i iNREL

Transforming ENERGY

Development of a performance portable non-
equilibrium plasma fluid solver on adaptive grids

Hari Sitaraman?, Nicholas Deak!
GEC 2024
Date: Oct 1%, 2024

Funded by US, Dept. of Energy, Laboratory directed research and development program



Introduction and motivation

* Non thermal plasmas have numerous
applications both at low- and high-
pressure regimes

* Fluid models make simulations at higher
pressures tractable compared to particle
methods

* Plasma fluid models are complex:
e Stiffness from electron timescales
 Complex chemistry representation
* PDE solves and linear systems

* Advent of new compute architectures:
need GPU compatible fluid models

argon plasma coagulator** (~760 Torr)

*https://www.apsgec.org/main/ NREL | 2
**Zenker, Matthias. "Argon plasma coagulation." GMS Krankenhaushygiene interdisziplinar 3.1 (2008).



Objective and outline

* Development of a non-equilibrium plasma fluid solver
* Modern numerical techniques
e Adaptive meshing
e Higher order schemes

* Performance portability
* Runs on CPUs and GPUs (NVIDIA/AMD/Intel)

NVIDIA H100*

e OQOutline
 Mathematical model
* Numerical methods
* Programming paradigms
e Verification tests
* CPU/GPU performance
* Example case studies

AMD MI250x**

*https://www.nvidia.com/en-us/data-center/h100/ NREL | 3
**https://www.amd.com/en/products/accelerators/instinct/mi200/mi250x.html



Plasma fluid model
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Non-equilibrium plasma model — Governing equations

 Two temperature model
* Non-equilibrium: Electron temperature Te >> Gas temperature Tg
* Weakly ionized: Electron and ion densities << Neutral gas density
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Plasma model — Governing equations
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Numerical method

E} nsteady advection-
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equation

* Advection-diffusion-reaction equations are solved using

* Finite volume method on Cartesian adaptive grids
e 5th order advection, 2" order central diffusion

* Implicit time integration
e Second order spectral deferred correction (SDC)

e Can be solved in 2D, 2D-axisymmetric and 3D formulations
1D is 2D with 2-4 cells along transverse axis

e Standard boundary conditions also included
 Dirichlet, Homogenous/inhomogenous Neumann, Robin



Advection scheme
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e 5% order WENO scheme is applied to each PDE 15t order
* Nonlinear dissipation with smoothness
indicators from WENO-Z* scheme
* Needs 3 layers of ghost cells as opposed to 1 for
15t order schemes
* Provides greater accuracy with only about 30% WENO5
increase in cost

Diagonal advection in a periodic domain (32x32) base grid NREL | 8
*Borges et al., JCP, 227.6 (2008): 3191-3211.



Time discretization scheme

&t =f ODE system

n n ]' n n
utt =" 4+ 9 (f(u ) + f(u +1)) ot Second order implicit scheme
uktl = + % (f(u"’) 4 f(uk)) ot ul=u" lterative second order scheme

e Within each k iteration
e Solve Poisson
* Solve electron density (Backward Euler)
* solve electron energy (Backward Euler)
* Solve ions and neutrals (Backward Euler)
* Just like spectral deferred correction (SDC)* scheme
* One iteration — 1%t order accurate
» 2 iterations — 2" order accurate

*Minion, Commun. Math. Sci. 1(3): 471-500 (September 2003) NREL 19



Chemistry implementation

AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void
productionRate(amrex::Real #wdot, const amrex::Real *sc, const amrex::Real T,
const amrex::Real Te, amrex::Real EN, amrex::Real *enerExch) {

- equation: E + 02 + M == 02- + M # Reaction 44
type: three-bpody
rate-constant: {A: 3.0e-30, b: ©.0, Ea: 8.0}
note: Electron attachment to other species

- eguation: E + 0 + M == 0- + M & Reaction 45
type: three-body
rate-constant: {A: 1.@e-31, b: 8.0, Ea: 8.0}

- equation: 0- + 0 == 02 + E # Reaction 46

rate-constant: {A: 1.5e-18, b: 8.0, Ea: 8.0} :-
note: Electron detachment

- equation: 0= + H == OH + E # Reaction 47
rate-constant: {A: 5.0e-10, b: 8.0, Ea: 8.0}
- equation: 0- + H2 == H20 + E # Reaction 48
rate-constant: {A: 6.72e-18, b: 9.8, Ea: 0.0}
- equation: 0- + C == C0 + E # Reaction 49
rate-constant: {A: 5.0e-10, b: 8.0, Ea: 8.0}
- equation: 0= + CO => C02 + E # Reaction 5@
rate-canstant: {A: 6.5e<1A0. h: A.0. Fa: A.A}

