hyperparameter 
c is utilized to scale the K-fold cross-validation RMSE values 
of the ML models. For the AID problem, the explored values 
are c ∈ {1, 2, 4, 6, 8} , while for the SFR problem, they are 
c ∈ {0.25, 0.5, 1, 2, 4} . The differing ranges for c between 
the two problems arise from the variance in magnitude of 
their RMSE values. However, there is an overlap in the sets, 
which aids in formulating a generalized recommendation. 
The RMSE metric of the ML models was used to calcu-
late the � threshold as defined in Sect. 2. This decision is 
motivated by the intuitiveness and interpretability offered by 
the RMSE value. By reflecting the degree of discrepancy in 
the model’s predictions, it provides a clear and meaningful 
measure of the model’s performance.

5.3.1 � AID results

The results of the ML-enhanced inverse design framework 
utilizing the XGB model and the boundary refinement 
technique ( � = 1 and � = 1.3) applied to the AID problem 
for the NACA​2410 and RAE2822 airfoils in Figs. 9 and 10. 
PSOML−EN and DEML−EN denote the ML-enhanced versions 

Fig. 10   Results from the 
ML-enhanced framework 
for RAE2822 that include 
the boundary refinement 
for the following configura-
tions: (a) PSOML−EN , � = 1 
(b) PSOML−EN , � = 1.3 (c) 
DEML−EN , � = 1 (d) DEML−EN , 
� = 1.3. The markers denote the 
different dataset sizes used to 
train the ML model, while the 
coloring of the markers repre-
sents the remaining simulation 
budget (RB) values. A higher 
RB signifies greater savings in 
the computational budget, while 
low fitness values imply a better 
approximation of the target 
performance. The markers are 
slightly offset for each c value to 
improve visibility
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of the optimization algorithms. For comparison, the aver-
age and standard deviation over the results of 30 runs of the 
unehanced PSO and DE algorithms are shown as horizontal 
black and grey lines, respectively. The markers indicate the 
dataset size used to train the XGB model, which was then 
incorporated into the ML-enhanced optimization algorithm 
and used to form lbR and ubR . These markers are color-coded 
based on the RB values, implying that the fitness values 
were obtained from a number of HF simulations defined as 
TSB − RB , where TSB represents the total simulation budget, 
specifically set at 200. The full results, which include the 
lbR and ubR formed with � = 1.1 and � = 1.2 are given in 
Figs. 21 and 22 (Appendix E), respectively.

First, a clear observation is that the DE algorithm, in both 
its unenhanced and ML-enhanced forms, outperforms the 
PSO algorithm. Moreover, across most tested hyperparam-
eters, airfoil types, and optimization algorithms, the ML-
enhanced variant consistently surpasses the performance of 
its unenhanced counterpart. There are a few instances where 
DE or PSO exhibit competitive performance in terms of raw 

fitness (RMSE) value, particularly when the c value is set to 
1 and the XGB models trained with dataset sizes of 5000 and 
15000 are employed. However, note that both PSOML−EN and 
DEML−EN have consumed only about 60% of their HF simu-
lation budgets (remaining budget RB ∼ 70 − 80 ), whereas 
their unenhanced versions have fully exhausted theirs.

Once the user defined RMSE scaling parameter c value 
reaches and exceeds 4, the RB value becomes zero for most 
dataset sizes and � values. Given that the RB value is zero, it 
indicates that only HF simulations were utilized for assess-
ing the design vector. Consequently, it can be inferred that, in 
this particular scenario, employing unenhanced algorithms 
alongside the refined boundaries would yield equivalent 
results. ML-enhanced algorithms, especially when employ-
ing models trained on dataset sizes of 5000 and 15000 and 
when c = 2 (observable in Figs. 9 and 10), not only converge 
to a better solution but also economize on the total HF com-
putational budget ( RB ∼ 30 − 50 ) when compared with the 
unenhanced versions.

