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Preface 
This paper discusses consequential greenhouse gas emissions analysis for actions that influence 
the electric grid—that is, the analytical approach of estimating how such actions change 
greenhouse gas emissions, relative to what they otherwise would have been without the action. 
Although the paper starts with general considerations, it ultimately focuses on consequential 
analysis with marginal emissions rates as an option likely more scalable than others.  

Consequential analysis has immense potential to guide efficient, impactful decisions. In theory, 
selecting actions based on their impact is the optimal way for an organization to maximize its 
objectives. In practice, however, consequential analysis is constrained by the quality of the 
estimates it can bring to bear. Although there are many areas where this approach can add value 
to a decision-making process, there are also many shortcomings in currently available data and 
methods, which can result in inaccurate impact estimates. Depending on the objectives of a 
decision maker, this can make the approach unsuitable in some contexts.  

Consequently, to help guide future research and facilitate discussions about the suitability of this 
analytical approach for particular applications, this paper focuses to a great extent on the 
limitations, uncertainties, and unknowns of the current state of the art of consequential emissions 
analysis when applied to electric sector actions. This paper’s focus on limitations should not be 
misunderstood: Consequential analysis is a valuable tool for many applications and may 
defensibly be applied to new applications in the coming years. Nonetheless, focusing on current 
shortcomings can guide research into improvements that increase the likelihood that decisions 
made with consequential analysis lead to the intended results. Future advances in the practicing 
of consequential analysis may mitigate many of the points raised here, expanding the domain 
where it can defensibly be applied.  
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1 Introduction 
1.1 Electricity Interventions and Emissions Analysis 
Actors of all types—such as individual consumers, businesses, governments, and non-
governmental institutions—make decisions that influence greenhouse gas emissions from the 
bulk electric grid. Many of these actors have become increasingly interested in estimating the 
greenhouse gas impacts of their electricity use and electricity interventions (Schaltegger et al. 
2015; Bjørn et al. 2022).1 This document discusses an analytical approach for making such 
estimates: consequential emissions analysis. Consequential emissions analysis seeks to 
estimate how an action changes emissions, relative to a counterfactual where the action had 
not taken place. The greenhouse gas impact estimates from a consequential emissions analysis 
can be combined with other considerations (such as costs) to rank-order different alternatives 
available to an actor, ultimately selecting the interventions that maximize their objectives. 

Consequential analysis has seen widespread use and elaboration across varied disciplines. As a 
few select examples from the numerous possible: life cycle analysis (Tomas Ekvall 2019; Earles 
and Halog 2011; European Commission 2010), benefit-cost analysis (Woolf et al. 2020), policy 
analysis (Bistline et al. 2023; Steinberg et al. 2023; Xu et al. 2024), and philosophy (Hansson 
2007). 

In theory, consequential emissions analysis can improve decision making (e.g., identify the 
highest impact action from a suite of possible actions, maximizing impact per dollar spent, 
minimizing the cost of a given impact), when compared to decisions guided by non-
consequential methods (Brander 2021; Tomas Ekvall 2019). While non-consequential methods 
are useful for many purposes, they are theoretically suboptimal for selecting between alternatives 
because they do not seek to directly estimate the impact of the interventions being considered—
and therefore any resulting rank-ordering could misallocate resources, potentially significantly. 

While acknowledging the theoretical value of consequential analysis, it is also helpful to 
acknowledge that in practice, consequential emissions analysis can have material uncertainty 
(Gagnon and Cole 2022; Ekvall 2019; Bistline et al. 2023). Although there are many situations 
where consequential analysis is generally recognized as adding value to a decision-making 
process, there are also many situations where data or methods do not currently exist to fulfill the 
theoretical promise of the approach. Shortcomings in the methods and data of consequential 
analysis can result in erroneous estimates—research has shown that, in some situations, 
incompletely constructed consequential analysis can result in less effective decisions than those 
guided by heuristics or non-consequential metrics (Gagnon and Cole 2022; Xu et al. 2024). 
Much of this document is focused on describing current methods and their limitations, to help 
practitioners decide where the application of consequential analysis is appropriate, and to 

 
1 We use the term “intervention” to describe any action taken by an actor—generally one meant to influence the 
demand for grid-purchased electricity, the supply of electricity, or any action that otherwise changes how electricity 
is generated. Interventions can take many forms: increasing or reducing load, choosing to maintain an existing load, 
shifting (“shaping”) load, building electric generators, signing offtaker agreements, purchasing renewable energy 
certificates (RECs or their equivalents), and so on. This paper focuses primarily on estimating the impact of 
interventions that change the demand on the bulk electric sector, such as changes in load or injections of clean 
generation—although that is not to diminish the potential impact of other interventions, such as building 
transmission lines or facilitating interconnection processes. 
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provide direction for research activities that could increase the accuracy and utility of this 
analytical approach.  

Key terminology: Consequential emissions analysis 
Consequential emissions analysis is an analytical approach that seeks to estimate how an 
action or set of actions impacts emissions (i.e., the emissions induced or avoided by the 
action). As described in Section 2, consequential analysis defines the emissions induced or 
avoided by an action as being the difference in emissions between a scenario with the action 
and a counterfactual scenario without the action. 

1.2 Comparison to Attributional Emissions Analysis 
Consequential emissions analysis can be further understood by contrasting the method with 
another common framework for analyzing emissions known as attributional accounting (Figure 
1). Attributional analysis seeks to allocate environmental burdens to specific products, 
organizations, or countries for a given state of the world, whereas consequential analysis seeks to 
estimate how specific actions change environmental burdens, relative to the state of the world if 
the action was not taken (Brander 2021; Tomas Ekvall 2019).  

Attributional analyses generally draw boundaries in both time and space when allocating 
emissions: for example, Scope 1 emissions inventories are attributional and are an accounting of 
emissions within an organization’s boundaries for a specific historical period of time. In contrast, 
consequential analysis of an action by that organization would require, in theory, a 
comprehensive estimate of the consequences of the action across all time and space (Brander 
2016)—although in practice, consequential analysis generally does draw boundaries meant to 
encompass the majority of the impacts of an action.2  

 
2 Note that, while impacts would in theory be comprehensively reflected in the analysis, the metric itself does not 
need to be, depending on the specific question being asked. For example, it is valid to perform a consequential 
analysis of an action’s impact on greenhouse gas emissions from the electric sector of a particular country (i.e., the 
metric is defined with boundaries)—but for such an analysis to be theoretically complete, it would still have to 
reflect any relevant dynamics from other countries (i.e., phenomena impacting the metric do not have boundaries) 
and in domains beyond the electric sector. The same goes for phenomena across time: It is technically valid to 
perform a consequential analysis of an action’s impact on a metric that has been defined for a constrained period of 
time (e.g., estimating how an action would influence greenhouse gas emissions from the combustion of fuels during 
the calendar year 2025, even if the action would also influence emissions later). Despite this being a technical valid 
option, caution is warranted because such a temporally restricted metric may not be the appropriate metric for the 
question at hand when greenhouse gas emissions are being analyzed. For example, if rank-ordering actions based on 
a comprehensive estimate of their environmental impacts, it would generally be preferable to include as expansive a 
time horizon as is practicable, possibly in combination with temporal discounting.  
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Figure 1. Illustration of consequential and attributional perspectives 

Consequential and attributional analysis are both useful emissions analysis tools to apply in 
different contexts or in conjunction (Anex and Lifset 2014; Brander, Burritt, and Christ 2019). 
The ultimate selection of which is more suitable depends on the specific application, the quality 
of the data that can be brought to bear, and numerous other contextual factors. Some scholars 
suggest that attributional accounting is more theoretically appropriate for assigning “ownership” 
of emissions, such as in emissions inventories, whereas consequential analysis is more 
theoretically appropriate for analyzing and guiding specific decisions (Plevin, Delucchi, and 
Creutzig 2014; Brander and Ascui 2015; Brander, Burritt, and Christ 2019; Brander 2021; Miller 
2022).  

Parallel analyses separately employing the two methods may sometimes be beneficial (Brander, 
Burritt, and Christ 2019). For instance, an organization could use attributional accounting to 
create an inventory of emissions associated with its supply chain, while separately using 
consequential analysis to report the estimated greenhouse gas emissions impacts of specific 
projects they are undertaking (recognizing that many organizations have expressed goals in terms 
of their greenhouse gas inventories, and therefore in practice may predominately or exclusively 
consider the emissions impacts of an intervention to be how it influences their inventory 
reporting). 

For more complete discussions of the trade-offs and different applications of consequential and 
attributional analysis, see Brander and Ascui (2016), Brander et al. (2019), Ekvall (2019), and 
Gillenwater (2023). 
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2 Stylized Models of Prospective, Retrospective, and 
Real-Time Consequential Emissions Analysis 

2.1 Foundations of Consequential Emissions Analysis 

Consequential analysis estimates how an action impacts a metric of interest—for greenhouse gas 
emissions analysis, that would generally (but not always) be total global emissions. 
Fundamentally, consequential emissions analysis estimates the difference between emissions in 
two scenarios: a scenario where the action takes place and a counterfactual scenario where the 
action does not take place. This fundamental principle can be expressed as: 

Equation 1 

 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
 𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

 𝑐𝑐𝑒𝑒𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 

 
= 

𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐  
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐 𝑤𝑤𝑐𝑐𝑐𝑐ℎ 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

 
− 

𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐 𝑤𝑤𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

 

To be theoretically complete, consequential emissions analysis requires impacts to the metric of 
interest to be estimated comprehensively—i.e., all relevant phenomena reflected across all space 
and time, and without sectorial boundaries. In practice, bounds are generally set such that the 
significant majority of material impacts are captured, balancing completeness with the 
availability of data and the complexity of the analysis.3  

Operational and Structural Impacts 
For electric sector analysis, it can often be helpful to define two categories of impacts: First, 
actions can affect the operations of electricity generators. For instance, increased electricity 
demand from a new manufacturing facility could cause a natural gas plant to have a higher 
output, relative to what it would have been in absence of the facility’s load. These effects are 
known as operational impacts. Second, actions can affect the structure of the electricity grid 
(i.e., the capital assets of the grid, such as generators or transmission lines). For instance, the 
manufacturing facility could induce investment in a new wind farm, that would not otherwise 
have existed in absence of the facility’s load. These effects are known as structural impacts. 

These two categories of impacts map onto another pair of terms: Short-run refers to an estimate 
that assumes capital assets are fixed, and therefore includes only operational impacts, whereas 
long-run refers to an estimate where both operations and capital assets can vary. In practice, this 
generally means that short-run estimates are useful for reflecting a period of time when the 
structural impacts of an action have not yet occurred, and therefore are strictly operational. Long-
run impacts, in contrast, are useful for reflecting the period of time after structural impacts have 

 
3 With respect to boundaries, different bodies of literature have at times defined different terms for boundaries, such 
as “project boundaries” and “leakage” (Aukland, Costa, and Brown 2003), “foreground” and “background” 
(European Commission 2010), as well as “direct” and “indirect” (U.S. Department of Energy 2023). These can at 
times be useful categorizations for describing discrete components of impact, but in general do not play a role in the 
remainder of this document, as consequential impact analysis is understood to be comprehensive, and therefore it is 
not necessary to draw such boundaries. 



5 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

occurred, reflecting the combined effects of both operational and structural impacts (Weidema, 
Frees, and Nielsen 1999; A. D. Hawkes 2014; Gagnon and Cole 2022).  

Key terminology: Operational, structural, short-run, and long-run  
Operational impacts: Differences in the electric generation from generators, between a 
scenario with an action and a counterfactual without the action.  
 