CANTERA yaml format

* CANTERA yaml files like combustion chemistry

amrex::Real tc[5] = {log(T), T, T * T, T* T % T,

T* T T % T}; // temperature cache

const amrex::Real invT = 1.0 / tc[1];

const amrex::Real logT

log(T/360.0);

// reference concentration: P_atm / (RT) in inverse mol/m"3
const amrex::Real refC = 101325 / 8.31446 * invT;
const amrex::Real refCinv = 1 / refC;

for (int 1 = 8; 1 < &4; ++1) {

}

{

wdot[i] = ©.09;

// reaction 12: CO02 + E => CO + O + E

Janev_sum = ©.0;

amrex::Real k_f;

Ffit_coefs = {28.3950215483559, -119.510009432235, 160.437496467960, -74.1425574458809};
double Ffit_A = 1.50741518933862e-16;

for(int 3 = @; j<4; j++) Janev_sum += Ffit_coefs[j] * invTe_pow[j];
k_f = FFfit_A * exp(Janev_sum) * 6.02214085774e23;

const amrex::Real gqf = k_f * (sc[E_ID] * sc[CO2_ID]);

const amrex::Real qr = 0.9;

const amrex::Real qdot = gqf - gr;

wdot[0_ID] += gdot;

wdot[CO_ID] += qdot;

wdot[CO2_ID] —-= qdot;

Inline GPU compatible functions

* Python parser* converts yaml to C++ functions for production rates
*  Currently hand-written non-Arrhenius rates, transport coefficients
* Plasma chemistry is different from combustion!!

*https://github.com/AMReX-Combustion/PelePhysics
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AMReX programming paradlgm

* We use performance portable adaptive meshing library, AMReX*
* Block structured adaptive Cartesian grids, hybrid parallelization
e All levels advanced at the same timestep
e Multilevel Multigrid (MLMG) based backward Euler scheme
* Cell centered implicit diffusion/explicit advection

* For stiff systems, we utilize AMReX’s HYPRE** interface for
algebraic multigrid
e Performance portability from parallel for lambdas

// update residual

amrex: :ParallelFor(bx, [=] AMREX GPU DEVICE(int i, int j, int k) I
dsdt_arr(i, j, k) = (flux_arr[0](i, j, k) - flux arr[0](i + 1, J, k)) / dx[0]
+ rxn_arr(i,j,k,captured_specid);
dsdt_arr(i,j,k) += (flux arr[1l](i, j, k) - flux arr[l](i, j + 1, k)) / dx[1l];
dsdt arr(i,j,k) += (flux arr([2](i, Jj, k) - flux arr[2](i, j, k + 1)) / dx[2];

l):

*Zhang, Weiqun, et al., The Journal of Open Source Software 4.37 (2019): 1370.  **Falgout et al., " Int. Conf. on comp. sci.. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. NREL | 11



Code verification
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Method of manufactured solutions (MMS)

Plasma fluid equations

Simplified MMS problem
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MMS provides a way to check
the accuracy of our schemes
and correctness of our
implementation
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Error L2 nom

Method of manufactured solutions
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e 5t order WENO advection + 2" order diffusion follows the leading order
2"d order convergence
* We are getting theoretical convergence rates for our spatial

discretization schemes, indicating correctness of our implementation
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He capacitive discharge verification
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e Compares well with Turner’s fluid model and open- e

source code, SOMAFoam™, after ~ 2000 RF cycles 0 01 02 03 04 05 06 07 08 09 1
non-dim. distance
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Streamer verification
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Axisymmetric streamer test case discussed in
Bagheri et al., PSST, 2018

Initiation with seed charge and applied electric
field

Streamer forms and propagates to the bottom
grounded boundary with top-to-bottom applied
field.

Our code agrees well with axial profiles of
Electron density and electric field (symbols:
literature, line: Vidyut3d)

Simulations conducted using 52 cores for
approximately 3 hours to simulate 16 ns
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CPU vs GPU performance
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E GPU
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512x1024x512 = 0.25B cell 3D streamer
case, ~ 20X speed up at the node level on
ORNL Frontier
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Rate coefficient (m3/s)

Plasma

*  Atmospheric pressure discharges
proceed through a streamer
breakdown mechanism

*  Local reduced electric fields (E/N)
dictate electron impact
ionization/excitation/dissociation

effects
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Electron impact rates as a function of E/N
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Conclusions and future work

Conclusions

Developed a non-equilibrium plasma fluid solver
e Cartesian block structured adaptive meshing
5th order advection, central diffusion
e AMReX library

Verified against benchmark cases

Method of manufactured solutions, He Capacitive

discharge, Atmospheric streamer
e Performance

1 NVIDIA GPU ~ 60X faster than 1 CPU
* On node GPU performance gain ~ 20X on ORNL frontier
Future work
e Complex geometry inclusion
e photoionization
* New boundary conditions

Dielectric charge build up, secondary emission, external circuit

3
:

NREL | 19



Thank you
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