Fig. 11   A comparative analysis of ML-enhanced algorithm configu-
rations (dataset size = 1000 for both rows, � = 1.1 for top and � = 1.3 
for bottom row, respectively) versus their unenhanced optimization 
equivalents: (a) Optimal achieved NACA​2410 airfoil geometry for the 
PSO and PSOML−EN (b) Optimal set of pressure coefficients for the 
same configuration juxtaposed with target values (c) Convergence of 
all 30 runs for PSO and PSOML−EN (d) Optimal achieved RAE2822 
airfoil geometry for DE and DEML−EN (e) Corresponding optimal 

pressure coefficients set against target values for the RAE2822 air-
foil (f) Average convergence and standard deviation of all 30 runs 
for both algorithm variants. The thicker lines in the first and second 
column represent the average optimized designs and pressure coeffi-
cients from the 30 runs, while the transparent shaded region in the 
second column depicts the standard deviation of the pressure coeffi-
cients
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For a general recommendation on the use of ML-
enhanced optimization algorithms for the AID problem 
within a limited HF computational budget, any of the inves-
tigated � factors can be employed. However, to ensure the 
target design falls within the refined boundaries, an � value 
of 1.3 is preferable. This choice allows for convergence 
across all configurations. In terms of achieving optimal fit-
ness and conserving the computational budget, the c value of 
2 appears to be the best across all dataset sizes and algorithm 
combinations. Furthermore, a c value of 1 can be consid-
ered for exploratory inverse designs, as it requires fewer HF 
simulation runs to attain comparable or superior results to 
the unenhanced algorithms.

The ML models trained on smaller datasets (500 and 
1000) suffice to expedite the inverse design process, achiev-
ing ( RB ∼ 20 − 50 ) for c = 1 and c = 2. These ML models 
also lead to effective boundary refinement when the entire 
simulation budget is used up in pursuit of the optimal design.

Figure 11 offers a comparison between selected ML-
enhanced algorithm configurations and their unenhanced 
optimization counterparts. The first column displays the 
optimal achieved airfoil geometry, while the second pre-
sents the optimal set of pressure coefficients, both set against 
the target values. The third column illustrates the conver-
gence graphs of all 30 runs for both algorithm variants. The 
first row corresponds to the PSO algorithm and the NACA​
2410 airfoil, while the second shows an example of the DE 
algorithm and the RAE2822 airfoil. Considering all three 

visual metrics, both DEML−EN and PSOML−EN surpass their 
unenhanced counterparts. Yet, neither algorithm achieves 
an exact alignment with the target designs, in terms of geom-
etry and pressure coefficient sets. This discrepancy arises 
because the framework is assessed under strict computa-
tional budgets, with a specific focus on only 200 HF simu-
lations, however, further improvements for both approaches 
are likely with larger computational budgets.

5.3.2 � SFR results

Figure 12 presents the hyperparameter analysis for the ML-
framework applied to the SFR problem. It also provides a 
comparison with the unenhanced algorithms showing the 
average and standard deviation of the fitness, indicated by 
the horizontal black and grey lines, respectively. The ML-
enhanced algorithms consistently outshine their traditional 
counterparts. Drawing parallels with the AID problem, it 
is observed that while elevating the c parameter allows the 
framework to focus on improving the target performance 
approximation (reducing the fitness value), it does so at the 
expense of fully utilizing the entire simulation budget.

The ML-enhanced optimizers with the MLP model 
trained on the dataset size 1000 exhibit superior perfor-
mance in terms of fitness value compared to their counter-
parts trained on dataset sizes 500 and 5000, respectively. 
This difference can be attributed to the more effective 
boundary refinement achieved by the 1000-instance model, 

Fig. 12   ML-enhanced frame-
work results for the surface field 
reconstruction problem: (a) 
PSOML−EN for the sinusoidal BC 
(b) DEML−EN for the sinusoidal 
BC (c) PSOML−EN for the linear 
BC (d) DEML−EN for the linear 
BC. The markers denote the 
different dataset sizes used to 
train the ML model, while the 
coloring of the markers repre-
sents the remaining simulation 
budget (RB) values. A higher 
RB signifies greater savings in 
the computational budget, while 
low fitness values imply a better 
approximation of the target 
performance. The markers are 
slightly offset for each c value to 
improve visibility
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Fig. 13   A comparative analysis 
of ML-enhanced PSO algorithm 
configurations with c = 1 (MLP 
training dataset size = 1000 for 
top row, and 500 for bottom 
row) versus their unenhanced 
optimization equivalents: (a) 
PSO and PSOML−EN comparison 
of the reconstructed sinusoidal 
BC juxtaposed with the true 
BC (b) Sinusoidal BC case 30 
runs average convergence and 
standard deviation plot of PSO 
and PSOML−EN (c) PSO and 
PSOML−EN comparison of the 
reconstructed linear boundary 
condition juxtaposed with the 
true BC (d) Linear BC case 
30 runs average convergence 
and standard deviation plot 
of PSO and PSOML−EN . The 
thicker lines in the first column 
represent the average BCs of the 
30 runs. There are four thicker 
lines shown since the solutions 
were approximated with four 
different degrees of regression