Structural impacts: Differences in the capital assets of the electric grid (e.g., generators and 
transmission lines), between a scenario with an action and a counterfactual without the 
action. 
 
Short-run analysis: Estimates or analysis performed assuming that capital assets are fixed, 
and therefore impacts are purely operational.  
 
Long-run analysis: Estimates or analysis performed assuming that capital assets can change in 
response to an action, and therefore impacts are a combination of both operational and 
structural.  
 

Prospective, Retrospective, and Real-Time Analyses 
It can also be useful to describe three prototypical categories of consequential emissions analysis, 
which differ in the relation between the timing of the intervention and the performance of the 
analysis: 

• Prospective analysis (ex-ante): Analyzing the impact of a future, generally long-lived, 
action.  

• Retrospective analysis (ex-post): Analyzing the impact of a past action or set of actions.  
• Real-time estimates: A signal available in real time that conveys an estimate of the 

emissions consequences of an action that influences the electric sector, such as increasing 
or decreasing electric demand at that location and time. 

The three categories are suited for different purposes. For example, prospective analysis could 
guide forward-looking investment decisions for long-lived assets, retrospective analysis could be 
used as a basis for a hypothetical consequential reporting system, and real-time estimates could 
in theory be used as a signal to inform operational decisions such as deciding when to charge an 
electric vehicle fleet.  

To be clear, all three analysis categories are considered here to be seeking the same goal (to 
identify the emissions impact defined in Equation 1). Nonetheless, it can be colloquially helpful 
to define categories such as this because different models and different data may be more suited 
for one application than others. For example, many models are useful for prospective analysis, 
but are not built to inform the other two applications.  

Note that the three categories listed previously are not exhaustive, and they can have overlapping 
features: For example, retrospective analysis could have a prospective component if all impacts 
of a past action have not materialized when the analysis is conducted, and real-time estimates can 
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be based on short-term forecasts (therefore being a special class of prospective analysis that 
occurs at a much-reduced timescale).  

To gain some further intuition about these three analytical categories—and unique challenges 
associated with each—three stylized examples are shown below, illustrating possible impacts 
over time for each of the three analysis types. Each impact trajectory is drawn from a simple 
model, described in more detail in Appendix A.2. The key assumptions of the model, for the 
purpose of this section, are 1) any increases in load induce an increase in variable renewable 
generation that is half the size of the load increase (e.g., a 100 MWh/year load increase induces 
50 MWh/year of variable renewable generation), 2) there is a 3-year time lag between a change 
in load and its influence on the structure of the grid (generator capacities, in this case), 3) any 
remaining generation needs are met by natural gas generators, 4) load increases during the 
relevant period of time, and 5) structural decisions are made annually. This simple model is 
meant to illustrate several key dynamics and provide a starting point for discussing how reality 
may differ materially.  

Note that the discussions that follow—and largely throughout this document—are focused on 
interyear phenomena, as that is an area that appears to merit more conceptual development. 
Intrayear phenomena are also important, in the sense that there can be meaningful hour-to-hour 
variations in the relationship between actions and emissions. Intrayear considerations are less 
discussed in this document because they are already receiving much consideration in existing 
literature.  

2.2 Stylized Prospective Analysis 
First, consider the most straightforward and analytically mature category: a prospective analysis 
of a long-lived intervention. As an example, consider an analysis being conducted in 2023, for a 
hypothetical load addition in 2024, that will persist for 20 years (see Figure 2). As mentioned 
previously, the responses shown are derived from the simple model described in Appendix A.2, 
where load is served by a mixture of natural gas and variable renewables and there is a 3-year 
time lag for structural change.  
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Figure 2. Stylized prospective analysis 
Notes: 

A. At the beginning of 2023, the prospective emissions analysis is performed, seeking to 
estimate the emissions impact of the upcoming intervention (a new load). 

B. Throughout 2023, no impacts occur, as the intervention has not begun.  

C. In 2024, the intervention starts; that is, the load is added to the grid. 

D. From the initiation of the intervention through 2026, the load induces emissions at a 
relatively high rate from the grid because the demand induces generation from existing 
natural gas generators (under the assumptions of our example). This corresponds to purely 
operational impacts, in the language defined in Section 2.1.4  

 
4 This stylized example is a load addition and therefore, under the assumptions of this model, induces emissions. 
These dynamics are relevant for interventions that reduce the demand on the grid as well, however, such as load 
reductions or generation injections. In such cases, the emissions impacts could be inverted; that is, there would be 
avoided emissions instead of induced emissions.  
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E. At the beginning of 2027, 3 years after the load was first added to the grid, the structural 
response manifests: Given the model’s assumptions, variable renewable generators (that 
would not have otherwise been built) become operational and start to inject clean 
generation into the grid at a level that is half of the MWh demand from the intervention.5  

F. From 2027 through 2043—the bulk of the intervention’s lifetime—induced generation (i.e., 
the difference between the grid’s generation mixture with the intervention relative to the 
counterfactual without the generation) is a mixture of variable renewable and natural gas 
generation, and is therefore a relatively lower emissions rate than the first 3 years.6  

G. At the end of 2043—20 years after initiation—the intervention is projected to cease (i.e., 
the load is projected to be removed from the grid).  

H. Under the assumption of a 3-year time lag for structural impacts, the grid persists with a 
greater quantity of variable renewable generation than in the counterfactual for that time, 
until the resource planners adapt to the removal of the load. During this time, the induced 
emissions rate is negative relative to what would have occurred at that time in the 
counterfactual without the intervention because the renewable generators (that were 
induced by the intervention) would continue to inject electricity into the grid.  

I. In 2047, 3 years after the intervention has ceased, the grid returns to the same state that it 
would have been in absence of the intervention.7 Under the assumptions here, where there 
is positive load growth, this adaptation takes the form of slowing down the rate of building 
new generators (not retiring the induced generators). 

J. From 2047 onward, the induced emissions from the intervention are zero because there 
are no differences between the with-intervention and counterfactual scenarios.  

The action being analyzed could be a new activity (such as in the example above)—but it also 
could be the analysis of the future of an activity that already exists when the analysis is 
performed (e.g., a load that already exists on the grid, where a decision maker wishes to estimate 
the consequences of the load continuing to exist). In such a situation, the analysis could be 
phrased as the action being either the continuation of the activity (where the counterfactual is 
therefore the situation in which the activity ceases), or the action could be the termination of the 
activity (where the counterfactual is the continuation of the activity).8 

The inclusion of structural impacts in the example above raises an issue that challenges electric-
sector consequential analysis: There are large step-change impacts (e.g., a power plant 
investment or retirement, or the unit commitment process for large generators)—and it is often 

 
5 There are a variety of possible causal chains for this response, depending on the specifics of the actors involved in 
structural decisions for the local grid region: For example, the load intervention could have lifted energy prices 
above what they otherwise would have been, inducing independent power producers to complete projects in the 
interconnection queue that otherwise would have been withdrawn. Another example: A utility regulated to minimize 
costs may have increased its purchase or investment in renewable generation relative to what it otherwise would 
have been.  
6 Note that there could be many changes to the grid during this time that would affect the induced emissions rate. 
For example, if the characteristics of the natural gas fleet were to change over this time, this may impact the induced 
emissions rate during 2027 through 2043. In addition, there may be piecemeal structural responses during this time 
period, not just a single response at the 3-year point. This stylized example shows a constant induced emissions rate 
for simplicity, recognizing that, in practice, it would be likely to vary over time.  
7 In the stylized example given here, the with-intervention and counterfactual scenarios become identical. In 
practice, at least minor path-dependent differences would likely have occurred, meaning that the two scenarios never 
become fully identical. 
8 The authors of this paper often receive questions about whether consequential analysis is applicable to both “new” 
as well as “existing” activities. As described here, it can be applied to both, although analysts should always reflect 
on whether consequential analysis is the right framework for the question they are asking.  



9 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

not feasible to assess with precision a particular action’s contribution to a particular step-change 
impact.9 This paper follows other researchers in considering actions as contributing 
proportionally to projected step changes (Brander 2016; Hertel et al. 2010; Hsu et al. 2010) while 
recognizing that this is, strictly speaking, a deviation from the theoretical ideal of exactly 
determining the consequences of a specific action being analyzed.10  

The stylized example here assumes there is a time lag for structural impacts. There may, 
however, be situations where it would be defensible to assume no time lag. For example, if the 
action being analyzed is the connection of a renewable generator to the bulk power grid, in a 
situation where there is a bottleneck in the interconnection queue, the processing of the given 
generator through that queue may be directly offsetting another generator that would have 
otherwise been deployed at approximately the same time. This would represent an immediate 
structural impact (i.e., the suppression of a generator that would have otherwise existed). As 
another example, if an action is known and prepared for by resource planners, there may be a 
planned structural response that occurs more or less immediately (for example, if a load is 
anticipated by local resource planners who build generators they would not have otherwise built 
that come online at approximately the same time as the load).  

Lastly, note that the discussion above for Figure 2—and in the following sections—shows load 
impacts caused by actions. While the load impact of an action can often be straightforward to 
determine, in many cases it may not be: This is particularly relevant for actions meant to support 
the deployment of clean generators, where the impact of an action may often not be the 
generation output of the associated generator (for example, if the project would have gone 
forward in absence of the action). Because this section is focused on theoretical impacts, this 
challenge is not discussed further here, but the point is raised in more detail in Section 3 (which 
focuses on the practical implementation of the theory), and in particular in Section 3.4. 

To reemphasize: The previous example is a stylized response to an action, meant to illustrate 
several key aspects and difficulties, and to set up the discussions in Section 3. The actual 
response would vary materially between interventions, in practice. 

  

 
9 Considerations of time sometimes help mute the severity of this complication—that is, even if a particular action 
does not induce structural change in the first relevant time step, it may move up an investment during a later time 
step. Such framing does not make the problem linear, but at least breaks the nonlinear steps into smaller pieces.  
10 Note that such an assumption is reflected in widespread consequential electric sector analyses that use linear 
programs, a common framework for capacity expansion models (Ho et al. 2021). 
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2.3 Stylized Retrospective Analysis 
The prior subsection started with a stylized prospective analysis because it is the most 
straightforward. In this section, a stylized retrospective analysis is examined, which is a less 
developed application for consequential analysis. The chosen example has two particularly 
difficult features: First, it is assumed that the intervention being analyzed is short enough that a 
significant portion of its impacts manifest after the action ceases; second, it is assumed that the 
analysis is being conducted at a point in time when not all of the impacts of the intervention have 
manifested.  

While these features would not always be present (retrospective evaluations can be made of 
long-lived interventions in the distant past, of course), the example here includes these features 
because they may reflect challenges in an application such as a hypothetical corporate reporting 
system (i.e., a regularly updated estimate of impacts for a recently concluded calendar year). For 
example, if an organization wished to describe the impact of all the activities it undertook in 
2024, and was performing the analysis in early 2025, it would likely face these challenges.  

Figure 3 shows the stylized example for this retrospective analysis. This example shows an 
analysis of load that existed during 2024, being analyzed in the first quarter of 2025. As with the 
prior example for prospective analysis, the response shown in Figure 3 comes from the model 
described in Appendix A.2, where load increases are projected to induce generation equally from 
both variable renewable generators and natural gas generators and where there is a time lag of 3 
years for the grid to structurally respond to actions. For ease of comprehension, this example 
reflects a situation where the load came online in 2024 and would persist indefinitely—and 
where the counterfactual situation is that the same load would instead come online in 2025. 
However, note that the response shown in Figure 3 could also reflect other situations, such as 
where the load existed for only 1 year (with the counterfactual being no load).11  

 
11 See Appendix A.2 for more discussion of this point. 
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Figure 3. Stylized retrospective analysis 
Notes: 

A. Load comes online in 2024, drawing electricity from the grid. There is an immediate 
operational response from the grid, where there is increased generation from natural gas 
generators, relative to what would have occurred in the counterfactual (here assumed to be 
the load instead coming online in 2025).  

