

Annual Technology Baseline (ATB): The 2024 Transportation Update

atb.nrel.gov/transportation/2024/index

Presented by:

Laura Vimmerstedt and Paige Jadun (National Renewable Energy Laboratory [NREL])

Co-Authors:

Arpit Bhatt, Halle Evans, Matthew Heine, Ling Tao, Jiayun Sun, Arthur Yip (NREL)

Amgad Elgowainy, Ehsan Islam, Uisung Lee, Charbel Mansour, Clarence Ng, Paul Phillips, Aymeric Rousseau, Ram

Vijayagopal (Argonne National Laboratory [ANL])

Acknowledgments

- Biofuels: Ling Tao, NREL
- Biofuels and GREET* Analysis: Uisung Lee, Argonne National Laboratory
- Hydrogen and GREET* Analysis: Clarence Ng, Argonne National Laboratory
- Vehicles: Halle Evans, Paige Jadun, Jiayun Sun, and Arthur Yip, NREL; Amgad Elgowainy, Ehsan Islam, Charbel Mansour, Paul Phillips, Aymeric Rousseau, and Ram Vijayagopal, Argonne National Laboratory
- Aviation: Jiayun Sun, NREL
- Project coordination: Laura Vimmerstedt, NREL
- Data and documentation development: Matthew Heine, Paige Jadun, Jiayun Sun, Dana Stright, and Arthur Yip, NREL
- Website production: Mike Bannister and Jeremy Jenkins, NREL
- Editing: Emily Horvath, NREL
- Quality control review: Bo Liu and Dan Mazzone, NREL
- **DOE Project Leads:** Raphael Isaac, Michael Shell, and Paul Spitsen.

Agenda

- Why the ATB?
- ATB Project Overview
- Website Demonstration
- Questions and Comments.

What Are the Content and Purpose of the ATB?

The ATB is a ...

- Website and summary dataset of cost and performance estimates for selected vehicles and fuels
- Link to publicly available resources
- Set of scenarios that highlight potential technological improvements
- Platform for interactive exploration, selection, and download of specific data.

The ATB is not a ...

- Primary analysis
- Model
- Set of all-encompassing future scenarios.

Why the ATB?

- The *rapid pace of technology development* results in reports of technology progress quickly becoming outdated, making it difficult for researchers to find *current, credible, and consistent* information in one place.
- By enabling understanding of technology cost and performance across energy sectors, the ATB informs transportation sector analysis nationwide.

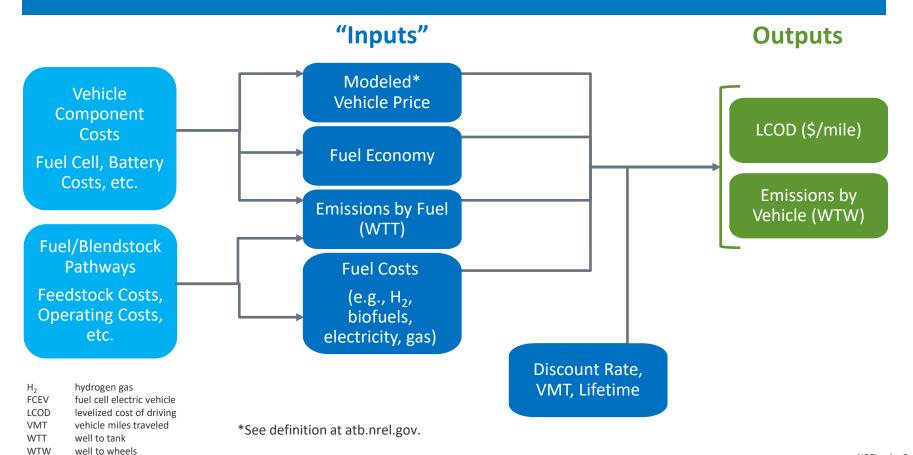
Annual T	echnology	Baseline
Electricity~	Transportation^	Contact~ Archive
The NREL An ATB electricit	Transportation 🚓	seline (ATB) provides a c datasets are freely avail
To inform elect modeling input	Technologies	sector analysis in the United gy technologies (the Annual
potential electr Baseline is pro	Data	s or modeling scenarios (Sta ation sector for the first time

atb.nrel.gov

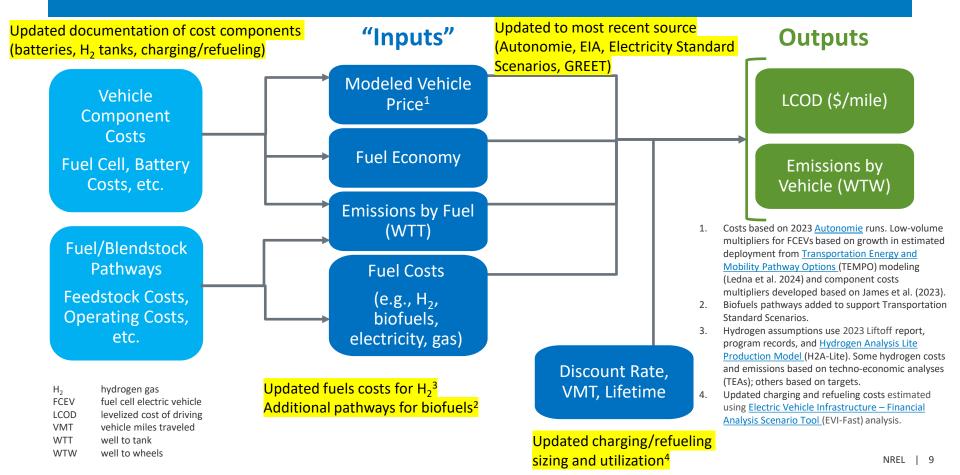
The ATB Targets Analytic Transparency and Consistency

Objective: Develop and publish energy technology cost and performance assumptions that are credible, comparable, transparent, and reflect current and potential future technology advancement.

EERE* Analysis Consistency


- Ensure consistent assumptions across technologies
- Provide comparability across EERE/national laboratory projects and publications.

Third-Party Analysis


- Provide access to assumptions
- Leverage national laboratory expertise.

ATB Project Overview

Transportation ATB Highlights Key Data

Transportation ATB Highlights Key Data: Changes in 2024

New Feature: Comparison to Previous Update

Use the filters on the top to select the weight category, parameter (Battery Cost, Fuel Cell Cost, Fuel Economy, H2 Storage Tank Cost or Modeled Vehicle Price), scenarios, ATB year, vehicle class, powertrain and powertrain detail.