Fig. 14   Reconstructed scalar fields with the average optimized design 
vectors presented in Fig. 13: (a) True sinusoidal boundary condition 
(b) PSOML−EN reconstructed sinusoidal boundary condition (4-th 
degree regression model) (c) PSO reconstructed sinusoidal boundary 

condition (4-th degree regression model) (d) True linear boundary 
condition (e) PSOML−EN reconstructed linear boundary condition (lin-
ear regression model) (f) PSO reconstructed linear boundary condi-
tion (linear regression model)
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as evidenced by Figs. 8a and 8b. The applied boundary 
refinement notably contributes to reducing fitness uncer-
tainty across all hyperparameter combinations as observed 
through the standard deviation lines corresponding to each 
marker. This advantage becomes even more pronounced 
when compared to the standard deviation observed in the 
unenhanced algorithms.

For dataset sizes of 500 and 1000, a c value of 1 or 
greater causes the ML-enhanced algorithms to consume 
the entire budget of HF simulations. Notably, when opti-
mizers are paired with the MLP model trained on 5000 
instances, the fitness scales almost linearly with the c value. 
The 5000-instance trained ML-enhanced optimizers strike 
a good trade-off between achieving low fitness (RMSE) 
values and conserving HF simulations. Considering results 
from both BC scenarios, the hyperparameter settings that 
would achieve a trade-off between a good target performance 
approximation and simulation budget would be the 1000 
dataset model at c = 0.25 or the 5000 dataset model at c 
= 1. If the goal is to substantially narrow down the design 
space, a noisy model, like the one trained on 500 instances, 
proves sufficient.

Figure 13 displays examples of the optimized BCs for 
both test instances. The results from PSOML−EN for the 
sinusoidal BC employed an MLP trained on 1000 instances 
with c = 1, while for the linear BC an MLP trained on 500 
instances with c = 1 was used. Different reconstructed aver-
aged BCs are depicted for both instances and algorithms. 
This variety arises because the final optimized average 
design vectors, which contained raw scalar values for each 
Ωtop coordinate, underwent regression model fitting ranging 
from degrees 1 to 4, described in Sect. 4.2. In both cases 
presented in Fig. 13, both the average reconstructed BCs 

(for all regression model degrees) and the convergence plot 
clearly demonstrate the superiority of PSOML−EN over PSO.

In Fig. 14, the reconstructed scalar fields generated by 
the BCs presented in Fig. 13 are shown. The top row shows 
the fields for the sinusoidal BC, while the bottom row shows 
the fields for the linear BC. The first column shows the 
ground truth, while the second and third columns show the 
PSOML−EN and PSO reconstructed scalar fields. It is obvious 
that the BCs generated by the ML-enhanced algorithm align 
much more closely with the true solution. Finally, Fig. 15 
shows the absolute error between the true scalar fields (for 
both BC cases) and those obtained by PSOML−EN and PSO-
optimized boundary conditions. The absolute error was 
calculated for every point in the HF domain, and with the 
range of the absolute error being the same for both results 
shown, it is apparent that the PSOML−EN generated BC is 
more accurate.

5.4 � Advantages and limitations of the ML‑enhanced 
framework

While the ML-enhanced inverse design method shows 
improved performance, it is not without limitations. Pri-
marily, the framework requires a pre-trained ML model to 
estimate the M info value. To harness this model effectively 
for boundary refinement and to cut back on the number of 
HF simulations, it is vital to understand and determine the 
pertinent reduced-order information related to the optimiza-
tion challenge.

The main advantage of the proposed method is that an 
ML model is trained independently of the optimization loop 
using LF data only, and can then be exploited for different 

Fig. 15   Absolute error between 
the true scalar field and the 
scalar field obtained by the aver-
age optimized design vectors 
presented in Fig. 13 for both BC 
cases: (a) True and PSOML−EN 
scalar field absolute error for the 
sinusoidal BC (b) True and PSO 
scalar field absolute error for 
the sinusoidal BC (c) True and 
PSOML−EN scalar field absolute 
error for the linear BC (d) True 
and PSO scalar field absolute 
error for the linear BC
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inverse design instances of the same type of problem (e.g., 
one ML model for airfoils enables the efficient optimization 
of multiple different types of airfoils). Furthermore, the ML 
model does not have to be highly accurate as highlighted in 
the detailed hyperparameter analysis for both investigated 
problems, which is advantageous in cases where obtaining 
LF data is computationally non-trivial.