B. In Q1 of 2025, the retrospective analysis of the 2024 load is conducted. Note that the load 
has continued to exist beyond 2024, so it is assumed that the analyst is specifically 
seeking to understand the impact of the load that existed in 2024, not the lifetime impacts 
of whatever is causing the load.  

C. From 2025 through 2026, there are no impacts from the intervention because there are no 
differences between the with-intervention and the counterfactual scenarios (because the 
intervention is considered to be only the 2024 load, and the structural response from it has 
not yet occurred).  

D. At the beginning of 2027, the structural response to the 2024 load occurs, 3 years after the 
load appeared. This takes the form of induced renewable generator builds, injecting clean 
generation into the grid.  
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E. During 2027, the emissions impact of the intervention is negative because the only impact 
occurring at that point in time, from the 2024 load, is the injection of clean generation into 
the grid from the induced renewable generators—which is assumed here to reduce 
generation from natural gas generators.12  

F. At the beginning of 2028, the impact from the 2024 load ends because the with-
intervention and counterfactual scenarios become identical (i.e., because the 
counterfactual has load appearing in 2025 instead of 2024, the appearance of the 
renewable generators is 1 year later, after which there is no difference between the 
scenarios). 

G. From 2028 onward, for this stylized example, the intervention has no further impacts, 
because the grid has returned to a state that is identical to the counterfactual.  

This example was chosen to analyze the initiation of a new load, with a counterfactual of the 
same load starting 1 year later, because the impacts in such a situation are relatively clean and 
therefore an easier starting point for comprehension. Other similar retrospective assessments 
would face significantly greater conceptual challenges, for example, the retrospective analysis of 
load in 2024, if it was part of an ongoing load that has started before 2024, and would persist 
after—or the analysis of load that existed only in 2024. Although either situation could be 
reflected with the model used for Figure 3, the assumptions given above may not be appropriate, 
as they depend in nuanced ways on the specific process by which operational and structural 
decisions are made (which vary materially by time, type of intervention, location, and other 
relevant parameters), and may depend in more pronounced ways on the surrounding context 
(e.g., whether the load is part of an ongoing trend of transient loads). 

There are many situations where the impact of an intervention would differ from what was seen 
in Figure 3, for example, with transient interventions under asymmetric structural response 
times.13 The point of Figure 3 is not to describe a universally applicable model, but to illustrate 
several key aspects of one form of retrospective analysis.  

One attractive feature of the stylization shown in Figure 3: If a retrospective assessment was 
performed with this model year-over-year, the cumulative reported impact would be identical to 
a prospective assessment (assuming that the future unfolded as projected). This is illustrated in 
Figure 4, which shows the effect of adding only 5 annual assessments—but the reader can intuit 
how the addition of 20 such assessments would replicate the shape of the stylized prospective 
analysis shown in Figure 2. Whatever stylized pattern of impacts ultimately proves most useful 

 
12 Note the cumbersome language here: The impact is a reduction of emissions from generators, which is defined as 
an operational impact above, yet it was caused by the building of renewable generators—a structural impact. 
Colloquially, we often refer to the time-lagged portion simply as a structural impact, although it would be more 
accurate to describe it as both.  
13 Analysis may implicitly be reflecting a transient intervention at counterintuitive times. For example, if an analyst 
wished to understand the impact of load in 2024, which was part of an ongoing load that extended before and after 
2024, the intervention could be phrased as the transient removal of the load in 2024—with both the with-
intervention and counterfactual scenarios both representing the load outside of 2024. An analyst would, in effect, be 
asking, “What would have occurred if we had turned off this load, just for 2024?” This naturally raises many 
difficult conceptual and analytical issues, such as the myriad short-run phenomena that could manifest if an 
otherwise persistent action was actually terminated for a single year. Ultimately, there may be an argument on 
practical grounds to stylize this type of analysis (i.e., to use long-run values instead of seeking to precisely estimate 
the short-run dynamics—a deviation from the theoretical ideal, but one that may be justifiably useful).  
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for conceptualizing retrospective assessments, it seems possible that an approach that can 
cumulatively reflect a project’s total impact may be desirable. 

 

Figure 4. Cumulative retrospective assessments 

Figure 3 and Figure 4 help show an important point: To omit structural impacts would be to 
systematically err in the retrospective estimate of the impact of actions (in the same manner that 
it would systematically err to ignore structural impacts for any other type of assessment). Given 
that structural impacts are usually associated with clean generation, whereas operational impacts 
are usually associated with fossil generation, a systematic exclusion of structural impacts could 
materially distort estimates (Gagnon and Cole 2022).  

The implications of omitting structural impacts are particularly important for estimating the 
impact of actions meant to support the deployment of clean generators: Structural impacts are 
one way in which the system-level impact of a particular intervention would be less than the 
associated project’s nameplate output, through phenomena such as economic competition or 
replacement effects. This is discussed in more depth in Section 3.4.   

2.4 Stylized Real-Time Analysis 
For completeness, this section briefly discusses a stylized real-time analysis (see Figure 5)—
although this class of analysis is even more underdeveloped than the preceding retrospective 
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section. The following example considers a brief load addition (e.g., choosing when to charge an 
electric vehicle on a particular day) that takes place during 2023, guided by an analysis that 
occurred in real time or shortly before the decision was made (e.g., based on data from system 
operators or short-term forecasts of grid conditions). As with the prior two stylized examples, 
this example is drawn from the simple model described in Appendix A.2, which assumes that 
load increases are projected to induce generation from both variable renewable generators as 
well as fossil generators, that there is a time lag of 3 years for the grid to structurally respond to 
an intervention, and that structural decisions are made annually. 

 

Figure 5. Stylized real-time analysis. Duration and magnitudes of impacts not to scale.  

A full walkthrough of Figure 5 is not provided, as the dynamics are largely the same as what has 
been discussed in the prior section. The only element to clarify is that, in this example, it is 
assumed that a small load addition (A) in 2023 influences the metrics used for resource planning 
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(e.g., data on load, prices, and so forth), and therefore has a small time-lagged contribution to 
structural decision making (which manifests during B).14  

A critical difficulty with this analytical class—and the reason the authors consider it 
underdeveloped—is the estimation of the relationship between A and B (i.e., between a 
momentary action and the time-lagged structural impact of that action). This is particularly 
difficult because the relationship would be expected to change moment-to-moment depending on 
the conditions of the grid at any point in time (e.g., charging an electric vehicle during a windy 
period would be expected to influence wind investment to a greater degree than charging an 
electric vehicle several hours later when the wind has materially decreased in strength).15 No 
method for making such an estimate in real time currently exists, and certain important points 
remain without consensus among researchers (such as whether transient events influence 
structural decisions and, if some but not all do, what differentiates them).16 

The current state of the art for this analysis class is discussed further in Section 3, including a 
brief discussion of the possibility that, given the unique challenges associated with this task, it 
may ultimately be more defensible to use heuristics for real-time operational decisions, rather 
than attempting to estimate the type of phenomena shown in Figure 5. 

 
14 As throughout this document, this assumes that small actions proportionally contribute to structural change. This 
is a simplification of reality, which would likely involve large step changes.  
15 Another difficulty, not reflected in Figure 5, is that, in contrast to retrospective analyses, these choices may be 
sufficiently short (e.g., a single action that may persist for minutes or hours) that there is a materially greater 
likelihood of intertemporal difficulties on the operational scale. For example, an action may influence what 
generators are committed (i.e., turned on) and therefore the generation mixture in the hours following the 
intervention—that is, a strictly operational impact that persists beyond the end of the intervention itself. We are not 
aware of any efforts to estimate such phenomena in real time.  
16 The relationship between transient interventions and structural impacts has been discussed in the literature (Miller 
2022). This is a difficult conceptual challenge—plausible arguments can be made that certain transitory 
interventions would be unlikely to cause structural change, whereas others would. For example, a nuclear power 
plant shutting down for a month of maintenance may be unlikely to influence structural decisions (because it was a 
known transient event to planners), whereas each individual vacation to Las Vegas is a transitory action, but the sum 
total of such events seems virtually certain to have impacted the generation capacity in the region. At a minimum, it 
does not seem possible to define whether an action contributes to structural change based solely on its duration, as 
such designations would ultimately depend on the context (e.g., it is part of a pattern of other transient events), and 
the decision-making workflows of planners (i.e., what exact algorithms they use to process historical timeseries 
data). Our view is that it is likely generally defensible to consider all actions as proportionally contributing to 
ongoing structural decision making in a region, unless there is a specific demonstration of why an action would be 
likely to not do so—but we recognize that this is an area of open discussion. 
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3 Using Marginal Emissions Rates To Estimate 
Consequential Impact 

In the prior section, several stylized examples were presented to highlight some key theoretical 
aspects of consequential impact assessments. In this section, two methods are discussed for 
putting the analysis into practice using marginal emissions rates—as well as the known 
limitations of those methods.  

Note that prospective analysis of long-lived interventions can often be conducted with power 
sector models such as capacity expansion models (alone or in combination with marginal 
emissions rate analysis). Model-based approaches can often represent phenomena or dynamics 
that are not reflected in marginal emissions rates. As one example, marginal emissions rates 
require impacts to be linearized for a representative perturbation (either the infinitesimal 
marginal or an incremental perturbation), whereas models can incorporate nonlinear phenomena, 
resulting in estimates that are generally more defensible for large interventions. Although there is 
a theoretical basis for model-based predictions (cost minimization, reflecting either a well-
functioning market or well-regulated organization) and such models are widely used in 
applications such as policy analysis (Bistline et al. 2023; Steinberg et al. 2023), it is nonetheless 
important to note that as a class, the accuracy of such models is not readily validated through 
empirical scientific means. Therefore, conducting widely defined scenario analysis and 
maintaining an awareness of uncertainty is generally advisable when using such models.  

In theory, real-time and retrospective assessments could also be based at least in part on models 
similar to capacity expansion models, although no models built for those purposes currently exist 
to the author’s knowledge—and using existing models (that were built for other purposes) for 
either retrospective or real-time estimates can lead to material errors.17 For example, a model 
built primarily for multidecadal forward-looking analysis might perform relatively worse when 
used for retrospective estimates because of the omission of phenomena that may be highly 
relevant in the short term but anticipated to be less so in the long term.  

At any rate, this section of the document focuses on marginal emissions rates as a possible route 
to consequential emissions analysis that can scale (i.e., be applied widely at tractable cost)—
whereas the complexity and nuance of power system modeling potentially precludes them from 
widespread use.  

By focusing on marginal emissions rates, this section narrows the scope of what actions can be 
evaluated. Marginal emissions rates can be suitable for estimating interventions whose influence 
is predominately changing the demand for grid electricity (such as increasing/decreasing load, 
shaping load, or injecting electricity into the grid), and whose impacts can be reasonably 
approximated with linearized values. There are many other types of interventions, such as 
building transmission lines or facilitating administrative improvements to interconnection queue 
processes. While all interventions ultimately can be reflected in consequential style analysis, as 
reflected in the fundamental counterfactual equation given at the start of Section 2, marginal 
emissions rates are not suitable for characterizing interventions whose influences are not 

 
17 For example, capacity expansion models generally do not endogenously represent the administrative processes of 
the generator interconnection. Omitting such a phenomenon for a retrospective or near-term short-lived prospective 
analysis could result in a projection that was not administratively feasible for the given time.  
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predominately tied to marginal perturbations of the demand for grid electricity. Such non-
marginal actions are often possible to evaluate with power sector models.  

