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Predicting the heat release variability of
Li-ion cells under thermal runaway with few
or no calorimetry data

Karina Masalkovaitė1,2, Paul Gasper 2 & Donal P. Finegan 2

Accurate measurement of the variability of thermal runaway behavior of
lithium-ion cells is critical for designing safe battery systems. However,
experimentally determining such variability is challenging, expensive, and
time-consuming. Here, we utilize a transfer learning approach to accurately
estimate the variability of heat output during thermal runaway using only
ejected mass measurements and cell metadata, leveraging 139 calorimetry
measurements on commercial lithium-ion cells available from the open-access
Battery Failure Databank. We show that the distribution of heat output,
including outliers, can be predicted accurately and with high confidence for
new cell types using just 0 to 5 calorimetry measurements by leveraging
behaviors learned from the Battery Failure Databank. Fractional heat ejection
from the positive vent, cell body, and negative vent are also accurately pre-
dicted. We demonstrate that by using low cost and fast measurements, we can
predict the variability in thermal behaviors of cells, thus accelerating critical
safety characterization efforts.

Lithium ion (Li-ion) batteries have helped make many modern inven-
tions practical, from electric vehicles, portable electronics, to reliably
powered spacesuits1. It is vital that Li-ion batteries and the devices that
use them are safe. However, there is always some risk that a cell will
undergo thermal runaway (TR) due to challenging operating or
environmental conditions, or defects that cause short circuits2. Addi-
tionally, if one cell in a pack undergoes TR, there is also the risk of TR
propagation to neighboring cells that can result in disastrous
outcomes1,3. Propagation occurs when heat generated by one cell
undergoing TR heats neighboring cells, causing TR to spread. Thus it is
critical to understand the heat output of Li-ion cells during TR to
enable design of safe battery energy storage systems.

The heat output by a Li-ion cell greatly varies between tests and
canbe influencedby factors suchas cell properties, cycle histories, and
abuse test conditions1,2,4–6. However, even when identical cells are
evaluated under identical abuse test conditions, considerable varia-
bility in the thermal runaway behaviors is still observed7,8. When con-
sidering cylindrical Li-ion cells, the heat ejected from the positive end,
the negative end, and the cell body are each important to quantify to

design safe, thermal runaway propagation resistant battery systems9–11.
The fractional breakdown of heat ejected and not ejected (remains in
cell casing) is referred to as the fractional heat output, i.e., the fraction
of the total heat output that is attributed to ejected material from
either end of the cell or emitted from the cell casing itself. These
measurements can be recorded using a fractional thermal runaway
calorimeter (FTRC), but this equipment is not widely available, and
each experiment is time-consuming5. Additionally, heat output is
variable such that two identical cells undergoing TR in identical
environments will have varying heat outputs and behaviors depending
on what happens inside the cell, resulting in a distribution of heat
outputs froma cell type andpossibly outliers thatmay present rarebut
hazardous failure modes4. To account for this variance, numerous
abuse tests and thermal runaway measurements are necessary to
understand the range of failure scenarios and thermal behaviors that
occur, which is an expensive and time-consuming process12. The
expense and challenge of characterizing the distribution of behaviors
has been highlighted by researchers at Volkswagen and Ford12,13, and
considerably delays adoption of new cell types for use in electric
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vehicles. Therefore, a method to predict the distribution of heat out-
put during TR that is time- and cost-effective would be tremendously
useful to accelerate safety evaluations of new cell types.

While there are computational models simulating TR14, physics-
based models require detailed knowledge of the cell chemistry and
other cell properties that may be proprietary. They are also determi-
nistic and output a single result rather than conveying the real-world
complex distribution of occurrences. A data driven approach such as
machine learning (ML) may be used to predict the stochastic thermal
response of cells but requires empirical data to train. ML models have
been commonly utilized in the battery field to shortcut the need for a
physical model when making complex predictions, such as predicting
internal short circuits15, state of charge monitoring16,17, health
diagnosis18,19, future health prediction20–22. Several works have also
utilizedML to improve battery design23,24. However, MLmethods need
plentiful, high quality, and robust data for training. Such data on
thermal behaviors of Li-ion cells during thermal runaway has not been
openly available until the Battery Failure Databank25 was released by
the National Renewable Energy Laboratory (NREL) and National
Aeronautics and Space Administration (NASA), which presents data
from hundreds of FTRC tests providing information on total heat
output, the fraction of heat ejected from cells, the mass ejected from
cells, all of which will be used in this work. The Battery Failure Data-
bank also hosts many high-speed synchrotron radiography videos of
the thermal runawayprocesseswhichwill not be used in this work. The
Battery Failure Databank25 is the largest public database containing
information about batteries undergoing TR; it contains test results on
batteries from various manufacturers and twenty-two battery types,
totaling to over 350 trials as of November 2023, and continues to
expand.