Another limitation of the framework lies in its depend-
ence on multiple hyperparameters. Both the boundary refine-
ment technique, as applied to AID, and the ML-enhanced 
framework itself require safety hyperparameters ( � and c 
respectively). Although this study demonstrates that the c 
value can correlate with the RMSE of the model suggesting 
values of c ∈ {0.5, 1, 2} for both problems, a more exhaus-
tive analysis encompassing a broader set of similar problems 
is essential. However, pinpointing the appropriate c param-
eter could be accomplished through an exploratory analysis 
leveraging an ML model and exclusively LF simulations. 
Finally, investigating the error metric of the ML model in 
the ML-enhanced framework is a potential research direc-
tion, as it would be beneficial to remove the error scaling 
hyperparameter.

6 � Conclusion

The paper presents an ML-enhanced inverse design frame-
work for problems with stringent simulation budgets. 
This framework, applied to two distinct engineering chal-
lenges–AID and SFR–leveraged a pre-trained ML model. 
The goal was to reduce the size of the optimization design 
space and decrease the need for costly HF simulations to 
arrive at an optimal design. In this ML-enhanced frame-
work, both the DE and PSO optimization algorithms, which 
have an extensive demand for objective function evaluations, 
were enhanced with the ML model and contrasted with their 
conventional versions.

The main contributions of the study can be summarized 
in several points:

•	 An ML model trained on a small set of LF data effec-
tively narrows the optimization design space. This facili-
tates a better rate of convergence of both PSO and DE 
towards a better approximation of the target performance 
within a predefined HF simulation budget.

•	 The ML-framework proves highly effective for both min-
imizing the number of HF simulations and approximating 
user-defined target designs. A relationship between the 

Fig. 16   Investigated airfoil geom-
etries (top row) and the HF vs LF 
pressure coefficient distribution 
around the target CT

pmin
 area (bot-

tom row): (a) RAE2822 airfoil (b) 
NACA​2410 airfoil (c) RAE2822 
LF vs HF pressure distribution 
(d) NACA​2410 LF vs HF pressure 
distribution. Due to the optimiza-
tion constraints being generated 
based on the NACA​0012 airfoil 
as well as the ML model dataset 
(Sect. A.2), the RAE2822 shape 
provides a harder optimization 
challenge due to its larger devia-
tion from the camber line
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ML model’s error metric (RMSE) and the mechanism 
for minimizing HF simulations has been established and 
explored. For the AID and SFR problems, the hyperpa-
rameter c which is used to multiply the RMSE, is recom-
mended to be in the range c ∈ {0.5, 1, 2}.

•	 The solutions obtained with population-based stochastic 
global optimization algorithms, such as DE and PSO, can 
be significantly improved when guided by ML models.

•	 The effectiveness of the ML-enhanced inverse design 
framework was demonstrated on two conceptually dif-
ferent engineering challenges.

For the AID problem, future studies could delve into the 
integration of sophisticated computational fluid dynamics 
models like RANS or LES as the main HF simulators in 
the optimization loop, complemented by the ML model. 
Regarding the SFR problem, research emphasis should be 
on increasing the problem complexity, e.g., by employing 
a fully transient simulation model, integrating the diffu-
sion coefficient value into both the ML model and inverse 
design, and potentially utilizing the RANS model for flow 
field reconstruction [6]. Furthermore, an analysis of the 
influence of the number of field measurements should 
be conducted.

Generally, the ML-enhanced framework proposed here 
could find application in any problem where meaningful 
reduced-order information can be obtained and approxi-
mated using an ML model. Multiple scientific applica-
tions fall into this problem category including simulations 
in climate and combustion that can be run with differ-
ent grid resolutions and time step sizes. The proposed 
framework could be implemented within a larger hybrid 
metaheuristic-Bayesian optimization framework to fur-
ther minimize the number of HF function evaluations, and 
it could be further investigated with other derivative-free 
optimization algorithms.

AID numerical experiments and dataset

This section details the target airfoil designs, flow con-
ditions, and the flow simulation solver. Additionally, it 
describes the dataset used to train the ML models for the 
AID problem.