3.1 Marginal Emissions Rates: General Considerations 
Marginal emissions rates refer to estimates of changes in emissions that result from unit changes 
in the demand for grid electricity.18 They can be either a priori estimates developed to inform 
upcoming decisions (Gagnon et al. 2024; A. D. Hawkes 2014; IFI 2022; Energy+Environmental 
Economics 2016), or they can be developed and applied retrospectively (Oates and Spees 2022; 
Azevedo et al. 2020). The basic principle of this approach can be expressed in the following 
equation: 

Equation 2 
 

 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  
𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑒𝑒𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐  

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐 
 

 
= 

 
Δ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒 

 
× 

Δ𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
Δ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒

  

   impact of action on 
the demand for grid 

electricity 

 marginal emissions rate  

Marginal emissions rates may be developed through statistical methods, reported by system 
operators, or developed with power sector models. Each approach has its own strengths and 
weaknesses. Methods purpose-built to leverage data from system operators are likely 
significantly more accurate for estimating the immediate operational impacts of actions, while 
being unable to reflect structural impacts. In contrast, marginal emissions rates created with 
power sector models are generally relatively poorer at estimating immediate operational impacts, 
but can estimate structural impacts.  

Geographic resolution can be impactful for marginal emissions rates because of phenomena such 
as transmission congestion, variations in renewable energy resources, and variation in existing 
generator fleets. In general, between two hypothetical data options of equal quality, it would be 
preferable to select the finest geographic resolution available.19,20 In practice, one would rarely 
encounter two datasets of identical quality but different resolution, and therefore an analyst may 

 
18 The term “marginal emissions rate” implies an infinitesimal perturbation. In practice, the term “marginal 
emissions rate” sometimes reflects an incremental emissions rate, such as the estimated change in emissions 
resulting from a 1-MWh increase in electricity demand or greater. Given that the magnitude of the response to a 
given signal can be quite large, the most suitable step size for calculating marginal emissions rates may not be an 
infinitesimal perturbation, and may vary by situation. This is an ongoing research topic for which general consensus 
has not been achieved.  
19 For example, transmission congestion can influence short-run marginal emissions rates in a manner that generally 
makes nodal estimates more accurate than regional estimates. 
20 At risk of misinterpretation, we clarify that this statement is intended to apply only to marginal emissions rates. 
The appropriate geographic resolution for other metrics, such as attributional metrics, is a balance of factors that 
does not, to our knowledge, have a generalized answer. Many attributional emissions metrics would not benefit from 
fine geographic resolution.  
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be faced with a choice between higher geographic resolution but potentially ambiguous 
differences in quality.  

Similarly, it is typically preferable to use hourly data or finer, given material variations in 
marginal emissions rates hour-to-hour. If hourly data do not exist, the equation can be used with 
more coarse data (e.g., annual), but users should recognize that such an approach likely degrades 
the accuracy of the analysis, given diurnal and seasonal variations in marginal emissions rates. 
The data can be represented as a timeseries (e.g., hour-over-hour, year-over-year) or as averaged 
or levelized values for the time period under analysis.21  

Performing an analysis using marginal emissions rates requires obtaining data on the change in 
demand for grid electricity for the given intervention as well as the marginal emissions rate. 
Demand change estimates can be obtained from project developers (because that information is 
often available as part of the engineering design process), by identifying a similar project that has 
been conducted previously and using its performance, or by using various tools for the type of 
intervention at hand (for example, the National Renewable Energy Laboratory’s [NREL’s] 
System Advisor Model can give production estimates for different types of renewable generation 
technologies).  

Importantly, note that it is necessary to rigorously develop the counterfactual, to reflect what 
demand perturbation is caused by the intervention being analyzed (Gillenwater 2012). In many 
cases this is straightforward—and in many cases, it is not.22 For example, it is generally not 
suitable to make an a priori assumption that the demand perturbation resulting from actions 
meant to support the deployment of clean generators (such as the purchase of RECs or signing of 
long-term offtaker agreements) is the output of the associated generator. This is related to the 
concept often referred to as “additionality,” discussed in more detail in Section 3.4. The 
discussion below in Sections 3.2 and 3.3 is predicated on having an appropriately designed 
counterfactual (i.e., having a defensible estimate of the demand perturbation caused by the 
action, not simply associated with it).  

Sections 3.2 and 3.3 below discuss two approaches to estimating a marginal emissions rate. The 
two approaches are similar but bring slightly different component data types to bear. Both 
approaches implicitly recognize the importance of considering both operational and structural 
impacts, although they use different data to do so. Neither approach (based on data that exist as 
of publication of this paper) completely reflects any of the three stylized analysis types described 
previously in Section 2, and therefore this should be understood as a discussion about possibly 
defensible ways to use the types of data that currently exist—not a method that exactly describes 
all relevant phenomena.  

Which approach is more suitable depends in large part on data availability: Approach #1 relies on 
an a priori effort with power sector models to develop emissions factors and, by virtue of that 
modeling, can often produce more defensible estimates than the following method. However, the 

 
21 Averaging or levelization is often defensible, although it can give rise to errors if there is a difference in how the 
emissions rates and loads evolve over time.  
22 An example of a straightforward case: If an organization is deciding whether to perform an energy efficiency 
upgrade, the estimated reduction in demand can usually be taken at face value as the consequences of the action, 
because the business is effectively in full control of the relevant aspects of demand in both sides of the 
counterfactual.  
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data that underpin Approach #1 currently (in 2024) are not widely available. Approach #2 has a 
tractable method for estimating values with sparse data but relies to a great extent on judgment 
and heuristics, and is therefore likely not suitable for many purposes. As discussed in more detail 
below, both methods are most developed for long-term prospective analysis, and are less 
developed for either retrospective or real-time use cases.  

3.2 Marginal Emissions Rate Approach #1: Short-Run and Long-Run 
Margins 

The first approach for using marginal emissions rates to estimate the impact of electric sector 
interventions has been described previously in Gagnon, Hale, and Cole (2022) and Miller 
(2022):23 
 

Equation 3 
𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 × 𝑤𝑤𝑡𝑡 + 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 × (1 − 𝑤𝑤𝑡𝑡) 

 
Where: 

- MER is the composite marginal emissions rate for the action being analyzed 
- SRMER is an estimated short-run marginal emissions rate (i.e., the marginal emissions 

rate assuming a fixed set of capital assets)  
- LRMER is an estimated long-run marginal emissions rate (i.e., the marginal emissions 

rate from a grid that has structurally responded to an intervention, thereby including both 
operational and structural effects) 

- 𝑤𝑤𝑡𝑡 is a weight designed to reflect the relative influence of the SRMER and LRMER 
terms, based on how long it is expected to take for the structural response to the 
intervention to occur.  

The resulting composite MER estimated in Equation 3 can then be multiplied against the change 
in the demand for grid electricity (Equation 2) to gain an estimate of induced or avoided 
emissions.  

Long-Run and Short-Run Approach: Prospective Analysis 
The concept behind this approach can be understood by referring to the stylized prospective 
analysis shown previously in Figure 2, the emissions-impact portion of which is duplicated for 
convenience below. As shown in Figure 6, there may be an initial period (Segment D) where 
actions may largely induce purely operational changes, which can often be estimated with 
SRMERs. After a time lag, structural impacts occur, and the induced emissions can be estimated 
with LRMERs (Segment F).  

 
23 As described here, it is assumed that an analysis is looking for a single value or vector of values that represents all 
of the years covered by an analysis—which is common, because many analyses do not have year-over-year MWh 
demand projections but simply a single annual value or hourly vector. If an analysis is instead explicitly resolving 
each year, the SRMER and LRMER values can be employed alone as appropriate for each year in the analysis. This 
avoids the need to calculate a weight while representing the same concept in the choice of how many years to apply 
the SRMER versus LRMER.   
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Figure 6: Stylized emissions impact for prospective analysis (duplicated for reference) 

Equation 3 uses the 𝑤𝑤𝑡𝑡 term to combine the SRMER and LRMER estimates; 𝑤𝑤𝑡𝑡 can reflect the 
estimated share of time before material structural impacts start to materialize. For example, in 
Figure 6, the SRMER portion is 3 years, whereas the LRMER portion is 17 years. If the analyst 
is indifferent to the timing of emissions, this would equate to a 𝑤𝑤𝑡𝑡 of 0.15.24 

Note that, as described, this approach omits the impacts that occur after the intervention has 
ended (Segment H). For sufficiently long-lived interventions, this may be justifiable. For short-
lived interventions, where the Segment H impacts are nontrivial, it may not be acceptable to 
ignore them—although no method has been described, based on data that exist today, to capture 
Segment H through marginal emissions rates.25  

A key feature of this method is that, as defined previously, LRMERs reflect the induced or 
avoided emissions from all generators—those whose capacity is influenced by the intervention 
(built or retired), and those whose capacity is not influenced. Therefore, LRMERs are not 
equivalent to the build margin described in the following section, which describes only the 
emissions rate of generators whose existence is modified by the intervention. This is the primary 
reason why this document recommends this method as preferable over the method described in 
the following section: LRMERs leverage a model-based workflow to estimate the combined 
result of both operational and structural impacts in Segment F, whereas the following method 
relies on heuristics to do so.  

Using SRMERs and LRMERs and blending them with a single transition point, as described 
here, is a simplification. For example, real electricity systems are never in true economic long-
run equilibrium (an assumption underlying the LRMER estimations known to the authors), and 
in reality, there would not be a single transition point where structural change takes hold but 
more likely a stepwise response over time. In addition, the 𝑤𝑤𝑡𝑡 value would likely vary year-to-
year as well as by intervention and region. To the author’s knowledge, no research exists 
providing guidance on appropriate values for 𝑤𝑤𝑡𝑡. 

 
24 If the analyst is not indifferent to the timing of emissions, they may wish to use time-value-of-damages equations 
to weigh time steps differently. For an example, see Gagnon (2024).  
25 We note that, if the structural impacts are assumed to occur without a time lag (either because that is a defensible 
assumption on its own merits, or possibly as an analytical convenience as a means to approximate the impact of 
Segment H), then the entire impact could be described with a LRMER. This is appealing for its simplicity and its 
ability to approximate the influence of Segment H, although we also note that LRMERs are currently generated with 
capacity expansion models, which tend to be relatively poor at reflecting near-term conditions—so the use of only a 
LRMER may lose an opportunity to leverage higher-quality near-term SRMER data based on empirical 
observations. Which way the balance of issues tilts here is not immediately apparent to us.  
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To reiterate a point raised in Section 3.1: This approach is predicated on accurately estimating 
the demand perturbation caused by the action being analyzed, not merely associated with it. In 
addition, it is predicated on employing a marginal emissions rate that adequately captures 
relevant phenomena. Section 3.4 discusses some of the current shortcomings of marginal 
emissions rate data products when used to estimate the avoided emissions from actions meant to 
support the deployment of clean generators as well as heuristics that can help identify situations 
where their application may lead to erroneous impact estimates.  