For documentation, see website https://atb.nrel.gov

Summary of Transportation ATB 2024 Data Sources

Key Inputs	Primary Sources
Vehicle Costs and Fuel Economy	ANL's modeling from Autonomie (Islam et al. 2023) and TechScape (ANL 2024). Low-volume multipliers used for FCEVs based on Hydrogen Program Record (James et al. 2023) and in alignment with TEMPO-based market penetrations (Ledna et al. 2024). EIA (2023) Annual Energy Outlook (AEO) used for rates of improvement in Conservative case.
Fuel Costs	Biofuels: Published EERE TEA reports. Hydrogen: 2023 Liftoff report (DOE 2023), H2A-Lite (NREL 2024), Hydrogen Program Record (Hubert et al. 2024), and Bracci et al. 2024. Gasoline, diesel, and ethanol: EIA and EIA AEO (various updated years, not 2023). Electricity: EIA, AEO, and NREL 2023 Standard Scenarios (Gagnon et al. 2024). Recharging: Assumptions based on Borlaug et al. (2020 and 2022), Bennett et al. (2022), and Wood et al. (2023).
Fuel Emissions (WTT)	ANL's GREET model (Wang et al. 2023).
Other LCOD Calculation Assumptions (Discount Rate, VMT, Lifetime, Maintenance, Utility Factor)	LDV: Elgowainy et al. (2016), Burnham et al. (2021), Greene and Leard (2024), and SAE J2841. MHDV: TechScape (ANL 2024); Hunter et al. (2021).

Note: The full list of references can be found here: <u>https://atb.nrel.gov/transportation/2024/references</u>.

The ATB: Assumptions for Energy Systems Analysis

Core Transportation ATB Assumptions

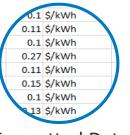
Base Year and

Projected Data for...

- Component costs
- Vehicle price
- Fuel economy
- Fuel costs

- Financing assumptions
- Levelized cost of driving
- Emissions.

atb.nrel.gov


- User guidance
- Additional analyses
- Methodologies
- Comparison to other projections (e.g., U.S. Energy Information Administration [EIA]).

ATB Product Suite

Cell Electric (a) ATB Ma (A) ATB Advanced Vehice Kane (AI) (Cell S20-mille (AI) (Cell Electric Cell Field (Cell Electric Vehice Kane (Cell Field (Cell Electric Vehice Kane (Cell Electric) (Cell Elect

Tableau Workbook

- Summary of selected assumptions (no calculations)
- Cost and performance projections, 2022–2050
- Interactive charts
- Visual exploration.

Formatted Data

- Database-friendly summaries
- Cost and performance projections, 2022–2050
- Structured format.

Presentation Slides

- Webinar presentation
- Summary presentation.

What Is the Value of the ATB?

Transparency, Consistency, Credibility, and Accessibility

- Consolidates assumptions from—and for use within—the U.S. Department of Energy's (DOE's) Sustainable Transportation analysis
- **Summarizes** assumptions to the high level needed for systemwide analysis
- **Organizes** data in highly structured format, enabling:
 - Display of data in interactive charts
 - Exploration, selection, and download of specific data.

Data are free, publicly available, and easily accessible.

The Transportation ATB Aims for Various Applications

- Sector-specific modeling and analysis
 - <u>TEMPO model</u>
 - Bioenergy Scenario Model (BSM)
 - EPA transportation models
 - Transportation Standard Scenarios analysis
- Integrated, economy-wide modeling and analysis
 - <u>Global Change Analysis Model</u> (GCAM)
 - <u>Decarbonizing Energy through Collaborative Analysis of</u> <u>Routes and Benefits (DECARB) analysis</u>

Technology Specifics: Web Demo

- Fuels
- Vehicles

Electricity~ Transportation~ Contact~ Archive

Login

The NREL Annual Technology Baseline (ATB) provides a consistent set of technology cost and performance data for energy analysis. The ATB electricity and transportation datasets are freely available.

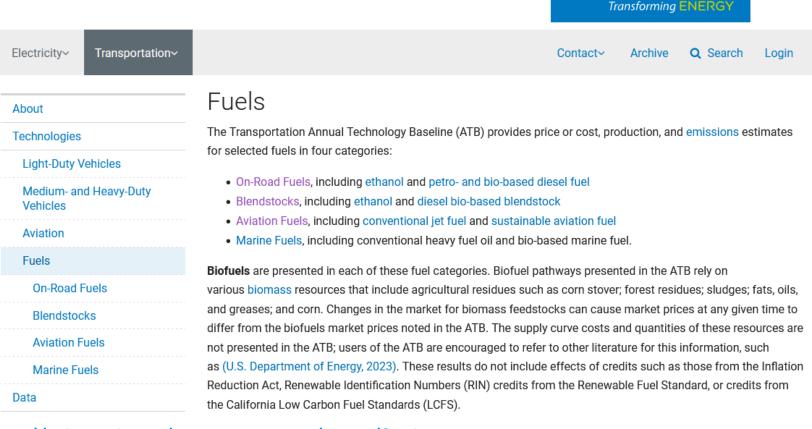
To inform electric and transportation sector analysis in the United States, each year NREL provides a robust set of modeling input assumptions for energy technologies (the Annual Technology Baseline) and a diverse set of potential electricity generation futures or modeling scenarios (Standard Scenarios). In 2020, an Annual Technology Baseline is provided for the transportation sector for the first time.

The ATB is a populated framework to identify technology-specific cost and performance parameters or other investment decision metrics across a range of fuel price conditions as well as site-specific conditions for electric generation technologies at present and with projections through 2050.

U.S. DEPARTMENT OF

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Developed with funding from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.


Electricity~ Transportation~	Carbon Dioxide Removal~	Contact~	Archive	Editing~	Admin~	Laura Vimmerstedt		
About	Technologies							
Technologies	The 2024 Transportation Annual Technology Baseline (ATB) provides detailed cost and performance data, cost							
Light-Duty Vehicles	estimates, and assumptions for vehicl	e and fuel techn	ologies in th	e United Stat	es.			
Medium- and Heavy-Duty Vehicles	The Transportation ATB provides curre medium-, and heavy-duty on-road vehic					. .		
Aviation	details the assumptions used to calculate those costs, such as natural gas and electricity prices, discount rates, and vehicle miles traveled. At this time, the ATB does not include other vehicles such as two- and three-wheeled motorized vehicles, or nonroad vehicles such as aircraft, vessels, locomotives, and those for industry and							
Fuels								
Data	agriculture.		it, 4000010, 1	00011011485, 6				

Electricity~ Transportation~ Carbon Dioxide Removal~ Contact~ Archive Editing~ Admin~ Laura Vimm	erstedt							
Tashnalagiaa								
About Technologies								
Technologies The 2024 Transportation Annual Technology Baseline (ATB) provides detailed cost and performance data,	The 2024 Transportation Annual Technology Baseline (ATB) provides detailed cost and performance data, cost							
Light-Duty Vehicles estimates, and assumptions for vehicle and fuel technologies in the United States.	estimates, and assumptions for vehicle and fuel technologies in the United States.							
Vahialaa	The Transportation ATB provides current and projected estimates including time-series through 2050 for light-, medium-, and heavy-duty on-road vehicle technologies as well as scenarios for conventional and alternative fuels. It							
	details the assumptions used to calculate those costs, such as natural gas and electricity prices, discount rates, and							
Fuels vehicle miles traveled. At this time, the ATB does not include other vehicles such as two- and three-wheele motorized vehicles, or nonroad vehicles such as aircraft, vessels, locomotives, and those for industry and	d							
Data agriculture.								