Airfoils and aerodynamic flow analysis

The airfoils RAE2822 and NACA​2410 are used for the 
numerical analysis. They both exhibit asymmetry along 
the chord line unlike the base NACA​0012 airfoil which was 
used to construct the original lower and upper boundaries 
of the decision vector. The NACA​2410 airfoil is a member 
of the same family as the NACA​0012, which serves as a 

reference for defining the B-Spline coefficient constraints. 
The RAE2822 airfoil is one of the most widely used bench-
mark airfoils in the field of aerodynamic shape optimization 
and inverse design [14, 26, 42, 43]. The shapes of both air-
foils are shown in the top row of Fig. 16, and the difference 
between the HF and LF simulation results for both airfoils 
through the Cp distribution graph are shown in the bottom 
row of Fig. 16.

For both investigated airfoils, the flow simulation 
parameters–Reynolds number (Re), Angle of Attack 
(AoA), and Mach number (Ma)–were set to 5 ⋅107 , 4, and 
0, respectively. The target pressure coefficients were 
derived from these flow conditions and the specific air-
foils, including the CT

pmin
 values. Specifically, for the 

RAE2822, CT
pmin

= −2.27 and for the NACA​2410, 
CT
pmin

= −1.58 . The aerodynamic flow analysis was con-
ducted using XFOIL. This software package, specifically 
designed for subsonic airfoil analysis, served as the pri-
mary tool for assessing the pressure coefficients around 
the airfoil [15]. The Python wrapper for XFOIL simula-
tions – xfoil 1.1.1 [62] was utilized.

XFOIL operates on a numerical panel method, which 
is integrated with a boundary layer model, facilitating 
accurate predictions of flow behavior around an airfoil. 
Through an iterative process, XFOIL effectively solves 
the potential flow equation for inviscid flows and the inte-
gral boundary layer equations for momentum and energy 
in viscous flows. It is optimally designed to accommodate 
incompressible flow scenarios with a Reynolds number 
between 106 and 108 . The number of discretization panels 
used for XFOIL simulations determines the fidelity of 
the simulation. It has been shown by [47] that XFOIL is 
more accurate than other methods for high lift low Reyn-
olds number airfoils. In HF simulations, the discretization 
panel value is set to 300, while in LF simulations it is 
reduced to 100.

For each analysis, XFOIL takes as input the airfoil design, 
which is represented by the coordinates generated by the 
optimization variables–B-Spline coefficients, as well as 
B-Spline degree, and knots. Additional parameters, such as 
Re, AoA, and Ma must be specified for each simulation. 
Each XFOIL evaluation outputs the pressure coefficients 
measured around the airfoil which are compared with the 
target pressure coefficients. The number of iterations was 
set to 400 for every simulation, while the panel bunching 
parameter was set to 1, the trailing and leading edge density 
ratio was set to 0.15, and the refined-area-leading edge panel 
density ratio was set to 0.2.

While the proposed inverse design framework can lev-
erage various computational fluid dynamics (CFD) analy-
sis tools, XFOIL has been selected for its computational 
efficiency and as a proof-of-concept. The difference in 
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execution time between the HF and LF simulations gen-
erated by XFOIL is not significant, however, the quality 
of solution does differ (shown in Fig. 16). In the future, 
this methodology can easily be expanded to incorporate 

more sophisticated approaches, such as Reynolds-aver-
aged Navier–Stokes (RANS) or Large Eddy Simulation 
(LES), which both have significantly higher computa-
tional demands.

Minimum pressure coefficient dataset

In order to train the ML model, a suitable dataset must 
be generated. As defined in Table 1, the Minfo value cor-
responds to the minimum pressure coefficient, denoted 
Cpmin

 , necessitating the simulation of aerodynamic prop-
erties across a wide array of geometries and their map-
ping to respective Cpmin

 values. This dataset was assembled 
utilizing the LHS design of experiment technique. Input 
features for training the ML model were generated using 
LHS as B-Spline coefficients ( �� and �� in Eq. (7)). Each 
B-spline coefficient was subsequently transformed into an 
airfoil geometry to obtain the corresponding Cpmin

 value. 
All data were generated utilizing LF simulations, employ-
ing 100 discretization panels, with the flow parameters 
defined in Sect. A.1. A total of 15000 LF simulations were 
conducted, meaning a total of 15000 B-Spline and C pmin 
pairs were generated.

SFR numerical experiments and dataset

This section provides details on the inverse design targets 
and the solver used for simulating the scalar diffusion pro-
cess. It also includes information on the scalar measurement 
locations and the random generator algorithm for the scalar 
boundary values. Additionally, it describes the specifics of 
the ML dataset generated for the SFR problem.