Long-Run and Short-Run Approach: Retrospective and Real-Time Analysis 
Previously, Approach #1 was described for a long-lived prospective analysis. A reader, recalling 
the patterns of a stylized retrospective (Figure 3) and real-time (Figure 5) analysis will note a key 
difficulty: For both of those applications, material structural impacts may occur after the end 
point of the action being analyzed (the emissions impact pattern from Figure 3 is duplicated 
below for convenience). This is the same phenomenon as mentioned above for Segment H of 
prospective analysis, but where its importance is greatly enhanced because of how short the 
duration may be for certain retrospective and real-time analyses.  

 
Figure 7: Stylized emissions impact for retrospective analysis (duplicated for reference) 

No marginal emissions rate data product is currently built to reflect Segment E in Figure 7, or its 
equivalent (Segment B) in real-time analysis (because they are both impacts that extend beyond 
the temporal bounds of the action itself). These segments are equivalent to Segment H that was 
shown previously for prospective analysis. Segment F in prospective analysis is not equivalent to 
Segment E in retrospective analysis, because Segment F represents a period when the 
intervention was still occurring, and therefore could be estimated with LRMERs.  

If an analyst wishes to make the best effort possible at a retrospective evaluation with marginal 
emissions rates, despite the above difficulty, one option is to rephrase the question being asked 
and use the result as an approximation of the actual question. Specifically, instead of analyzing 
just the single year in question (i.e., trying to use marginal emissions rates to construct the 
pattern seen in Figure 7), an analyst could use marginal emissions rates to estimate the 
consequence of the historical action if it were to persist for a long period of time. For example, 
building from the example shown in Figure 7, the analyst could estimate the consequences of the 
2024 load persisting for, say, 10 or 20 years, under a continuation of the grid conditions in 
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2024.26 Such a rephrasing would give the retrospective analysis the same characteristics (i.e., the 
shape of the emissions impact) as the long-term prospective analysis, where a combination of 
SRMERs and LRMERs could be used. The impact could be annualized and used as an 
approximation of the historical action’s impact. 

There are many caveats associated with this approach, a key one being that no LRMER dataset 
has been produced with this application in mind, and therefore the accuracy of the approach is 
uncharacterized—and given that existing LRMERs were built for long-term prospective analysis, 
the error in applying them to single-year retrospective analysis could be significant. In addition, 
the assumed duration would be important (the shorter the extension, the greater weight given to 
the short-run period), but no guidance exists for a defensible duration to assume in this situation.  

Another approximation method would be to employ a LRMER only, potentially justified by 
noting that the Segments E and A combine to approximately a LRMER, if the analyst is 
indifferent about the timing of emissions. As with the above approximation, the lack of any 
LRMER calculated for this purpose is a significant obstacle.  

Given the above discussions, it would generally be advisable to consider either of the above 
approximations to be estimates of unknown accuracy—which may be suitable for some, but not 
all, retrospective applications.  

In theory the same approximations could be applied to real-time analysis. In practice, however, 
no real-time estimates of LRMER exist, nor are the authors aware of any publicly stated efforts 
to create such a dataset. Given that real-time analysis is typically interested in hour-to-hour 
variations, and that LRMERs would vary materially hour-to-hour based on the actual conditions 
of the grid (e.g., weather and demand patterns), using a priori calculated LRMERs would lead to 
estimation errors of unknown, but potentially significant, magnitude. As emphasized previously, 
omitting structural impacts (i.e., resolving only Segment A from the stylized real-time response) 
would generally systematically err in estimation—particularly because structural impacts convey 
diurnal and seasonal trends that can differ from short-run trends. On balance, given the difficulty 
of real-time estimation of induced structural change and the fact that such estimates are not 
readily amenable to scientific validation, it is possible that many users will ultimately find it 
more suitable to their purposes to use heuristics to guide real-time operational decisions, rather 
than hypothetical future attempts to produce real-time composite marginal emissions rates.27  

Long-Run and Short-Run Approach: Data Limitations 
As emphasized throughout this paper, a material shortcoming of any model-based approach to 
estimating induced structural change (as is implied in the creation of LRMERs using capacity 
expansion models) is that they, as a class, have not undergone empirical validation. While 
uncertainties can generally be expressed through scenario analysis, not all decision-making 
workflows are amenable to impacts being presented as ranges of possible values.  

 
26 An argument could be made that the duration should be infinite.  
27 Research is ongoing at NREL to study the performance of heuristics (e.g., renewable energy fractions, energy 
prices, and so forth) in their efficacy at guiding real-time operational decisions in light of minimizing greenhouse 
gas emissions. Publication forthcoming.  
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In addition, current methodologies for estimating sub-annual (e.g., hourly) LRMERs have known 
deficiencies. For example, Gagnon and Cole (2022) saw that a method that uses a scalar 
perturbation across all hours as a basis for calculating hourly LRMER values, while being able to 
directionally reflect differences in differently shaped interventions, nonetheless was not perfect 
at anticipating the induced emissions when the interventions were modeled directly (for the suite 
of interventions analyzed, there was a root-mean-square error of 131 kg/MWh).28 The method 
studied in Gagnon and Cole (2022) is similar to the method used in the creation of LRMER data 
in Gagnon et al. (2024) and is therefore likely present in the LRMER data in those datasets as 
well. While not a fatal flaw for many purposes, methodological shortcomings such as these 
degrade the accuracy of estimates using these types of marginal emissions rates, and may make 
them unsuitable for some purposes.  

Finally, a major drawback of the approach described in this section is that LRMER estimates are 
not widely available globally. Because of this, the following section describes a second approach 
that relies to a greater extent on heuristics but whose application is often tractable even when 
very limited data are available.  

3.3 Marginal Emissions Rate Approach #2: Build and Operating 
Margins 

The second marginal emissions rate approach extends the framework from the Greenhouse Gas 
Protocol’s (GHGP) Guidelines for Quantifying GHG Reductions from Grid-connected 
Electricity Projects (Broekhoff 2007).  

The GHGP’s guidance defined the concepts of operating margins and build margins. The 
framework was originally defined for long-term projects that reduced greenhouse gas emissions, 
and therefore is defined in terms of reductions. The operating margin was defined as the 
weighted average emissions intensity of existing generators whose operations would be reduced 
in response to the action being analyzed, whereas the build margin was defined as the weighted 
average emissions rate of avoided generation from new generators that would not be constructed 
because of the intervention. To extend the framework into other applications (such as the 
prospective, real-time, and retrospective categories described in Section 2), this paper amends 
this guidance with two minor adjustments.  

The first adjustment is simply to note that the concepts can apply to actions that either increase 
or decrease emissions, by either increasing or decreasing the demand for grid electricity relative 
to the counterfactual—and to modify the definitions accordingly. 

Next, the definition of the operating margin is slightly changed to be the weighted average 
emissions rate of the change of generation from any generator whose capacity is not expected to 

 
28 This is caused by interhour phenomena (i.e., actions during one hour of the year can influence emissions during 
other hours). It is expected that interventions whose demand perturbation varies materially over the year (e.g., 
demand response; electric vehicle charging) are more susceptible to this type of error than relatively flatter 
interventions (e.g., flat blocks of load; energy efficiency measures). Notably, wind and solar generators—whose 
generation patterns can vary materially from hour to hour—are likely more susceptible to this type of deficiency 
than other, flatter interventions. In practice, the use of a LRMER (derived from a capacity expansion model using a 
scalar perturbation method) to calculate the avoided emissions from a wind or solar project may often produce 
higher estimates of avoided emissions, relative to what would have been estimated if the project was directly 
modeled in the capacity expansion used to create the LRMER.  
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be modified by the intervention being considered, whereas the build margin is the weighted 
average emissions rate of the change in generation from any generator whose capacity is 
expected to be modified by the intervention being considered (inclusive of new builds, 
retirements, uprates, and so forth).29 

With these slight modifications, the definitions used in this paper are as follows: 

Equation 4 
𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑐𝑐𝑖𝑖𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜 𝑒𝑒𝑐𝑐𝑠𝑠𝑜𝑜𝑐𝑐𝑐𝑐 × (1 − 𝑤𝑤𝑏𝑏) + 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏 𝑒𝑒𝑐𝑐𝑠𝑠𝑜𝑜𝑐𝑐𝑐𝑐 × 𝑤𝑤𝑏𝑏 

 
Where: 

- MER is the composite marginal emissions rate for the action being analyzed 
- operating margin is the generation-weighted average emissions rate of generation 

changes from the counterfactual, for generators whose nameplate capacity would not be 
impacted by the action being analyzed 

- build margin is the generation-weighted average emissions rate of differences in 
generation from the counterfactual, from generators whose nameplate capacity would be 
impacted by the action being analyzed 

- 𝑤𝑤𝑏𝑏 is the weight (varying from 0 to 1) of the build margin. A value of 0 would imply that 
the intervention does not impact the nameplate capacity of any generators, whereas 1 
would imply that induced or avoided generation would come only from plants whose 
nameplate capacity would be impacted by the intervention, and anything between would 
imply a mixture of both.  

The resulting composite marginal emissions rate estimated in Equation 4 can then be multiplied 
against the change in demand for grid electricity caused by the action (Equation 2) to gain an 
estimate of induced or avoided emissions.  

Build and Operating Margins Approach: Prospective Analysis 
Because Equation 4 is defined as the total effect of the perturbations of all generators, it can at 
least in theory, be interpreted in a way that reflects the phenomena shown in all three stylized 
analysis types shown previously in Section 2. Start by considering the emissions impact of the 
prospective analysis shown previously in Figure 2, duplicated below in Figure 8 for convenience. 

 
29 These generalizations capture a phenomenon whose categorization was potentially ambiguous in the original 
GHGP’s definitions, such as the change in generation from existing generators that would be projected to retire in 
response to the intervention being considered (i.e., the absence of a generator in the with-intervention scenario, that 
is present in the counterfactual scenario). 
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Figure 8: Stylized impacts for prospective analysis (duplicated for reference) 

Given the (simple) assumptions used to create this stylized example, the operating margin is 
known to be exclusively the fossil generation (400 kg/MWh), whereas the build margin is known 
to be exclusively the clean generation (0 kg/MWh)—and that the net generation quantities of the 
two are identical (therefore, 𝑤𝑤𝑏𝑏 is 0.5).30 From this, the composite marginal emissions rate for 
the duration of the intervention is 200 kg/MWh.  

Note that the operating margin of Approach #2 and SRMER of Approach #1 often (but not 
always) manifest as similar phenomena, but that the build margin and LRMER are not 
equivalent. The build margin is generation only from induced or avoided generators. Examining 
Segment F of Figure 8: Approach #1 (Section 3.2) uses a LRMER to convey the combination of 
both the blue clean generation and purple fossil generation elements, whereas this method 
separately uses the build margin to convey the clean generation and the operating margin to 
convey the fossil generation.  

Build and Operating Margins Approach: Retrospective and Real-Time Analysis 
The above discussion applied the build and operating margin approach to long-lived prospective 
analysis. As throughout this document, the extension of this method to retrospective and real-
time analysis is possible in theory but faces challenges in practice.  

To illustrate, consider the stylized retrospective analysis previously shown in Figure 3, 
duplicated below in Figure 9 for convenience. The responses underlying the emissions impact 
shown are all generator perturbations that fit into the definition given above for build and 
operating margins: Segment A is an increase in existing generator output (operating margin), 
whereas Segment E is the combined effect of an induced generator’s output (build margin) and a 
simultaneous decrease in existing generator output (operating margin). 