Electricity~ Transportation~	Carbon Dioxide Removal~	Contact~	Archive	Editing~	Admin∽	Laura Vimmerstedt		
About	Technologies							
Technologies	The 2024 Transportation Annual Technology Baseline (ATB) provides detailed cost and performance data, cost							
Light-Duty Vehicles	estimates, and assumptions for vehicle a	and fuel techno	ologies in th	e United State	es.			
Medium- and Heavy-Duty Vehicles	The Transportation ATB provides current and projected estimates including time-series through 2050 for light-, medium-, and heavy-duty on-road vehicle technologies as well as scenarios for conventional and alternative fuels. It							
Aviation	details the assumptions used to calculate those costs, such as natural gas and electricity prices, discount rates, and							
Fuels	vehicle miles traveled. At this time, the ATB does not include other vehicles such as two- and three-wheeled motorized vehicles, or nonroad vehicles such as aircraft, vessels, locomotives, and those for industry and							
Data	agriculture.					-		

https://atb.nrel.gov/transportation/2024/fuels

Update includes additional biofuels pathways to support Transportation Standard Scenarios Annual Technology Baseline

Transportation~

Contact~ Archive Q Search Login

About F Technologies T Light-Duty Vehicles for Medium- and Heavy-Duty Vehicles Aviation F Fuels B On-Road Fuels valuation Blendstocks a Aviation Fuels m Marine Fuels R Data tt

Electricity~

Fuels

The Transportation Annual Technology Baseline (ATB) provides price or cost, production, and emissions estimates for selected fuels in four categories:

- On-Road Fuels, including ethanol and petro- and bio-based diesel fuel
- · Blendstocks, including ethanol and diesel bio-based blendstock
- Aviation Fuels, including conventional jet fuel and sustainable aviation fuel
- · Marine Fuels, including conventional heavy fuel oil and bio-based marine fuel.

Biofuels are presented in each of these fuel categories. Biofuel pathways presented in the ATB rely on various biomass resources that include agricultural residues such as corn stover; forest residues; sludges; fats, oils, and greases; and corn. Changes in the market for biomass feedstocks can cause market prices at any given time to differ from the biofuels market prices noted in the ATB. The supply curve costs and quantities of these resources are not presented in the ATB; users of the ATB are encouraged to refer to other literature for this information, such as (U.S. Department of Energy, 2023). These results do not include effects of credits such as those from the Inflation Reduction Act, Renewable Identification Numbers (RIN) credits from the Renewable Fuel Standard, or credits from the California Low Carbon Fuel Standards (LCFS).

https://atb.nrel.gov/transportation/2024/fuels

Electricity~ Transportation~

About

Technologies

Light-Duty Vehicles

Medium- and Heavy-Duty Vehicles

Aviation

Fuels

On-Road Fuels

Gasoline and Ethanol Petro- and Bio-Based Diesel Fuel

Natural Gas Fuel

Electricity

Hydrogen

Blendstocks

Aviation Fuels

Marine Fuels

On-Road Fuels

The Transportation Annual Technology Baseline (ATB) provides fuel price or cost and emissions for select on-road vehicle fuels, including gasoline and ethanol, diesel fuel, natural gas, electricity, and hydrogen.

Finished fuel prices are meant to represent retail prices, and they include estimated taxes (for fuels that are currently taxed) and distribution costs. Blendstock data do not include taxes or distribution costs.

We use the U.S. Energy Information Administration Annual Energy Outlook 2023 for current and projected petroleum fuel prices. Projected fuel prices are associated with particular years; however, because the ATB does not provide a time-series trajectory, we present fuel price at a frozen level for all years, offering different scenarios for a range of fuel price values.

Fuel Scenarios

For nonpetroleum fuels, the Transportation ATB presents five fuel scenarios, which include current market, current modeled, or future modeled conditions at low or high production volume scales, based on techno-economic modeling of potential technology advancement:

 The Current Market scenario represents fuel price and emissions data for fuels that are commercially available, with the exact source, timing, averaging, and other details described in the references. Current Market fuel prices are primarily based on the data from the U.S. Energy Information Administration. Fuel price may differ from retail prices because of market volatility and local market conditions. Fuel emissions data are primarily from the Research & Development Greenhouse gases, Regulated Emissions, and Energy use in Technologies (R&D GREET) model. See specific notes on each fuel page and references for specific dates and averaging methods.

https://atb.nrel.gov/transportation/2024/on-road_fuels

Fuels Scenarios

- **Current Market:** In the Current Market scenario, fuel price and emissions data are shown for fuels that are commercially available; the exact source, timing, averaging, and other details are described in the references. Fuel metrics are primarily based on data from EIA. Fuel price may differ from retail prices because of market volatility and local market conditions. See notes and references on the fuels pages for specific dates and averaging methods.
- **Current Modeled, Current Volume:** In this scenario, fuel metrics are based on techno-economic modeling of the current technology at current market production volume as specified in the notes and references on the fuels pages.
- **Current Modeled, High Volume:** In this scenario, fuel metrics are based on techno-economic modeling of the current technology at high market production volume. Timing of this scenario depends on when high production volume is achieved.
- **Future Modeled, Low Volume:** In this scenario, fuel metrics are based on a future technological state modeled at low market production volume, as might be the case for a pioneer plant.
- **Future Modeled, High Volume:** In this scenario, fuel metrics are based on a future technological state, based on engineering-economic modeling at high market production volume, often called "nth plant." Timing of this scenario depends on when high production volume is achieved.

https://atb.nrel.gov/transportation/2024/definitions

Explore Fuels Data via Interactive Tables

Finished Fuel Conventional E10 Gasoline	Ethanol Pathway (All)	Click button to go	
Conventional E10 Gasoline •	(AII)	•	to emissions data:
Ethanol Scenario			
(Multiple values) •			
Finished Fuel:	Gasoli	Conventional E10 Gasoline	hanol
Blendstock Pathway:		al E0 Gasoline Blendstock (Curre	
Ethanol Pathway:	Starch Ethanol	Cellulosic Biochemical Ethanol from Corn Stover	Cellulosic Thermochemical Ethanol from Forest Residue
Ethanol Scenario:	Current Market	Future Modeled, High Volume	Future Modeled, High Volume
Weight Category Light Duty Medium/Heavy Duty Fuel Pathway	Finished Fuel (All)	Click button to	go to emissions data: >
(Multiple values)			
Finished Fuel:	Ultra-Low Sulfur Diesel	Renewable Diesel	Ultra-Low Sulfur Diesel 2050
Petro-	- and Bio-I	Biofuel Blendstock HEFA (RD100) from Used Cooking O	Ultra-Low Sulfur Diesel 2050
Fuel Scenario:	Current Market	Future Modeled, High Volume	Future Modeled, High Volume
Select Pathway:	Baseline (current fuel cost)	Lowest CO2e Emissions	Lowest Price