Scalar diffusion boundary conditions and solver

Two distinct boundary conditions (BC) were investigated 
to demonstrate the versatility of a single ML model across 
various scenarios. As depicted in Fig. 17, one BC exhibits 
a sinusoidal pattern, whereas the other adheres to a linear 
trend. Both BCs were used to generate sT arrays. The val-
ues were measured at locations given in Sect. B.3 (Fig. 18 

Fig. 17   Two investigated boundary condition cases: (a) Sinusoi-
dal boundary condition (b) Linear boundary condition. The x-axis 
defines the top boundary domain which ranges from 0 to 1, while the 
y-axis is the scalar value for each Ωtop

Table 5   “Total cells” refers to the number of cells within the com-
putational domain. “Top BC cells” signifies the quantity of cells 
along the Ω

x
-axis direction, where the Dirichlet boundary condition 

is applied. Scalar values at the boundary are set in the cell centers. 
�Ω

x
 and �Ω

y
 represent the cell sizes in the Ω

x
 and Ω

y
 axis directions, 

respectively

Type Total cells Top BC cells �Ω
x

�Ω
y s

T

max
 Sinusoidal BC s

T

max
 Linear BC

LF 400 20 0.05 0.025 5.72 8.67
HF 6400 80 0.0125 0.00625 5.67 9.10
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and Table 6). The sT
max

 ( Tinfo ) value for the sinusoidal BC 
(Fig. 17a) was 5.67, while for the linear BC (Fig. 17b) it 
was 9.1.

To simulate the BCs over the domain, the open source 
computational fluid dynamics library OpenFOAM 9 was 
used [31]. More specifically, the laplacianFoam diffusion 
PDE solver was used. The details about the LF and HF 
domains are presented in Table 5, as well as the difference 
in the LF and HF modeled values of sT

max
 . The LF scalar dif-

fusion equation is solved on a computational grid that is 16 
times smaller than the HF computational grid in terms of 
total finite volume cells. Moreover, both LF and HF Open-
FOAM simulation execution times are similar, however, due 
to a difference between the obtained results, the cases can 
be utilized for investigation as a proof-of-concept for the 
ML-enhanced framework.

Maximum scalar dataset

The Minfo for the SFR requires identification of the maximum 
scalar value, smax within the domain. To curate a dataset, 
variations were made in the BC scalar values. For every 
distinct scalar value set, a simulation was executed, captur-
ing the corresponding smax value. An in-depth analysis of 
the methodology employed to generate diverse BCs for this 
reconstruction problem can be found in Alg. 3 presented in 
Sect. B.4. For dataset creation, 15000 LF simulations were 

Fig. 18   SFR problem domain Ω with probe locations marked as red 
points. The boundary condition values are given at the top of the 
domain ( Ωy = 0.5 m)

Table 6   Ω
x
-axis and Ω

y
-axis 

values for all probe locations 
within the domain Ω for the 
SFR problem

Probe Ω
x

Ω
x

1 0.168 0.263
2 0.063 0.043
3 0.867 0.445
4 0.711 0.292
5 0.412 0.329
6 0.593 0.193
7 0.096 0.227
8 0.670 0.104
9 0.814 0.064
10 0.109 0.083
11 0.666 0.216
12 0.024 0.399
13 0.560 0.276
14 0.322 0.374
15 0.250 0.009
16 0.210 0.343
17 0.277 0.128
18 0.957 0.136
19 0.933 0.496
20 0.151 0.175
21 0.461 0.409
22 0.385 0.470
23 0.785 0.032
24 0.511 0.091
25 0.488 0.458
26 0.619 0.307
27 0.355 0.361
28 0.865 0.425
29 0.976 0.163
30 0.765 0.249

Table 7   XGB model 
hyperparameters tuned with 
the Optuna Python framework. 
The best solution of 100 trials 
is shown. The first column 
denotes the names of the tuned 
hyperparameters, while the 
second column shows the values 
obtained for the AID problem, 
and the third column shows the 
parameter values for the SFR 
problem

Hyperparameter AID SFR

max_depth 4 5
n_estimators 500 500
learning_rate 0.07 0.06
colsample_bytree 0.94 0.19
subsample 0.54 0.36
gamma 0.42 1.33
reg_alpha 2.44 0.51
reg_lambda 4.16 0.20

Table 8   LGB model hyperparameters tuned with the Optuna Python 
framework (the best solution out of 100 for each problem). The first 
column denotes the names of the tuned hyperparameters, the second 
column shows the values obtained for the AID problem, and the third 
column shows the parameter values for the SFR problem

Hyperparameter AID SFR

num_iterations 2500 2500
learning_rate 0.0187 0.0190
lambda_l1 1.78 0.40
lambda_l2 7.43 6.71
num_leaves 41 68
min_child_samples 37 99
feature_fraction 0.77 0.56
bagging_fraction 0.45 0.52
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executed using OpenFOAM 9, with full details provided in 
Sect. B.1.