 
30 The build and operating margins being entirely clean and fossil, respectively, are a product of the intentionally 
simple assumptions underlying this example—in practice, both the build and operating margin could have a mixture 
of emitting and nonemitting generation.  
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Figure 9: Stylized impacts for retrospective analysis (duplicated for reference) 

Note that attempting to construct the shape shown above may be cumbersome—for example, 
having an analyst combine both positive and negative operational perturbations, with a time 
lag.31 In response to the complexity, the same simplifications mentioned for the prior 
SRMER/LRMER method could be adopted: interpreting retrospective and real-time 
interventions as long-lived, thereby minimizing the negative components. A disadvantage of this 
approach is the same as for the prior method: It degrades the accuracy of the method to a largely 
unquantified degree, and, to the authors’ knowledge, no datasets have been created for this 
purpose.  

Build and Operating Margins Approach: Data Limitations 
The two subsections above largely obscure the primary critical limitation of this method: The 
only current sources and methods for obtaining 𝑤𝑤𝑏𝑏 and build margin values are heuristic methods 
of unquantified accuracy. In addition, existing datasets were created primarily for forward-

 
31 Note that the combination of both positive and negative demand perturbations at different points in time may 
counterintuitively result in marginal emissions rates greater than the emissions intensity of any existing generator. 
For example, if Segment A of Figure 9 had an intensity of 1,000 kg/MWh and the fossil generation of Segment E 
had an intensity of 500 kg/MWh, an attempt to describe the combination of those two effects would result in an 
operating margin of 1,500 kg/MWh. In an edge case where there is an equal MWh of both positive and negative 
perturbations for either build or operating changes, with different emissions intensities for the two portions, the build 
or operating margin would become infinite. 
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looking prospective analysis—to the authors’ knowledge there is no purpose-built build margin 
or 𝑤𝑤𝑏𝑏 datasets or guidance intended for retrospective or real-time applications.  

Considering 𝑤𝑤𝑏𝑏 values: Because operating margins are often predominately fossil fuels and build 
margins are often predominately clean generation, the relative weight of the two values drives 
the magnitude of an action’s impact to a great extent.32 The authors are aware of only two 
sources that give values or guidance for 𝑤𝑤𝑏𝑏:  

1. Chapter 5 of the GHGP’s Guidelines for Quantifying GHG Reductions from Grid-
connected Electricity Projects (Broekhoff 2007) gives a heuristic method for estimating 
𝑤𝑤𝑏𝑏. The method described focuses on whether the project is expected to provide firm 
capacity.33  

2. The United Nations Framework Convention on Climate Change (UNFCCC), through 
technical working groups with international financial institutions, has published guidance 
to assign variable renewable generators (e.g., wind and solar) a 𝑤𝑤𝑏𝑏 of 25%, “firm” 
renewable generators (e.g., hydropower, geothermal, biomass) a 𝑤𝑤𝑏𝑏 of 66%, and both 
load reductions (e.g., energy efficiency measures) and increases (e.g., electrification) a 
𝑤𝑤𝑏𝑏 of 66% (IFI TWG 2023; 2019). 

 
The treatment of 𝑤𝑤𝑏𝑏 in both of these sources is relatively simple compared to a structured 
modeling method. A challenge that is not reflected in the above sources is that 𝑤𝑤𝑏𝑏would be 
expected to vary materially between actions with different temporal profiles and in different 
regions, and may vary meaningfully for actions with different magnitudes and durations. For 
example, the 𝑤𝑤𝑏𝑏 of a wind generator in a region would be expected to vary from the 𝑤𝑤𝑏𝑏 of a 
solar generator in the same region, the 𝑤𝑤𝑏𝑏 of two wind generators in different regions would be 
expected to vary, the 𝑤𝑤𝑏𝑏 of two different energy efficiency measures with different diurnal trends 
in energy savings would be expected to vary, and so forth.34 

Similarly, existing data and methods for build margins are relatively simple. The GHGP provides 
multiple heuristic methods for estimating build margins, relying either on selecting a 
representative or “proxy” plant, or by examining recent capacity investment trends in the region 
being considered. The UNFCCC has released a dataset that contains country-level build margin 
estimates (as well as operating margins and, in combination with their 𝑤𝑤𝑏𝑏 value 
recommendations mentioned above, composite marginal emissions rates for representative 
interventions). The UNFCCC build margins are drawn from modeling with the World Energy 

 
32 For instance, the impact of procuring energy from a wind generator in a region where wind is already being built 
in large amounts may have a 𝑤𝑤𝑏𝑏  of approximately 1 (because it may be directly offsetting another wind generator 
that would otherwise have been built, as a result of, for example, competition or direct replacement in a rate-limited 
interconnection process), whereas a wind generator in a region where renewables are not being built may have a 𝑤𝑤𝑏𝑏  
of approximately 0. Even if the build and operating margins are identical in the two regions, the difference in 𝑤𝑤𝑏𝑏  
would be exceptionally important.  
33 Because much relevant structural change is the construction of variable renewable generators, which are often 
built in large part because of their energy value, we note that methods based on firm capacity provision have 
relatively lesser applicability in current contexts, compared to the context when the GHGP guidance was originally 
developed.  
34 For example, Gagnon and Cole (2022) contains data on the generation mixtures from load perturbations of 
various shapes, using a capacity expansion model. The 𝑤𝑤𝑏𝑏  implicit in those data is seen to vary from nearly 0 to 
nearly 1, depending on how closely the load addition aligned with variable renewable energy production profiles 
(i.e., the more closely the action aligned with the shape of wind and solar generation, the greater the 𝑤𝑤𝑏𝑏).  
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Model, where the “new” electricity generation that the model deploys over an 8-year period is 
averaged and interpreted as the build margin, after further regression-informed adjustments to 
develop country-level values (IFI TWG 2022).35  

The UNFCCC database is an example of how a forward-looking power sector model can be used 
to estimate build margins, which were then combined with heuristic 𝑤𝑤𝑏𝑏 values and 
empirical/heuristic operating margins to arrive at a single composite marginal emissions rate for 
four different representative interventions. Note that, depending on the capabilities of the model 
at hand, it may also be possible to use it to calculate 𝑤𝑤𝑏𝑏 values—although in doing so, it would 
be likely that an analyst could simply directly calculate a LRMER instead (thereby packaging 
operational and structural impacts into one self-consistent dataset). 

In addition, as with the SRMER/LRMER method described in Section 3.2, naive applications of 
this operating/build margin approach can fail to capture the type of phenomena that can degrade 
(or entirely negate) the impact of actions meant to support the deployment of clean generation. It 
is still necessary to establish whether the project would be present in the counterfactual (i.e., 
whether the project is “additional”). It would also generally be useful to apply the screening tests 
discussed in Section 3.4 to help identify situations where phenomena are present that would tend 
to make the avoided emissions estimates from marginal emissions rates materially erroneous.  

No method or dataset exists, or has been proposed, for calculating a time-varying 𝑤𝑤𝑏𝑏 in real time. 
This is a particular difficulty for implementing real-time consequential analysis (i.e., the attempt 
to create a composite marginal emissions rate in real time) with build and operating margins 
because 𝑤𝑤𝑏𝑏 would be expected to vary materially hour-to-hour based on the current conditions of 
the grid.36 Similar to the prior discussion about real-time LRMER estimates, estimating 𝑤𝑤𝑏𝑏 in 
real time appears to be unusually difficult and not readily amenable to scientific validation. 
Given this, it is possible that many users will ultimately find it more suitable to their purposes to 
use heuristics to guide real-time operational decisions, rather than hypothetical future attempts to 
produce real-time composite marginal emissions rates.37 

The strength in this Approach #2 is its simplicity (the heuristic methods for estimating the values 
can be put into practice even in data-poor regions). The limitations, however, are significant. It 
can be said that this method gives a practicable approach to estimating impacts that is often at 
least directionally useful, but which can also materially err in its accuracy in ways that likely 
make it unsuitable for many purposes. Careful consideration of the manner in which this method 
could err is advised when deciding whether to adopt it for any specific purpose.  

 
35 While drawing from World Energy Model projections is more sophisticated than some other methods of 
estimating the build margin, it is still an approximation, as the method used implicitly assumes that further demand 
perturbations will induce or avoid the same build mixture projected to occur over the 8-year period. 
36 For example, the composite marginal emissions rate for charging a vehicle when wind is blowing strongly during 
one hour would be expected to have a higher 𝑤𝑤𝑏𝑏  (from future induced wind investment) then a point several hours 
later in the day when wind is at a lull. 
37 Research is ongoing at NREL to study the performance of heuristics (e.g., renewable energy fractions, energy 
prices, and so forth) in their efficacy at guiding real-time operational decisions in light of minimizing greenhouse 
gas emissions. Publication forthcoming.  
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3.4 Evaluating the Impact of Actions Meant To Support the 
Deployment of Clean Generators 

Estimating the avoided greenhouse gas emissions from actions intended to support the 
development of clean generators (such as the purchase of RECs or the signing of long-term 
offtaker agreements) is a topic of current importance, given the desire of many organizations to 
engage in activities that support defensible avoided emissions claims.38  

Two key issues, however, are 1) the application of marginal emissions rates depends on 
accurately estimating how an action changes the demand for electricity from all generators 
beyond those explicitly considered within the intervention itself and 2) currently available 
marginal emissions rate data and methods are all imperfect, and to varying degrees omit 
important phenomena or depend on uncertain assumptions that can result in materially erroneous 
estimates of the impact of the actions.39 In some contexts, naive application of marginal 
emissions rates can systematically overestimate the impact of actions meant to support the 
deployment of clean generators.  

These challenges can influence the accuracy of any marginal emissions rates impact analysis, but 
actions meant to support clean generator deployment are particularly susceptible, given 
complicated interactions with the deployment of other clean generators that can significantly 
decrease impact—for example, inducing the construction of a wind generator may negatively 
influence the investment in other wind generators in the broader region. 

Consequently, when seeking to estimate the impact of actions meant to support clean generator 
deployment with marginal emissions rates, analysts may wish to apply a three-step process, 
which includes two heuristic filters designed to help identify situations where the marginal 
emissions rates may be producing materially erroneous estimates.40 

The first heuristic filter is meant to address the question, “would this project have gone forward 
without this specific action supporting it?” (i.e., additionality). The second heuristic filter is 
meant to address the question, “are the marginal emissions rates being used for this analysis 
suitable for the specific context under consideration, or are there relevant system-level 
phenomena not being well represented through the marginal emissions rates being used?”.  

 
38 Note that there are many actions that would reduce induced emissions (such as load siting decisions or investing 
in energy efficiency upgrades) or increase avoided emissions (such as facilitating the construction of transmission 
lines). This section focuses on actions intended to support the deployment of clean generation for ease of exposition, 
but many of the concepts here can be extended to other activities as well.  
39 For example, capacity expansion models (used to create LRMERs) are generally built for long-term prospective 
analysis, not retrospective evaluations, and can err in their impact estimates through a failure to properly reflect 
relevant near-term phenomena (such as the administrative processing capacity of an interconnection process, as one 
of many possible examples). Or, as another example, consider methods for estimating short-run marginal emissions 
rates, which by nature omit any reflection of induced structural change. As a final example, many analysis methods 
a priori assume that the project under consideration would not have moved forward in absence of the action being 
analyzed—not always an appropriate assumption. 
40 The concept of a multistep screening process is not new, although it takes other forms in prior literature. For 
example, ACR (2023) defines a “three-pronged additionality test,” and Gillenwater (2012) presents additionality as 
a binary screening after which a consequential analysis would need to still be applied. This section seeks to add to 
existing discussion by focusing, to a greater extent, on the shortcomings of marginal emissions rates in estimating 
the avoided emissions of actions meant to support the deployment of clean generators.  
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The following three-step process results: 
1. Heuristic Screen #1: Additionality. Establish whether the action being taken has 

defensibly caused (or will defensibly cause) the associated project to move forward. 
2. Heuristic Screen #2: Marginal Emissions Rate Suitability. Apply a set of screening 

heuristics designed to indicate situations where currently available marginal emissions 
rates may be missing important phenomena that would tend to result in their application 
producing materially erroneous estimates.  