(Multiple values)	Liquefaction-Tru	cks 🔻 (All)	•	Click button to	o go to emi	issions d	lata: >
Production Pathway:	Steam Methane Reforming			Low temperature electrolysis			ysis
Energy Source:		Hyd	roger	١	Dedicated	d RE	
Delivery Pathway:	Liquefaction-Trucks			Lic	quefaction	-Trucks	
Fuel Scenario:	Current Modeled, Future Modeled, High Current Volume Volume		Current Mode Current Volu			odeled, High Ilume	
Grid Scenario:	Default	Fu	ure National	Default		Future National	
	Baseline (current fuel						
Select Pathway:	cost)					Lowe	est Price
Veight Category Light Duty Medium/Heavy Duty iuel Pathway 			ctricit	си С У	ick button emission	to go to	>
Select Pathway: Weight Category O Light Duty Medium/Heavy Duty Fuel Pathway (Multiple values) Finished Fuel:				CI CY Electricity		to go to	
Veight Category Light Duty Medium/Heavy Duty Uel Pathway (Multiple values) Finished Fuel:				:y	PEV Cha	rging city, bw RE stion	
Weight Category • Light Duty Medium/Heavy Duty Fuel Pathway (Multiple values)	Cost) PEV Charging Electricity, National Grid Mix	PEV Charging Electricity, IN Grid Mix	End-Use I PEV Charging Electricity, CA	Electricity PEV Charging Electricity, Future High RE Penetration Grid Mix Euture	PEV Cha Electric Future Lo Penetra Grid N Futur	rging city, pw RE ation Alx	> PEV Charging Electricity, Juture Nation: Grid Mix Future

NREL | 24

Electricity Example

Metric Type	Weight Category	Class	Grid Mix	Metric Type	Weight Category	Class	Grid Mix
wether type	weight category	CidSS	Griu wix	Price	Light Duty	All Classes 🔹	(Multiple values)
 Price 	Light Duty	All Classes •	(Multiple values)	O Emissions			
Emissions	Medium/Heavy Duty			C Emissions	O mediany neavy bucy		

						PEV Charging	PEV Charging	PEV Charging	PEV Charging
Grid Mix:	PEV Charging Electricity, National	PEV Charging Electricity, IN Grid	PEV Charging Electricity, CA Grid	PEV Charging Electricity High Cost,	Grid Mix:	Electricity, National Grid Mix	Electricity, IN Grid Mix	Electricity, CA Grid Mix	Electricity High Cost, National Grid Mix
	Grid Mix	Mix	Mix	National Grid Mix	Fuel Scenario:	Current Market	Current Market	Current Market	Current Market
					Class:	All Classes	All Classes	All Classes	All Classes
Class:	All Classes	All Classes	All Classes	All Classes	Fuel Price (\$/gge)	3.49	3.44	4.05	4.80
CO₂e WTT (g/mmBtu)	129000	235000	79500	129000					
CO₂e WTW (g/mmBtu)	129000	235000	79500	129000					
NO _x WTT (g/mmBtu)	96.1	167	57.4	96.1					
NO _x WTW (g/mmBtu)	96.1	167	57.4	96.1					
PM ₁₀ WTT (g/mmBtu)	13.2	29.4	4.35	13.2					
PM ₁₀ WTW (g/mmBtu)	37.2	53.4	28.3	37.2					
SO _x WTT (g/mmBtu)	76.9	178	19.5	76.9					
SO _x WTW (g/mmBtu)	76.9	178	19.5	76.9					

In this table, you can explore the fuel prices and emissions data for all of the electricity fuel pathways in the ATB. Use the filters on the top to choose a metric type and to drill down to specific pathways and scenarios. WTT="Well to Tank", WTW="Well to Wheels"

For documentation, see website https://atb.nrel.gov

https://atb.nrel.gov/transportation/2024/electricity

Electricity~ Transportation~	Carbon Dioxide Removal~	Contact~	Archive	Editing~	Admin∽	Laura Vimmerstedt		
	T a ala al a ai a a							
About	Technologies							
Technologies	The 2024 Transportation Annual Techr	ology Baseline	(ATB) provid	les detailed c	ost and perf	ormance data, cost		
Light-Duty Vehicles	estimates, and assumptions for vehicle	e and fuel techn	ologies in th	e United Stat	es.			
Medium- and Heavy-Duty	The Transportation ATB provides curre	nt and projected	d estimates	including time	e-series thro	ugh 2050 for light-,		
Vehicles	medium-, and heavy-duty on-road vehic	le technologies	as well as s	cenarios for	conventional	l and alternative fuels. It		
Aviation	details the assumptions used to calculate those costs, such as natural gas and electricity prices, discount rates, and							
Fuels	vehicle miles traveled. At this time, the ATB does not include other vehicles such as two- and three-wheeled motorized vehicles, or nonroad vehicles such as aircraft, vessels, locomotives, and those for industry and							
Data	agriculture.		11, 1000010, 10	scomotives, a		industry and		

New Feature

Comparison with previous update

Constant Oconservative Mid Advanced

--- 2022 - 2024

Use the filters on the top to select the weight category, parameter (Battery Cost, Fuel Cell Cost, Fuel Economy, H2 Storage Tank Cost or Modeled Vehicle Price), scenarios, ATB year, vehicle class, powertrain and powertrain detail.

For documentation, see website https://atb.nrel.gov

Electricity~ Transportation	on~ Contact~ Archive Editing~ Admin~ Laura Vimmerstedt								
About	Light-Duty Vehicles								
Technologies	The 2024 Transportation Annual Technology Baseline (ATB) provides current and future projections of cost and								
Light-Duty Vehicles	performance for select light-duty vehicles and fuels (and for select Medium- and Heavy-Duty Vehicles).								
Gasoline									
Diesel	 The Transportation ATB provides data in a series of interactive charts for either a single year or a trajectory out 2050 showing the following: 								
Natural Gas									
Gasoline Hybrid	Fuel economy, which is reported in miles per gallon gasoline equivalent and represents how efficiently a								
Plug-In Hybrid	 vehicle converts fuel during operation Modeled Vehicle Price, which represents an estimated cost, including manufacturing costs and profit, to the set of the set								
Battery Electric	consumer purchasing a new vehicle								
Fuel Cell	Levelized cost of driving, which is an indicator of the cost of operation over the vehicle lifetime on a per-m								
Comparison	basis								
Medium- and Heavy-Duty Vehicles	 Emissions, which represent the well-to-wheels emissions (including emissions from fuel production to veh operation). 								
Aviation	The Transportation ATB presents these metrics for individual powertrains and in comparison with other powertr								

Vehicles Scenarios

Advanced Trajectory

In the ATB Advanced trajectory, technology advances occur with breakthroughs, increased public and private research and development (R&D) investment, and other market conditions that lead to significantly improved cost and performance levels, but technologies do not necessarily reach their full technical potential. Vehicle technologies advance substantially and achieve high performance, low cost, or both. Attaining this level of cost improvement is assumed to be very uncertain.