Scalar field domain probe locations

In this section, the scalar measurement locations within the 
domain Ω , used as post-processing points for each Open-
FOAM simulation, are presented. For the achievement of 
the target performance (scalar distribution) in both BC sce-
narios and for the training of ML models, the probe locations 
depicted in Fig. 18 and listed in Table 6 are to be used.

Scalar boundary condition generator

Alg. 3 illustrates the method used to generate the BC for 
SFR. The method begins with the values LFn and sΩtop

 , which 
represent the number of LF discretization points at the top 
of the boundary and maximum scalar value that can be set 
at the top of the domain Ω , respectively. The vector BCinit 
represents the initial BC. It consists of points that are equally 
spaced and sized LFn . These points are derived from linear 
interpolation of values ranging from 1 to LFn . A value R is 
randomly chosen from a uniform distribution, representing 
one of three states that signify different BC variations: lin-
ear, parabolic, or sinusoidal. Gnoise is a random vector, gener-
ated from a normal distribution, with a length of LFn . Its 
standard deviation, � , is drawn from a uniform distribution. 
This vector is added to the transformed BC to enhance 

model robustness, simulate real-world scenarios, and ensure 
better generalization in imperfect or noisy environments.

For each run, one of the three BC types is chosen and 
BCinit is transformed using the corresponding equation (lin-
ear, parabolic, or sinusoidal) incorporating randomly gener-
ated values rand1 , rand2 , and rand3 from a uniform distribu-
tion. If the resultant BC with added noise Gnoise has values 
exceeding smax , they are substituted with a random value 
between 0 and smax . To further diversify the generated BCs, 
if a random value between 0 and 1 is less than 0.5, the BC 
is reversed.

Algorithm 3   The algorithm for generating the scalar 
reconstruction problem BC for the purpose of ML model 
training dataset creation.

Table 9   MLP hyperparameters tuned with the Optuna Python frame-
work (the best solution out of 100 trials is shown for each problem). 
The first column denotes the names of the tuned hyperparameters, the 
second column shows the values obtained for the AID problem, and 
the third column shows the parameter values for the SFR problem

Hyperparameter AID SFR

Layers 3 2
Neurons per layer 92,116,34 388,322
Dropout per layer 0.1,0.1,0.0 0.1,0.0
Activation function LeakyReLU ReLU
Optimizer Adam Adam
Epochs 100 500
Batch size 128 64
Learning rate 0.00083 0.00060
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ML algorithms hyperparameters

In this section, the optimized hyperparameters of all inves-
tigated ML algorithms are presented. The best perform-
ing algorithm was further used as a part of the enhanced 
inverse design framework. All three ML algorithms were 
optimized using the Python framework for hyperparameter 
optimization Optuna 3.1.0 [2]. The number of trials for all 
three algorithms was 100, and Optuna-based hyperparameter 

optimization goal was to minimize the average RMSE of 
a shuffled K-Fold ( k = 3 ) cross-validation procedure. The 
ML algorithms were separately tuned for both investigated 
problems/datasets (described in Sect. A.2 and Sect. B.2), and 
15000 LF data instances were used for optimization. The 
optimal set of hyperparameters was independently selected 

Fig. 19   Boundary refinement technique for different datasets sizes 
used to train the XGB model versus the average �y for (a) NACA​2410 
airfoil and (b) RAE2822 airfoil. The number of solutions N (denoted 
as runs) was varied to analyze how it affects the average �y . The 
markers are slightly offset for each c value to improve visibility

Fig. 20   Boundary refinement technique for different datasets sizes 
used to train the MLP model versus the average scalar value of the 
BC s for the (a) Sinusoidal BC and (b) Linear BC. The number of 
solutions N (denoted as runs) was varied to observe its influence on 
the average s value. The markers are slightly offset for each c value to 
improve visibility
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for each of the three investigated algorithms, based on the 
results from 100 trials conducted using Optuna.

