
Development of a performance portable non-
equilibrium plasma fluid solver on adaptive grids

Hari Sitaraman1, Nicholas Deak1

GEC 2024
Date: Oct 1st , 2024
Funded by US, Dept. of Energy, Laboratory directed research and development program



NREL    |    2

Introduction and motivation
• Non thermal plasmas have numerous 

applications both at low- and high-
pressure regimes

• Fluid models make simulations at higher 
pressures tractable compared to particle 
methods

• Plasma fluid models are complex:
• Stiffness from electron timescales
• Complex chemistry representation
• PDE solves and linear systems

• Advent of new compute architectures: 
need GPU compatible fluid models

GEC reference cell* (~ 0.05-0.5 Torr)

argon plasma coagulator** (~760 Torr)
*https://www.apsgec.org/main/
**Zenker, Matthias. "Argon plasma coagulation." GMS Krankenhaushygiene interdisziplinar 3.1 (2008).
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Objective and outline
• Development of a non-equilibrium plasma fluid solver

• Modern numerical techniques
• Adaptive meshing
• Higher order schemes

• Performance portability
• Runs on CPUs and GPUs (NVIDIA/AMD/Intel)

NVIDIA H100*

• Outline
• Mathematical model
• Numerical methods
• Programming paradigms
• Verification tests
• CPU/GPU performance
• Example case studies

AMD MI250x**
*https://www.nvidia.com/en-us/data-center/h100/
**https://www.amd.com/en/products/accelerators/instinct/mi200/mi250x.html
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Plasma fluid model



Non-equilibrium plasma model – Governing equations
• Two temperature model

• Non-equilibrium: Electron temperature Te >> Gas temperature Tg
• Weakly ionized: Electron and ion densities << Neutral gas density

Species Continuity Equation

Drift diffusion approximation

Poisson equation for 
electrostatic potential

Electron energy equation



Plasma model – Governing equations

Electron Joule 
heating

Electron elastic 
collisions

Electron inelastic 
collisions

• electrons

• ions

• neutrals

• electron energy

Electron energy 
source term

Boundary conditions at solid surfaces

Maxwellian number flux

Drift dominated flux

Wall neutral loss

Maxwellian energy flux



Numerical method

• Advection-diffusion-reaction equations are solved using
• Finite volume method on Cartesian adaptive grids

• 5th order advection, 2nd order central diffusion
• Implicit time integration 

• Second order spectral deferred correction (SDC)
• Can be solved in 2D, 2D-axisymmetric and 3D formulations

• 1D is 2D with 2-4 cells along transverse axis
• Standard boundary conditions also included

• Dirichlet, Homogenous/inhomogenous Neumann, Robin

Unsteady advection-
diffusion-reaction 

equation
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Advection scheme

i+1/2
i+2i i+1i-1 i+3i-2

• 5th order WENO scheme is applied to each PDE
• Nonlinear dissipation with smoothness 

indicators from WENO-Z* scheme
• Needs 3 layers of ghost cells as opposed to 1 for 

1st order schemes
• Provides greater accuracy with only about 30% 

increase in cost

*Borges et al., JCP, 227.6 (2008): 3191-3211.

1st order

WENO5

Diagonal advection in a periodic domain (32x32) base grid
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Time discretization scheme

• Within each k iteration
• Solve Poisson
• Solve electron density (Backward Euler)
• solve electron energy (Backward Euler)
• Solve ions and neutrals (Backward Euler)

• Just like spectral deferred correction (SDC)* scheme 
• One iteration – 1st order accurate
• 2 iterations – 2nd order accurate

*Minion, Commun. Math. Sci. 1(3): 471-500 (September 2003)

ODE system

Second order implicit scheme

Iterative second order scheme
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Chemistry implementation

CANTERA yaml format

• CANTERA yaml files like combustion chemistry
• Python parser* converts yaml to C++ functions for production rates
• Currently hand-written non-Arrhenius rates, transport coefficients

• Plasma chemistry is different from combustion!!

*https://github.com/AMReX-Combustion/PelePhysics

Inline GPU compatible functions
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AMReX programming paradigm
• We use performance portable adaptive meshing library, AMReX*
• Block structured adaptive Cartesian grids, hybrid parallelization
• All levels advanced at the same timestep
• Multilevel Multigrid (MLMG) based backward Euler scheme

• Cell centered implicit diffusion/explicit  advection

• For stiff systems, we utilize AMReX’s HYPRE** interface for 
algebraic multigrid

• Performance portability from parallel for lambdas

*Zhang, Weiqun, et al., The Journal of Open Source Software 4.37 (2019): 1370. **Falgout et al., " Int. Conf. on comp. sci.. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002.
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Code verification
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Method of manufactured solutions (MMS)
Plasma fluid equations Simplified MMS problem

MMS provides a way to check 
the accuracy of our schemes 
and correctness of our 
implementation
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Method of manufactured solutions

• 5th order WENO advection + 2nd order diffusion follows the leading order 
2nd order convergence

• We are getting theoretical convergence rates for our spatial 
discretization schemes, indicating correctness of our implementation
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He capacitive discharge verification

• 1D benchmark case at 1 Torr, 300K from Turner et 
al. Physics of Plasmas 20.1 (2013).

• Helium chemistry with He+,He*,He**
• Cross sections obtained from Turner paper
• Offline BOLSIG solve and fitting for rates and 

electron transport properties
• Compares well with Turner’s fluid model and open-

source code, SOMAFoam*, after ~ 2000 RF cycles

*Verma and Ayyaswamy, Computer Physics Communications 263 (2021): 107855.
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Streamer verification

• Axisymmetric streamer test case discussed in 
Bagheri et al., PSST, 2018

• Initiation with seed charge and applied electric 
field

• Streamer forms and propagates to the bottom 
grounded boundary with top-to-bottom applied 
field.

• Our code agrees well with axial profiles of 
Electron density and electric field (symbols: 
literature, line: Vidyut3d)

• Simulations conducted using 52 cores for 
approximately 3 hours to simulate 16 ns 
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CPU vs GPU performance

AMD EPYC 
Genoa

NVIDIA 
H100

AMD EPYC 
Rome

NVIDIA 
A100

4 million cell 2D streamer case run for 10 
steps. 1 GPU ~ 60X faster than 1 CPU

100X 
AMD

512x1024x512 = 0.25B cell 3D streamer 
case, ~ 20X speed up at the node level on 
ORNL Frontier

60X 
NVIDIA
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Plasma models for CO2 conversion
• Atmospheric pressure discharges 

proceed through a streamer 
breakdown mechanism

• Local reduced electric fields (E/N) 
dictate electron impact 
ionization/excitation/dissociation 
effects

Electron impact rates as a function of E/N

NREL’s coaxial DBD

streamer

CO formation in the streamer Electron density in streamer

CO2 vibrational states in streamer

Electric field focusing at streamer head

CO (#/m3)
E (#/m3)

CO2v (#/m3)
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Conclusions and future work
• Conclusions

• Developed a non-equilibrium plasma fluid solver
• Cartesian block structured adaptive meshing
• 5th order advection, central diffusion
• AMReX library

• Verified against benchmark cases
• Method of manufactured solutions, He Capacitive 

discharge, Atmospheric streamer
• Performance

• 1 NVIDIA GPU ~ 60X faster than 1 CPU
• On node GPU performance gain ~ 20X on ORNL frontier

• Future work
• Complex geometry inclusion
• photoionization
• New boundary conditions

• Dielectric charge build up, secondary emission, external circuit
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