Mid Trajectory

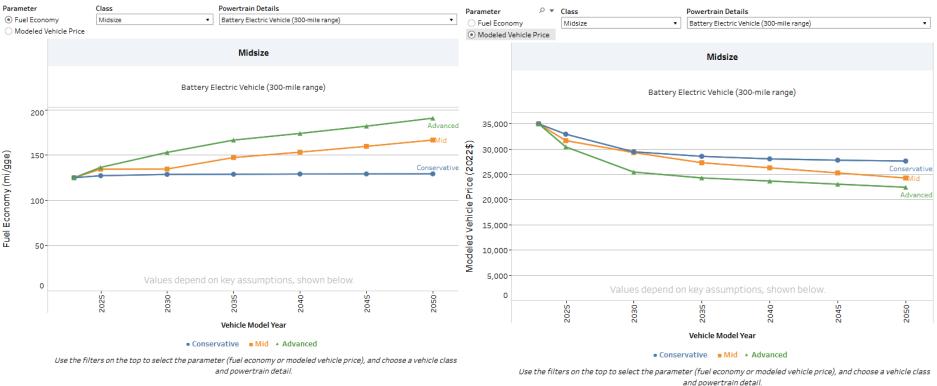
In the ATB Mid trajectory, technology cost and performance improve at moderate levels with continued industry growth and R&D investment (both public and private). Vehicles include moderate technology advancements (in between the currently manufactured technology and the Advanced trajectory) to achieve higher performance, lower costs, or both. Attaining this level of cost improvement is assumed to be moderately uncertain.

Conservative Trajectory

In the ATB Conservative trajectory, technology cost and performance improve from Base Year levels at rates based on the Annual Energy Outlook (EIA, 2023).

Constant Trajectory (used only for vocational and refuse vehicles)

In the ATB Constant trajectory, technology cost and performance from the Base Year are shown through 2050, without further advancement in R&D or markets. This cost level is extended through 2050 for reference only; it does not imply that frozen costs and performance are anticipated and should not be confused with a business-as-usual or baseline scenario.

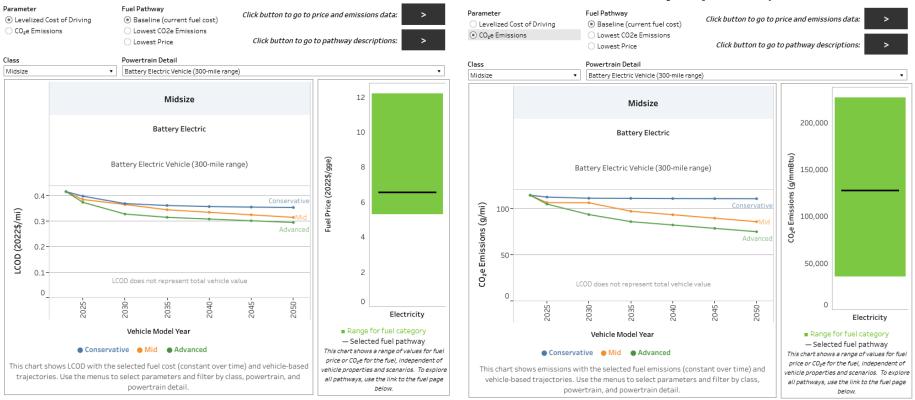

Technology advances include changes that may reduce costs or may increase costs while improving performance, which implies costs do not always decline between less-advanced and more-advanced scenarios. However, although technology advancements that improve performance may increase vehicle cost, they might also result in a lower LCOD because of potential fuel savings.

https://atb.nrel.gov/transportation/2024/definitions

Vehicle Metrics: Battery Electric Vehicle (BEV) Example

Fuel Economy and Modeled Vehicle Price Trajectories

Fuel Economy and Modeled Vehicle Price Trajectories


For documentation, see website https://atb.nrel.gov

For documentation, see website https://atb.nrel.gov

https://atb.nrel.gov/transportation/2024/battery_electric

Vehicle and Fuel Metrics: BEV Example

Levelized Cost of Driving and CO2e Emissions Trajectories

For documentation, see website https://atb.nrel.gov

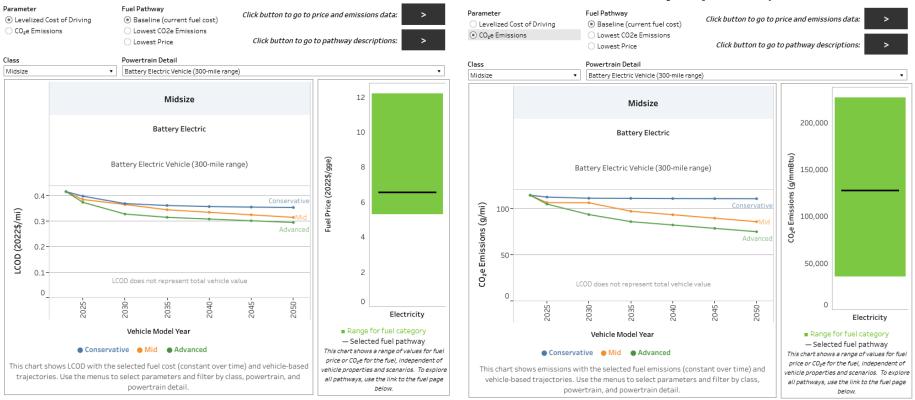
https://atb.nrel.gov/transportation/2024/battery_electric

31

Levelized Cost of Driving and CO₂e Emissions Trajectories

For documentation, see website https://atb.nrel.gov

Vehicle and Fuel Metrics: BEV Example


Levelized Cost of Driving and CO₂e Emissions Trajectories Fuel Pathway Parameter Not all fuel pathways are available in Click button to go to price and emissions data: Levelized Cost of Driving Baseline (current fuel cost) > rent fuel cost) O Lowest CO2e Emissions ○ CO₂e Emissions Emissions O Lowest Price the simplified view on the Vehicles Click button to go to pathway descriptions: Class Powertrain Detail Battery Electric Vehicle (300-mile range) Midsize pages. See Data or Fuels pages. ehicle (300-mile range) Midsize Midsize 200.000 Green shows range of 10 **Battery Electric** imBtu) fuel prices for all Fuel Price (2022\$/gge) Battery Electric Vehicle (300-mile range) 150.000 m/g) • electricity pathways. SL Emissior CO₂e Emissions (g/mi) 100 .coD (2022\$/mi) 100,000 0.3-CO₂e 0.2 50 Black bar shows fuel price 50.000 LCOD does not represent total vehicle value for electricity pathway 2025 8 2035 2040 2045 2050 Electricity 0 used in this selected Electricity Range for fuel category Range for fuel category Vehicle Model Year Selected fuel pathway Selected fuel pathway LCOD chart. This chart shows a range of values for fuel Conservative Mid Advanced This chart shows a range of values for fuel price or CO2e for the fuel, independent of price or CO2e for the fuel, independent of This chart This chart shows emissions with the selected fuel emissions (constant over time) and vehicle properties and scenarios. To explore vehicle properties and scenarios. To explore trajectories. Use the menus to select parameters and filter by class, powertrain, and all pathways, use the link to the fuel page vehicle-based trajectories. Use the menus to select parameters and filter by class. all pathways, use the link to the fuel page powertrain detail. below powertrain, and powertrain detail below