3. Perform Analysis. If the above two screens are passed, perform the marginal emissions 
rate analysis (i.e., an approach like the ones described in Sections 3.2 and 3.3). 
 

Both heuristic filters are, in a sense, redundant, given the general requirement for all 
consequential analysis to appropriately define a counterfactual and use data that is suitable for 
the given purpose. They are raised here explicitly, however, due to the recent occasions of 
marginal emissions rates being used to estimate the avoided emissions of actions meant to 
support the development of clean generation, where the conclusions of the analyses are not being 
meaningfully restrained by known limitations of the data being employed. For example, Arne 
Olson et al. (2023) and Hua He et al. (2023) are both analyses that a priori assumed the projects 
being studied are additional, and solely reflect short-run operational impacts while neglecting the 
potential for induced structural change. Such approaches have the potential to systematically 
overestimate the impact of actions meant to support the deployment of clean generators (Gagnon 
and Cole 2022; Xu et al. 2024) and do not follow best practices in consequential analysis 
(Broekhoff 2007; Woolf et al. 2020).  

Additionality 
The first heuristic filter—commonly referred to as an additionality test—is much discussed in 
communities such as those focused on carbon offsets. This document has largely avoided the 
term “additionality” because it does not perfectly align with consequential impact analysis (e.g., 
a nonadditional project can still have an impact, and an additional project can have no impact).41 
However, as a practical matter, additionality tests can be employed as heuristics as part of a 
multistep method, when employing marginal emissions rates, for estimating the avoided 
emissions from actions meant to support the deployment of clean generators.  

If an additionality test is failed, an analyst may wish to remove the project from consideration, as 
an indication that the action has ambiguous and potentially low impact—or at any rate, even if 
the project does have an impact, that impact cannot be estimated using marginal emissions rates 
combined with the associated project’s nameplate output (because the lack of additionality 
means the associated project’s nameplate output does not represent a defensible difference from 

 
41 For example, consider an organization signing a long-term offtaker agreement for a project that would have 
otherwise still gone ahead. Although not additional in the strict binary sense used in this paper, the action may have 
secondary impacts on the capital available for other clean generation projects and may ultimately therefore still have 
a systemwide emissions impact. While such a causal chain is theoretically possible—and indeed the authors 
consider it likely prevalent to at least some degree—there is no theoretical expectation that the ultimate impact 
would be well-represented by the given project’s nameplate output and local marginal emissions rates. The authors 
are not aware of research to develop methods of estimating the impact of actions that support nonadditional projects, 
but such research may be useful.  
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the counterfactual, given that a failed additionality test indicates the potential that the project 
would have become operational even in absence of the action being analyzed).  

This document has little to add to the existing literature on this topic and so does not dwell on it 
at length, beyond noting 1) the increasing frequency of renewable generators with positive net 
values (Wiser et al. 2024) enhances the difficulty of robustly demonstrating additionality for 
such projects and 2) there is not general consensus on workable additionality tests.42 The current 
lack of generally accepted additionality tests challenges the use of marginal emissions rates as a 
basis for claims of avoided emissions from actions meant to support clean generation projects.43  

Marginal Emissions Rate Suitability 
The section above discussed heuristic tests that focused on the project associated with the action. 
This section discusses heuristic tests that focus on how the project interacts with the system at 
large.44 The motivation for this second heuristic screen is that marginal emissions rate data and 
models can, due to either known or unknown missing phenomena, omit important system-level 
impacts—so combining existing models and data with screens meant to help avoid the most 
likely misfiring of the use of their outputs would often be helpful. Said differently: The second 
screen is meant to help identify situations where a particular marginal emissions rate data 
product may be likely to produce erroneous estimates (and conversely, where the application of 
marginal emissions rates may be likely to produce accurate estimates). 

Documenting all possible tests and describing their interaction and relevance with the breadth of 
possible interventions and contexts is a large task that goes beyond the scope of this document. 
The most useful tests would vary by data product and context. This section presents several 
possible heuristics, to build intuition, recognizing that widespread adoption of avoided emissions 
claims would benefit from a more thorough collection and articulation of these tests.  

Following is a list of possible heuristics: 
1. Is the project that the action is supporting substantially similar to other projects that have 

been deployed in the region (i.e., a wind generator where wind is actively being 
deployed)? This is sometimes referred to as a common practice test.  

 
42 To be clear, even with generally low renewable costs and subsidies, many potential clean generation projects 
would not be expected to be competitive without additional revenues. Establishing additionality may be relatively 
straightforward and unambiguous in such cases. In addition, even where expected revenues exceed expected costs, 
considerations of risk and capital availability may still allow for defensible claims of additionality. The note in the 
body of the text is drawing attention to the fact that increasing prevalence of competitive projects increases the 
frequency of situations where additionality is less clear, and that tests that incorporate phenomena such as risk and 
capital availability have not yet achieved consensus.  
43 For example, financial tests are popular, but financial models are complicated with many highly uncertain input 
assumptions—meaning that an analyst can generally adjust values within plausible ranges and achieve a desired 
outcome. 
44 Note that, in some literature, tests such as presented here are also categorized as additionality tests—for example, 
ACR (2023). This paper seeks to differentiate between project-level tests and system-level tests, while recognizing 
that there are likely multiple useful ways to classify the different tests.  
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2. Is there a bottleneck associated with an administrative or engineering process (such as 
approvals in an interconnection queue), and are there other clean generators behind the 
bottleneck?45 

3. Does the project support reaching a stated clean energy or decarbonization target, goal, 
legislative requirement, or similar, where the relevant entity has the capacity to see that 
the target is fulfilled without the action under consideration? This is sometimes referred 
to as a regulatory test.  

4. If a market exists for the energy attribute certificates produced by the project (e.g., 
renewable energy credits), is the price of the certificates low? 

5. Does power sector modeling of the region where the project is located indicate 
investment in the same type of technology, without explicit representation of the specific 
action being analyzed?  

To varying degrees, the phenomenon implied by these tests (such as competition with other clean 
generators, or interactions with policy requirements) can be represented in the workflow being 
used to create a marginal emissions rate. If a heuristic indicates that a phenomenon is potentially 
present, and it is not defensibly represented within the marginal emissions rate being used, the 
use of that marginal emissions rate could lead to erroneous impact estimates.  

The use and interpretation of such heuristics would be situation-specific (partially because 
different issues can be of varying importance depending on the context, and partially because of 
the requirement for normative decisions by whoever is defining the analytical workflow), and 
therefore this paper does not give specific guidance on how such a filter should be employed in 
any particular situation. To build intuition on possible lines of reasoning, however, consider two 
prototypical contexts: guiding internal decision making and reporting impacts externally. 

These two example contexts differ in two important ways: First, internal decision making often 
allows for nuanced decision-making processes that can, for example, fold in qualitative 
assessments of data quality by analysts or estimates expressed as ranges instead of point values. 
External reporting, in contrast, is often stripped of nuance. Second, analysts performing 
consequential analysis that is purely for internal consumption may have the desire for accurate 
estimates aligned with the incentives of the organization. In contrast, when reporting results 
externally, an organization may not have strong incentives for accurate impact assessments.  

Considering the first example context: When consequential analysis is used internally to guide 
decisions, analysts may apply heuristics like the above, and then incorporate the results of the 
evaluation into their decision making in a variety of flexible ways. For example, if analysts are 
evaluating 10 projects, they may wish to reject the bottom 5 that score worst on the screen, and 
proceed with analyzing the remaining 5. Or they may wish to set a numerical criterion, such as 
only considering projects that have a “yes” on, say, 4 out of 5 of the criteria (and if no projects 

 
45 To avoid confusion, this is not intended to be an implementation barriers test, which would be part of the 
additionality screening according to the classification used in this paper. Instead, this test is seeking to identify 
situations where there is a limit on the rate of projects that can be deployed, where the limit is not expected to be 
significantly impacted by the action being analyzed. Unless such situations are explicitly represented in the methods 
used to create the marginal emissions rates being used, such rate limits may produce material errors. For example, a 
congested interconnection queue may result in the deployment of one generator directly offsetting another that 
would otherwise have proceeded, likely largely negating the impact of the first generator—a situation not commonly 
captured by marginal emissions rates.  
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meet that threshold, perhaps directing their resources toward efforts with less ambiguous 
impacts).  

Consider, in contrast, the second example context: If used externally (such as a component 
within a hypothetical consequential corporate reporting framework), the ambiguity of the 
heuristics and potential for misaligned incentives could justify a more defined approach, 
depending on the objectives of the standard-setting organization. For example, instead of a list of 
heuristics, the reporting system may define a set of heuristic-based pathways that achieve broad 
consensus as being indicative of impactful projects, where an organization can claim an offset 
only if they demonstrate compliance with at least one of the pathways.46 The stringency of the 
pathways would reflect the normative position of the standard-setting organization (i.e., the 
organization’s stance toward the desired prevalence of “false positives” versus “false 
negatives”—taking the form of overestimates of impact and exclusions of impactful projects, 
respectively). 

These heuristics are being suggested here only for practical reasons, not theoretically satisfying 
ones. In the long term, it would likely be preferrable to build a model that has a sufficiently 
adequate representation of all relevant phenomena, to be able to natively output reliable 
estimates of impacts. In the meantime, however, the author’s view is that currently-existing 
marginal emissions rates data products would all benefit from supplemental screening like the 
above to minimize the likelihood of claiming an action as impactful when it is not. 

3.5 Summary of General Limitations of Using Marginal Emissions 
Rates for Consequential Analysis 

Throughout this document, there have been various discussions of some specific limitations of 
using marginal emissions rates when used for consequential analysis. This section steps back to 
discuss some of the general limitations in broader terms, building from larger discussions from 
the literature (Plevins et al. 2013; Anex and Lifset 2014; Brandão et al. 2014; Dale and Kim 
2014; Jones et al. 2017; Ekvall 2019). This, in combination with the more focused discussions in 
Sections 3.1 through 3.4, is provided to help potential users reflect on the suitability of this 
analytical approach for a specific application.  

• The accuracy of consequential emissions analysis performed with marginal 
emissions rates has not been empirically quantified. The accuracy of analytical 
methods can be evaluated through empirical validation, where analytical outputs are 
compared to observed outputs. Empirical validation is unusually challenging in the case 
of consequential emissions analysis which, by definition, depends on unobservable 
counterfactual scenarios. This challenge is compounded when analyzing electric-sector 
interventions, where scientific techniques for establishing causality, such as randomized 
controlled trials, are generally not practicable, particularly when structural change is 
present. As a result, although work has been done to increase confidence in the 

 
46 An example pathway: If an action to support a clean generator being deployed can show 1) it passes an externally 
verifiable test to demonstrate that the project would not move forward in absence of the action being evaluated and 
2) the generator is of a type where no other generators of that class (e.g., wind, solar, geothermal) have been 
previously deployed in the region (i.e., a common practice test). If those two conditions are met, an organization 
could claim the project as an offset. While not a guarantee of impact, such a pathway may achieve consensus as 
generally indicative of impact.  
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reasonableness of various components of consequential emissions analysis (such as 
SRMERs), the uncertainty associated with comprehensively estimating the consequences 
of specific actions remains unquantified.   