The XGB algorithm hyperparameters used are presented 
in Table 7. The max_depth parameter controls the depth 

of each tree, the n_estimators defines the total number of 
gradient boosted trees in the model, learning_rate scales 
the contribution of each tree when it is added to the ensem-
ble of trees, colsample_bytree and subsample parameters 

Fig. 21   Results from the 
ML-enhanced framework for 
NACA2410 include the fol-
lowing boundary refinement 
configurations: (a) PSOML−EN , � 
= 1.1 (b) PSOML−EN , � = 1.2 (c) 
DEML−EN , � = 1.1 (d) DEML−EN , 
� = 1.2. The markers denote the 
different dataset sizes used to 
train the ML model, while the 
coloring of the markers repre-
sents the remaining simulation 
budget (RB) values. A higher 
RB signifies greater savings in 
the computational budget, while 
low fitness values imply a better 
approximation of the target 
performance. The markers are 
slightly offset for each c value to 
improve visibility

Fig. 22   Results from the 
ML-enhanced framework for 
RAE2822 include the following 
boundary refinement configura-
tions: (a) PSOML−EN , � = 1.1 
(b) PSOML−EN , � = 1.2 (c) 
DEML−EN , � = 1.1 (d) DEML−EN , 
� = 1.2. The markers denote the 
different dataset sizes used to 
train the ML model, while the 
coloring of the markers repre-
sents the remaining simulation 
budget (RB) values. A higher 
RB signifies greater savings in 
the computational budget, while 
low fitness values imply a better 
approximation of the target 
performance. The markers are 
slightly offset for each c value to 
improve visibility
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specify the fraction of the randomly sampled features and 
data instances used to construct each tree, respectively, and 
gamma, reg_alpha and reg_lambda are regularization 
parameters. The Python module xgboost 1.7.4 was used.

The LGB model hyperparameters are presented in 
Table 8. The num_iterations parameter controls the num-
ber of boosting iterations performed. Each iteration builds 
a new tree that boosts the performance of the model. The 
learning_rate scales the contribution of each tree when it 
is added to the model (similarly to XGB), lambda_l1 and 
lambda_l2 are L1 and L2 regularization parameters added 
in order to reduce overfitting. The parameter num_leaves 
controls the complexity of the model, and min_child_sam-
ples refers to the minimum number of data instances a leaf 
node must have after a split, as a form of regularization. 
The feature_fraction parameter defines the fraction of fea-
tures used at each training iteration, while bagging_fraction 
determines the number of data instances used at each itera-
tion. Both parameters are also used as a form of regulariza-
tion. The Python module LightGBM 3.3.5 was used.

The hyperparameters for the MLP are detailed in Table 9. 
The LeakyReLU activation function was applied to all hid-
den layers in the AID problem, whereas the SFR used 
ReLU. Monte Carlo dropout layers were integrated into the 
architecture to reduce overfitting. During training for both 
problems, 30% of the data was reserved for validation. An 
early stopping criterion with a patience value of 20 was set 
based on the validation loss to further combat overfitting. 
The MLP was implemented in Tensorflow 2.11.0 [1].

Boundary refinement convergence

Figure 19 illustrates the impact of both the dataset size used 
for training the XGB model and the number of solutions, 
N, derived from the boundary refinement technique on the 
formation of the new lower and upper boundaries, lbR and 
ubR , respectively. Since these new boundaries can be inter-
preted as an airfoil shape, the effect of the dataset size and 
the N value is articulated through the average and stand-
ard deviation of the �y values (the chord length-normalized 
y-coordinates of the airfoil defined by lbR and ubR).

For 10, 50, and 150 runs (or solutions), the average �y and 
its standard deviation bandwidth exhibit only minor varia-
tions as the dataset size increases. This trend is discernible 
for both NACA​2410 and RAE2822 in Figs. 19a and 19b. 
This implies that even a boundary refinement formulated 
by an XGB model trained with just 500 data instances and 
merely 10 repeated runs could be beneficial, as the bounda-
ries remain relatively consistent despite increases in both 
parameters.

Figure 20 demonstrates the impact of the number of solu-
tions, N, and the dataset size on the average scalar value s 

of the BC. Mirroring observations from the AID boundary 
refinement, neither the dataset size nor the number of solu-
tions exert a significant effect on s.

AID results for � = 1.1 and � = 1.2

The results of the ML-enhanced inverse design framework 
utilizing the XGB model and the boundary refinement tech-
nique ( � = 1.1 and � = 1.2) applied to the AID problem for 
the NACA​2410 and RAE2822 airfoils are shown in Figs. 21 
and 22.
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