Levelized Cost of Driving and CO₂e Emissions Trajectories

NREL | 32

Vehicle and Fuel Metrics: BEV Example

Levelized Cost of Driving and CO2e Emissions Trajectories

For documentation, see website https://atb.nrel.gov

https://atb.nrel.gov/transportation/2024/battery_electric

Levelized Cost of Driving and CO₂e Emissions Trajectories

Light-Duty Vehicle Comparison Example

Modeled Vehicle Price

Fuel Economy and Modeled Vehicle Price Trajectories

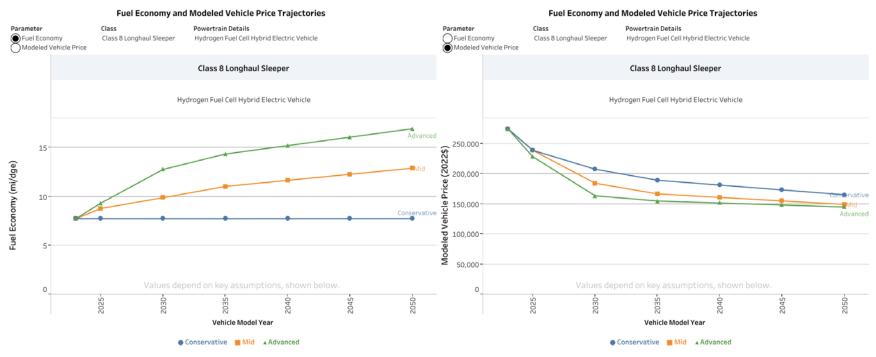
Metric	Class	Powertrain	Powertrain Details	
Fuel Economy	Midsize Passenger C 🔹	(Multiple values) •	(Multiple values)	•
 Modeled Vehicle Price 				

		Midsize Passenger Car												
		Gasoline				Battery Electric			Hydrogen Fuel Cell					
		Gasoline ICE Vehicle (spark ignition with turbo)			Battery Electric Vehicle (300-mile range)			Hydrogen Fuel Cell Electric Vehicle (300-mile range)						
20\$)	80,000-													
Modeled Vehicle Price (2020\$)	60,000-													
vehi de P	40,000-					1		• •	•				-	
, deled	20,000-								-					
Mo	0		1	1				ssumptio					1	
		2020	2030	2040	2050	2020.	2030	2040	2050	2020-	2030	2040	2050-	
						• Cor	nstant 🔳 🛚	lid 🔺 Advai	nced					

Use the filters on the top to select the metric (fuel economy or modeled vehicle price), and choose a vehicle class, powertrain and detail.

For documentation, see website https://atb.nrel.gov

https://atb.nrel.gov/transportation/2024/comparison_of_ld_vehicles



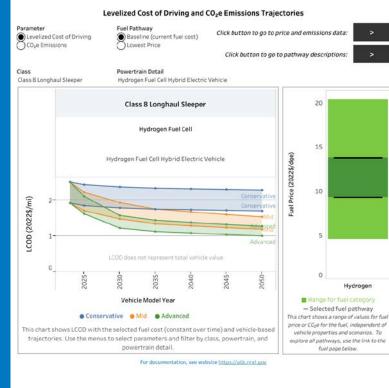
Electricity~	Transportation~	Carbon Dioxide Removal~ Contact~ Archive Editing~ Admin~ Laura Vimmerstedt									
About		Medium- and Heavy-Duty Vehicles									
Technologies	3	The 2024 Transportation Annual Technology Baseline (ATB) provides current and future projections of cost and									
Light-Duty Vehicles		performance for select medium- and heavy-duty vehicles and fuels (and for select Light-Duty Vehicles).									
Medium- a Vehicles	nd Heavy-Duty	The Transportation ATB provides data in a series of interactive charts for either a single year or a trajectory out to 2050 showing the following:									
Diesel M	DHD	 Fuel Economy, which is reported in miles per diesel gallon equivalent and represents how efficiently a vehicle converts fuel during operation 									
Diesel Hy	/brid MDHD										
Plug-In Hybrid MDHD		 Modeled Vehicle Price, which represents an estimated cost, including manufacturing costs and profit, to the 									
Battery E	lectric MDHD	 consumer purchasing a new vehicle Levelized Cost of Driving, which is an indicator of the cost of operation over the vehicle lifetime on a per-mile basis 									
Fuel Cell	MDHD										
Comparis Vehicles	son of MDHD	 Emissions, which represents the well-to-wheels emissions (including emissions from fuel production to veh operation). 									
Literature MDHD Ve	e Context for ehicles	The Transportation ATB presents these metrics for individual powertrains and in comparison with other powertrains.									
Aviation											
Fuels											

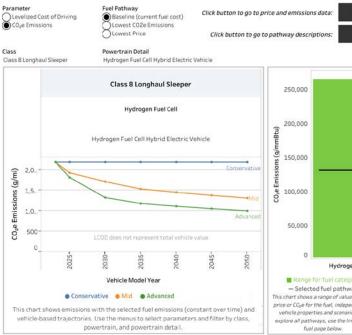
Data

https://atb.nrel.gov/transportation/2024/medium-_and_heavy-duty_vehicles NREL | 35

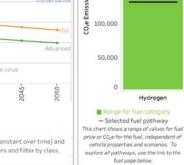
Fuel Economy, Modeled Vehicle Price: FCEV Example

Use the filters on the top to select the parameter (fuel economy or modeled vehicle price), and choose a vehicle cla..


Use the filters on the top to select the parameter (fuel economy or modeled vehicle price), and choose a vehicle cla..


For documentation, see website https://atb.nrel.gov

For documentation, see website https://atb.nrel.gov


https://atb.nrel.gov/transportation/2024/comparison_of_mdhd_vehicles

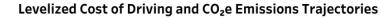
Levelized Cost of Driving and CO2e Emissions Trajectories

For documentation, see website https://atb.nrel.gov

https://atb.nrel.gov/transportation/2024/comparison of mdhd vehicles

Simplified Fuel Pathway Options (on Vehicles pages)

ATB Select Pathways


		Baseline (current fuel cost)	Lowest CO₂e Emissions	Lowest Price
Light Duty	Diesel	Ultra-Low Sulfur Diesel	Biofuel Blendstock HEFA (RD100) from Used Cooking Oil	Ultra-Low Sulfur Diesel 2050 Low Price
	Electricity	PEV Charging Electricity, National Grid Mix	PEV Charging Electricity, Future High RE Penetration Grid Mix PEV Charging Electricity, Future High RE Penetration Grid Mix, Future Charging	PEV Charging Electricity, Future High RE Penetration Grid Mix
	Gasoline	Conventional E0 Gasoline Blendstock and Starch Ethanol	Biofuel Blendstock FP from Forest Residue	Conventional E0 Gasoline Blendstock 2050 and Starch Ethanol 2050
	Hydrogen	Steam Methane Reforming and Liquefaction-Trucks	High temperature electrolysis and Liquefaction-Trucks	Low temperature electrolysis and Liquefaction-Trucks
	Natural Gas	Natural Gas	Natural Gas	Natural Gas
	Diesel	Ultra-Low Sulfur Diesel	Biofuel Blendstock HEFA (RD100) from Used Cooking Oil	Ultra-Low Sulfur Diesel 2050 Low Price

See Fuels pages or Data page (Tableau workbook) for all fuel options.

https://atb.nrel.gov/transpor tation/2024/definitions

Full Set of Fuel Pathway Options

(available on Data page or via download)

Parameter Levelized Cost of Driving CO₂e Emissions

Click button to go to price and emissions data:

Click button to go to pathway descriptions:

Class Class 8 Longhaul Sleeper Powertrain Detail Hydrogen Fuel Cell Hybrid Electric Vehicle

All Pathways Data Explorer

Weight Category	Scenario	Parameter
 Light Duty 	(All) •	Levelized Cost of Driving (2022\$/mi)
 Medium/Heavy Duty 		
Class	Powertrain	Powertrain Details

Class 8 Longhaul Sleep • Hydrogen Fuel • Hydrogen Fuel Cell Hybrid Electric Vehicle	•
Primary Fuel	Grid Mix
End-Use Hydrogen	✓ (Multiple values)
Fuel Pathway 1	Fuel Scenario
Steam Methane Reforming, Grid	Current Modeled, Current Volu

 Fuel Pathway 2
 Fuel Scenario 2

 Liquefaction-Trucks
 N/A

.