• Consequential emissions analysis is sensitive to highly uncertain key assumptions. 
All analytical methods are sensitive to underlying assumptions, but consequential 
analysis of power sector impacts is exceptionally exposed to impactful yet uncertain 
assumptions. The uncertainty can have various causes, such as a deficit of data (e.g. the 
financial state of developers in the interconnection queue), difficult-to-model phenomena 
(e.g. the decision-making processes of resource planners), or the inherent uncertainty 
about the future (e.g. future changes in state or federal policies). These uncertainties must 
be appreciated when a certain threshold of accuracy is desired (or necessary). Best 
practices for reflecting the uncertainty (e.g., producing a range of plausible values 
through sensitivity analysis) are not practicable for all decision-making workflows, which 
may have the ability to use only a single value without an expression of uncertainty.  

• Important phenomena may be missing from models and methods. Consequential 
analysis is highly sensitive to the types of phenomena that are represented in the models 
employed, or implicitly reflected in the design of an empirical methodology. A model 
that omits an important phenomenon may produce a materially inaccurate impact 
estimate. Transmission congestion, elasticity of demand for various services, capital 
supply curves, interconnection queues, supply chain constraints and dynamics, and 
induced structural change are just some of many possible examples of frequently omitted 
phenomena that may materially affect the accuracy of the marginal emissions rates 
produced by a workflow, and therefore the accuracy of the consequential analysis using 
those rates. Some errors may be roughly symmetrical in their over- or under-estimation, 
while others may be materially and systematically biased in one direction: For example, 
section 3.4 discussed ways in which marginal emissions rate could systematically over-
estimate the impact of actions meant to support the deployment of clean generation.  

• The effects of intervention size and duration on impact have not been rigorously 
characterized. Interventions vary in magnitude and duration. The impact of the 
variations has not been rigorously characterized. A conceptual framework for the 
relationship between an intervention’s size and duration, and structural decisions, is 
lacking. Marginal emissions rates are generally applied equally to interventions of 
varying size and duration, but the degree to which this errs is not known.  

• Consequential emissions analysis can be sensitive to the spatiotemporal boundaries 
of the underlying models. Consequential analysis seeks to comprehensively estimate 
impacts, but in practice, resource and data constraints force analysts to define geographic 
and temporal boundaries. Drawing these boundaries is often of significant importance to 
consequential analysis, as a poorly drawn boundary can materially impact the results of 
an analysis.  

• The models used to generate marginal emissions rates are often complex, 
complicating external critique. The models used to generate marginal emissions rates 
can be complex, and this complexity can make it difficult for the model and assumptions 
to be externally examined, particularly if the model, inputs, or intermediate analytical 
steps are not made publicly available. 

• Marginal emissions rate data availability and quality varies by location. A method 
that works for a certain region of a certain country may not work elsewhere in the 
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country, let alone internationally. Comparing point estimates of impact between projects 
from different workflows should be done cautiously. 

While the above considerations, as well as those expressed earlier in the document, are important 
(and in many instances may have sufficient impact that a decision maker would be better served 
by a different analytical approach), this discussion should not be interpreted as suggesting that 
consequential emissions analysis is fatally flawed for all applications or functionally impossible 
to practice. A well-conducted consequential emissions analysis whose results are interpreted in 
light of their underlying uncertainty can often be a useful contribution to a decision-making 
process.  

In addition, active work is ongoing from diverse groups, to improve various of the above 
considerations. The authors’ views on potential future research activities are discussed in Section 
4. In some cases, certain issues may be partially or entirely mitigated. In others, downstream 
decision-making workflows and guidance may be developed to mitigate the issue’s negative 
impact on decisions. This is an active field of research, with many improvements likely in the 
coming years.  
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4 Looking Forward 
This paper has discussed the state of the art of consequential emissions analysis and has 
referenced the concept of the approach being “suitable” for particular applications throughout. 
Such designations are unusually challenging, however, for three reasons: First, many of the 
shortcomings and uncertainties are unquantified, meaning that any conclusions require some 
degree of subjectivity. Second, the suitability of a particular method for a particular purpose 
depends on normative positions, which are unlikely to be shared by all practitioners. And third, 
the variety of different interventions, contexts, and objectives calls for nuanced, case-by-case 
treatment.  

Given these difficulties, this paper does not make broad concluding statements about the 
suitability of current methods. Some uses of consequential emissions analysis seem, to the 
authors, to likely be generally accepted as suitable (e.g., long-lived prospective analysis of 
policies or loads, given its current widespread use for that purpose already) or generally viewed 
as unsuitable (e.g., real-time estimates, given the lack of any real-time estimates of induced 
structural change)—however, many potential applications of consequential analysis merit 
nuanced discussions before a decision about suitability can be made.  

Looking forward, however, numerous possible research activities could help increase the 
accuracy of consequential analysis, thereby generally increasing its usefulness as well as 
extending its suitability into new domains. Some possible research activities are discussed here.  

Future Research: Near Term 
As discussed in Section 3.4, two critical shortcomings of the current state of the art are 1) the 
lack of generally accepted additionality tests and 2) deficits in the methods for calculating 
marginal emissions rates that create the potential for large, systematic errors in their estimates of 
impact, even when additionality is demonstrated. Therefore, two useful near-term research 
activities could focus on assembling researchers and practitioners to develop tests and heuristics 
to mitigate the worst of those shortcomings:  

• Within an inclusive working group with broad participation, develop externally verifiable 
additionality tests for actions meant to support the deployment of clean generators (i.e., 
tests meant to establish whether a project is in the counterfactual). 

• Within an inclusive working group with broad participation, develop a list of heuristics 
that indicate situations where currently available marginal emissions rates would tend to 
result in erroneous estimates because of the omission of countervailing system-level 
phenomena (i.e., an expanded and elaborated list of the manner described in Section 3.4), 
or alternatively, identify activities whose impacts can defensibly be estimated with 
currently available data products. Develop guidance on the interpretation of the 
heuristics, and develop tractable pathways that tend to indicate impactful projects. 
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Future Research: Long Term 
In the longer term, fundamental theory and practice could be advanced, to improve the quality of 
consequential impact estimates and reduce the reliance on heuristics and subjectivity. Several 
possible longer-term activities: 

• Develop either a global available, regularly updated database of long-run marginal 
emissions rates, or improve the sophistication of the 𝑤𝑤𝑏𝑏 estimates that are currently 
available. Pair such databases with guidance on identifying interventions where the 
application of the data would tend to result in erroneous estimates (e.g., an elaboration of 
the additionality and system-level considerations discussed in Section 3.4). 

• Expand the methods and guidance for defensible avoided emission claims associated with 
forward-looking prospective analysis for specific projects. For example, develop scalable 
methods for estimating the impact of interventions that are not demand perturbations 
(e.g., building transmission lines), potentially through standardization of power sector 
modeling for specific types of questions, or by developing reduced-form models.  

• Develop a method for calculating a composite marginal emissions rate that folds all 
cascading impacts over time (both inter- and intrayear effects), back to the original point 
of action.  

• Research the impacts of electric sector transmission congestion in the long-run. 
• Research methods of estimating the impact of actions meant to support clean generator 

deployment for nonadditional projects.  
• Develop a purpose-built model, or combination of models, for calculating retrospective 

impact estimates. Explore the possibility of combining short-run marginal emissions rates 
developed from operator data with structural impacts developed through purpose-built 
near-term capacity expansion models (i.e., develop a combined approach that leverages 
the relative strengths of empirical and model-based methods).  
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Appendix 
A.1 Stylized Model for Emissions Impacts 
Sections 2 and 3 contain figures showing the impacts of several stylized interventions. Those 
figures were generated with an intentionally simple model that was designed to help illustrate 
operational and structural impacts. The model assumes the following: 

• In a given year, annual generation from variable renewable generators (i.e., wind and 
solar generators) is half of the average electric demand from 3 years prior (e.g., if demand 
averaged 100 MWh in 2024, then throughout 2027 the quantity of variable renewable 
generation is assumed as 50 MWh). Variable renewable generation is assumed to not 
decrease.  

• Any demand not met by the variable renewable generators is met by natural gas 
generators. It is assumed that there is sufficient natural gas generation capacity to meet all 
remaining demand, and that any changes in natural gas capacity do not impact the 
generation mixture.  

• Load growth is linear and, on an annual basis, is greater than half the size of the 
intervention being analyzed. 

• The variable renewable generators have a CO2 emissions rate of 0 kg/MWh and the 
natural gas generators have a CO2 emissions rate of 400 kg/MWh. 

The time delay for the level of renewable energy is meant to represent the time lag of investment 
decisions because of myriad factors, such as the time it takes for actions to appear in the data 
used for planning, the time to construction capital assets, administrative procedures prior to 
construction, and so forth. The quantity of load growth was selected to be large enough to allow 
the system to return to a state identical to the counterfactual within 1 year, for ease of 
explanation.  

To help build intuition about how this model produced the impact patterns shown in the body of 
the paper, Figure 10 and Figure 11 show two example outputs from the model. Both examples 
reflect the assumptions made for the retrospective assessment class from Section 2.3, because 
feedback during the writing of this paper indicated that it warranted additional explanation. The 
assumptions in the figures below (e.g., the starting point and growth of demand) were selected to 
facilitate visual examination of the dynamics shown in the figures—the values are not intended 
to be realistic.  

Figure 10 shows the same intervention pattern described in Section 2.3, where the intervention is 
a load addition that starts in 2024, and the counterfactual is the same load addition instead 
starting in 2025.  
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Figure 10. Stylized model outputs: Example #1 

Figure 11 shows the results of a different situation, where the intervention is instead just a single-
year load increase and where the counterfactual is the load increase not occurring at any point.  
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Figure 11. Stylized model outputs: Example #2 

The interventions in Figure 10 and Figure 11 were selected, in part, to illustrate how, under 
certain stylized situations, multiple types of interventions can produce the type of pattern that 
was previously seen in Section 2.3. We see how symmetrically time-lagged structural decisions 
can produce both operational and structural responses for short-lived decisions, for example.  

In addition, however, they were selected as a basis to discuss a key uncertainty, which is the 
exact nature of how the entities making investment decisions would respond to the interventions. 
In the stylized example here, the response is simple and mechanical, where renewable generator 
investment is mechanically defined to achieve a fraction of total load, with a 3-year time lag. In 
practice, the decision could be different, and a great deal more complex—and in many plausible 
circumstances, not result in the outcomes shown above.  

Decisions would likely be made based on more years of data, potentially reducing in magnitude 
but increasing in duration the time-lagged structural response. Many interventions would be 
sufficiently small that they would not be directly “observed” by resource planners (in the sense 
that any specific person would discern a specific event), and therefore the manner in which they 
would influence planning would potentially be a mechanical result of an analysis process.  
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Any effort to develop sophisticated representations of how resource planners would react to 
specific interventions faces many obstacles, including the diversity of approaches across 
administrative regions, the fact that multiple actors may be involved in structural decisions and 
may be using different planning methods (e.g., a regulated utility and independent power 
producers in the same region), the fact that methodological approaches of specific institutions 
vary over time, and so forth. Ultimately, it appears likely that methods will face material 
counteracting challenges in tractability and accuracy without the benefit of scientific 
validation—and the suitability of any stylized methodology for a particular purpose may not be 
clear but ultimately depend on nuanced normative considerations.  
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