Multi-powertrain view available on "Comparison" vehicles pages or on "Data" page in embedded Tableau workbook.

Example shows comparison of Modeled Vehicle Price on "Comparison of MDHD Vehicles" page.

MDHD = medium- and heavy-duty vehicles

Fuel Economy and Modeled Vehicle Price Trajectories

Use the filters on the top to select the parameter (fuel economy or modeled vehicle price), and choose a vehicle class, powertrain and powertrain detail.

For documentation, see website https://atb.nrel.gov

Annual Technology Baseline

Admin~

Laura Vimmerstedt

Electricity~ Transportation~ Carbon Dioxide Removal~ Contact~ Definitions About Definitions of common terms in the 2024 Transportation Annual Technology Baseline (ATB) are presented below. Changes in 2024 Vehicles Definitions **Battery Electric Vehicles** Acronyms Battery electric vehicles (BEVs) use a battery pack to store the electrical energy that powers the motor. The batteries References are charged by plugging the vehicle into an electric power source (DOE, 2024). For additional background, see the Technologies **Fuels** Data Biodiesel Biodiesel is a renewable and biodegradable fuel that consists of fatty acid methyl esters and is manufactured from vegetable oils, animal fats, or used cooking oil (recycled restaurant grease) to specifications listed in ASTM Definitions D6751 (DOE, 2019). For additional background, see the Alternative Fuels Data Center's Biodiesel Fuel Basics webpage. cover Scenarios vehicles. Vehicle Scenarios Vehicle scenarios in the Transportation ATB incorporate assumptions on both the level of technology advancement fuels, achieved in each powertrain (e.g., lightweighting and engine efficiency) and the projected costs for the assumed scenarios, Metrics and metrics. Base Year

> This version of Transportation ATB generally adopts 2022 as the Base Year, which is the Base Year for our major data sources, such as the U.S. Energy Information Administration's 2023 Annual Energy Outlook (EIA, 2023), (Islam et al., 2023), and NREL Standard Scenarios.

Archive

Editina~

https://atb.nrel.gov/transportation/2024/definitions

Key assumptions and references detailed at the bottom of each fuel or vehicle webpage.

Example of Web Page Sections

Definitions

For detailed definitions, see:

Key Assumptions

The data and estimates presented here are based on the following key assumptions:

References

The following references are specific to this page; for all references in this ATB, see References,

Data Downloads Include Data, Tableau, and Slides

2024 Transportation ATB Data

Download the 2024 Transportation ATB Data

For convenience, the transportation data used on this website are provided in the following zip archive which is organized into "input" and "output" folders.

2024_atb_transportation_data_v0.2.zip 🖹

We also provide Tableau workbooks that are used for all the visualizations on the site:

2024_atb_transportation_tableau_v0.2.zip

A major source of the 2024 Transportation ATB vehicles and emissions data is Argonne National Laboratory (ANL), which develops and applies the Autonomie simulation tool and Research & Development Greenhouse gases, Regulated Emissions, and Energy use in Technologies (R&D GREET) model (Wang et al., 2023). Links to data from the ANL report (Islam et al., 2023) on modeled vehicle price and fuel economy are available here.

2024 Transportation ATB Webinar

The 2024 Transportation Annual Technology Baseline Update Webina Geoche held on . During the webinar, the ATB team reviewed the 2024 updates and answered questions from an endees. To learn more, view the webinar recording and presentation slides.

https://atb.nrel.gov/transportation/2024/data

Explore All Data via Interactive Tables or Downloadable Workbook

Tableau Workbook

View a Tableau workbook to further explore the data, including LCOD and emissions estimates with additional fuel pathways.

All Pathways (no PHEVs)	All Pathways		
		All Pathways Data Explorer	
Weight Category	Scenario	Parameter	
 Light Duty 	(AII) •	Levelized Cost of Driving (2022\$/mi)	•
O Medium/Heavy Duty			
Class	Powertrain	Powertrain Details	
Midsize •	(Multiple values) 🔹	(Multiple values)	•
Primary Fuel			Grid Mix
(Multiple values)		•	(Multiple values) •
Fuel Pathway 1			Fuel Scenario
(Multiple values)		•	(AII) •
Fuel Pathway 2			Fuel Scenario 2
(Multiple values)		T	(AII) •

https://atb.nrel.gov/transportation/2024/data

Conclusion

The ATB Vision

The Vision

The ATB—a flagship analytic product—facilitates access to credible, consistent, transparent, timely, relevant, and public data about current and future energy technologies and systems from a laboratory/DOE perspective for a large and diverse audience.

Please let us know your comments (at <u>https://atb.nrel.gov/contact</u>) on what additional datasets or data metrics would be useful.

Sign up for updates!

To receive email announcements about changes and updates to the Annual Technology Baseline, sign up at <u>atb.nrel.gov/contact/register</u>.

Acknowledgments

This work was funded by the U.S. Department of Energy's Strategic Analysis Team, Hydrogen and Fuel Cell Technologies Office, Vehicle Technologies Office, and Bioenergy Technologies Office, all within the Office of Energy Efficiency and Renewable Energy.

Thank You!

Questions? Please let us know at https://atb.nrel.gov/contact/.

www.nrel.gov

NREL/PR-6A20-91635

This project is led by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy's Strategic Analysis Team, Bioenergy Technologies Office, Hydrogen and Fuel Cell Technologies Office, and Vehicle Technologies Office. The views expressed in this presentation do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

References

ANL (Argonne National Laboratory) 2024. TechScape. https://vms.taps.anl.gov/tools/techscape/.

Bennett, Jesse, Partha Mishra, Eric Miller, Brennan Borlaug, Andrew Meintz, and Alicia Birky. 2022. Estimating the Breakeven Cost of Delivered Electricity to Charge Class 8 Electric Tractors. Golden, CO: National Renewable Energy Laboratory. October 19, 2022. https://doi.org/10.2172/1894645.

Borlaug, Brennan, Shawn Salisbury, Mindy Gerdes, and Matteo Muratori. 2020. "Levelized Cost of Charging Electric Vehicles in the United States." Joule 4, no. 7 (July 15, 2020): 1470–85. https://doi.org/10.1016/j.joule.2020.05.013.

Borlaug, Brennan, Fan Yang, Ewan Pritchard, Eric Wood, and Jeff Gonder. "Public Electric Vehicle Charging Station Utilization in the United States." Transportation Research. Part D, Transport and Environment 114 (December 12, 2022). https://doi.org/10.1016/j.trd.2022.103564.

Bracci, Justin, Mariya Koleva, and Mark Chung. 2024. *Levelized Cost of Dispensed Hydrogen for Heavy-Duty Vehicles*. Golden, CO: National Renewable Energy Laboratory. March 5, 2024. <u>https://doi.org/10.2172/2322556</u>.

Burnham, Andrew, David Gohlke, Luke Rush, Thomas Stephens, Yan Zhou, Mark A. Delucchi, and Alicia Birky et al. 2021. Comprehensive Total Cost of Ownership Quantification for Vehicles with Different Size Classes and Powertrains. Argonne, IL: Argonne National Laboratory. April 1, 2021. <u>https://doi.org/10.2172/1780970</u>.

DOE. 2023. Pathways to Commercial Liftoff: Clean Hydrogen. March 2023. https://liftoff.energy.gov/wp-content/uploads/2023/05/20230523-Pathways-to-Commercial-Liftoff-Clean-Hydrogen.pdf.

Elgowainy, Amgad, Jeongwoo Han, Jacob Ward, Fred Joseck, David Gohlke, Alicia Lindauer, and Todd Ramsden et al. 2016. Cradle-to-Grave Lifecycle Analysis of U.S. Light-Duty Vehicle-Fuel Pathways: A Greenhouse Gas Emissions and Economic Assessment of Current (2015) and Future (2025–2030) Technologies. Argonne, IL: Argonne National Laboratory. ANL/ESD-16/7. Rev. 1. <u>https://doi.org/10.2172/1324467</u>. EIA. 2023. Annual Energy Outlook 2023. Washington D.C.: U.S. Energy Information Administration, March 16, 2023. <u>https://www.eia.gov/outlooks/aeo/</u>.

Gagnon, Pieter, An Pham, Wesley Cole, Sarah Awara, Anne Barlas, Maxwell Brown, and Patrick Brown et al. 2024. 2023 Standard Scenarios Report: A U.S. Electricity Sector Outlook. Golden, CO: National Renewable Energy Laboratory. January 1, 2024. https://doi.org/10.2172/2274777.

Greene, David L., and Benjamin Leard. "Trends in Scrappage and Survival of U.S. Light-Duty Vehicles." *Transportation Research Part A: Policy and Practice* 180 (2024): 103982. https://doi.org/10.1016/i.tra.2024.103982.

Hubert, McKenzie, David Peterson, Eric Miller, James Vickers, Rachel Mow, and Campbell Hoew. "Clean Hydrogen Production Cost Scenarios with PEM Electrolyzer Technology." DOE Hydrogen Program Record. DOE Hydrogen and Fuel Cells Technology Office, May 20, 2024. <u>https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/24005-clean-hydrogen-production-cost-pem-</u> electrolyzer.pdf?sfvrsn=8cb10889 1.

Hunter, Chad, Michael Penev, Evan Reznicek, Jason Lustbader, Alicia Birky, and Chen Zhang. 2021. Spatial and Temporal Analysis of the Total Cost of Ownership for Class 8 Tractors and Class 4 Parcel Delivery Trucks. Golden, CO: National Renewable Energy Laboratory. September 16, 2021. <u>https://doi.org/10.2172/1821615</u>.

Islam, Ehsan Sabri, Daniela Nieto Prada, Ram Vijayagopal, Charbel Mansour, Paul Phillips, Namdoo Kim, Michel Alhajjar, and Aymeric Rousseau. 2023. Detailed Simulation Study to Evaluate Future Transportation Decarbonization Potential. Report to the U.S. Department of Energy. Argonne National Laboratory, October 2023. https://www.taps.anl.gov/research-highlights/u-s-doe-vto-hfto-r-d-benefits/.

James, Brian, Jennie M Huya-Kouadio, Cassidy Houchins, Rajesh Ahluwalia, Xiaohua Wang, Michael Ulsh, Gary Robb, David Masten, Christian Appel, and Vivek Murthi. 2023. "Heavy-Duty Fuel Cell System Cost – 2022." DOE Hydrogen Program Record. DOE Hydrogen and Fuel Cells Technology Office, May 30, 2023. <u>https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/23002-hd-fuel-cell-system-cost-2022.pdf?Status=Master.</u>

Ledna, Catherine, Matteo Muratori, Arthur Yip, Paige Jadun, Christopher Hoehne, and Kara Podkaminer. 2024. "Assessing Total Cost of Driving Competitiveness of Zero-Emission Trucks." *IScience* 27, no. 4 (March 2, 2024). <u>https://doi.org/10.1016/j.isci.2024.109385</u>.

NREL. 2023. EVI-FAST: Electric Vehicle Infrastructure – Financial Analysis Scenario Tool," 2023. https://www.nrel.gov/transportation/evi-fast.html.

NREL. 2024. H2A-Lite: Hydrogen Analysis Lite Production Model, 2024. https://www.nrel.gov/hydrogen/h2a-lite.html.

SAE J2841. 2010. Utility Factor Definitions for Plug-In Hybrid Electric Vehicles Using Travel Survey Data. SAE International, 2010. https://doi.org/10.4271/J2841_201009.

Wang, Michael, Amgad Elgowainy, Uisung Lee, Kwang Hoon Baek, Sweta Balchandani, Pahola Thathiana Benavides, and Andrew Burnham et al. 2023. Summary of Expansions and Updates in R&D GREET[®] 2023. Argonne, IL: Argonne National Laboratory December 1, 2023. <u>https://doi.org/10.2172/2278803</u>.

Wood, Eric, Brennan Borlaug, Matt Moniot, Dong-Yeon (D-Y) Lee, Yanbo Ge, Fan Yang, and Zhaocai Liu. "The 2030 National Charging Network: Estimating U.S. Light-Duty Demand for Electric Vehicle Charging Infrastructure." National Renewable Energy Laboratory (NREL), Golden, CO (United States), June 26, 2023. <u>https://doi.org/10.2172/1988020</u>.

These key references are noted in this presentation. The full reference list for the Transportation ATB is located here: <u>https://atb.nrel.gov/transportation/2024/references</u>

Acronyms and Abbreviations

AEO	Annual Energy Outlook
ATB	Annual Technology Baseline
ANL	Argonne National Laboratory
BEV	battery electric vehicle
BSM	Biomass Scenario Model
DECARB	Decarbonizing Energy through Collaborative Analysis of Routes and Benefits
DOE	U.S. Department of Energy
EERE	Office of Energy Efficiency and Renewable Energy
EIA	U.S. Energy Information Administration
EVI-FAST	Electric Vehicle Infrastructure – Financial Analysis Scenario Tool
FCEV	fuel cell electric vehicle
GCAM	Global Change Analysis Model
GREET	Greenhouse gases, Regulated Emissions, and Energy use in Transportation
H ₂	hydrogen gas
H2A-Lite	Hydrogen Analysis Lite Production Model
LCOD	levelized cost of driving
MDHD	medium- and heavy-duty vehicles
NREL	National Renewable Energy Laboratory
R&D	research and development
TEA	techno-economic analysis
TEMPO	Transportation Energy and Mobility Pathway Options Model
VMT	vehicle miles traveled
WTT	well to tank
WTW	well to wheels