Here, we focus on the use of experimental data that are simple to
measure such as mass ejection, and show that these data can be used
to predict the complex thermal behaviors that are measured using
sophisticated calorimetry techniques like FTRC.Measuring the ejected
mass of cells is simple; complex equipment is not required and the
throughput of testing can be high. We develop an ML model for pre-
dicting the variable fractional heat output of cells undergoing TR using
only ejected mass data and the specifications of the cell provided by
the manufacturer, avoiding the need for any detailed physical or
electrochemical properties, or sophisticated calorimetry techniques.
The predictive models were developed using a subset of data found in
the Battery Failure Databank26, which for the first time facilitated a
robust experimental dataset for training ML models on thermal run-
away behavior. The performance of ML models is studied by cross-
validation, training on data from all cell types but one, and testing on
data from unseen cell types. Zero-shot predictions aremade assuming
that no heat output measurements have been recorded, only ejected
mass measurements, and allow for qualitative estimation of the heat
output from any given cell type without any calorimetry data. One-,
two-, …, i-shot predictions, where i FTRC measurements have been
performed, enable quantitatively accurate predictions of themeanand
variance of both total and fractional heat output with just 0-5 FTRC
measurements for most cell types, overcoming previous limitations of
models and simulations in predicting single outcomes without cap-
turing the real-world distribution of behaviors. The ability to predict
thedistribution of theheat output for any given cell type frommultiple
ejected mass tests and only a small number of heat output measure-
ments is expected to empower energy storage system designers to
accurately and rapidly estimate the safety risks of new cylindrical cell
Li-ion batteries with minimal expense and effort.

Results
Training data and insights from experiments
Data collection occurred over multiple years and is reported in the
Battery Failure Databank from NASA and NREL25,26, provided in

the supplementary data. General trends from the data set have been
previously reported1,2,4. Since absolute values of total heat output are
related to charge capacity, mass, and cell size, analysis of heat output
and ejected mass is simplified by normalizing heat output by charge
capacity and ejected mass by total mass5. Figure 1 shows the dis-
tributions of ejected mass fraction, normalized total heat output, and
fractional normalized heat outputs (positive, cell body, and negative
terminal heat outputs) during TR for each of 8 cell types used for
model training in this work. Only commercially-produced 18650 or
21700 format cells tested at 100% state-of-charge with more than
10 samples were considered in this work. Additional data from cells at
100% SOC but with fewer than 10 measurements, at lower SOCs, or
after modifying the cell are used as a secondary test set for testing
model performance. For both ejected mass fraction and total heat
output, the median and variance of values across the cell types varies
quite a bit, with a general trend of low ejected mass correlating to low
total heat output, however, large variance of the ejectedmass fraction
does not necessarily correspond to large variance of the heat output
(KULR 18650-K330). Of the fractional heat output measurements, the
cell body heat output is themost consistent across the cell types,while
both the mean and variance of the positive and negative heat outputs
varies widely. Note that two cell types (LG 18650-MJ1 and Sanyo 18650-
A)wereobserved to have zeroor near-zero negative heat output, while
other cell types (KULR 18650-K330) have up to 50% of their total heat
output measured on the negative side.

As noted, there is a general correlation observed between the
total ejected mass fraction and total normalized heat output,
prompting this investigation to study whether heat output may be
predicted simply through measurements of ejected mass, given the
existing FTRC data reported in the Battery Failure Databank. Figure 2a
shows a linear regression of total normalized heat output from ejected
mass fraction, indicating substantial noise but an overall strong cor-
relation. However, when observing the trend for each cell type inde-
pendently, as in Fig. 2b, the data set as a whole has a stronger
relationship between ejected mass and heat output than for any cell
independently, and substantial variance in the strength of the corre-
lation begins to appear. For example, LG 21700-M50 cells have a
positive slope and relative narrow confidence intervals, indicating a
strong correlation between ejectedmass and heat output, while the LG
18650-MJ1 cells show zero slope with wide confidence intervals, indi-
cating a near zero correlation. This dependency of the FTRC results on
the cell type thus requires treating cell types as independent from one
another, however, the global trend suggests that it should be feasible
to make reasonable heat output predictions for new cell types with a
very small number of FTRC measurements.

Predicting thermal behavior of cells
To train a ML model to predict the normalized fractional heat output
of batteries undergoing TR, The data shown in Fig. 1 was carried
through the processing steps shown in Fig. 3. No filtering to remove
outliers was performed, as high heat outputs or high ejected mass
fractions are critical to keep in the data set, as they are representative
of worst-case failure events. Predicted values were normalized cell
body, negative, positive, and total heat output using a chain regres-
sion, as the total heat output is a combination of all the fractional heat
outputs. The chain regressor was also found to result in lower error
than treating each heat output independently. Features used to make
predictions included cell metadata, FTRC experiment notes, and mass
data after TR, in both absolute and normalized values. For evaluating
the performance of models on predicting data from new cell types,
data was split into training and test sets where all data from one cell
type was held out for testing, and all other cells used for training;
predictions for the test cell use zero measured heat output values, i.e.,
‘zero-shot’ models. The impact of conducting additional FTRC mea-
surements on new cell types for calibrating heat output predictions
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was investigated using ‘i-shot’ models, where i samples from the test
cell type were added to the training set. However, this introduces a
sampling bias into the model training process. For example, there are
22 possible 1-shotmodels for theKULR 18650-K330 cell typewhich can
have varying effects on the model, depending on which specific FTRC
trial is added to the training set. Three model architectures were
considered: a baseline model, a support vector machine (SVM)model,

and a gradient-boosted treemodel, XGBoost27. The baselinemodel is a
linear regression model using only ejected/retained mass features,
using a global regression on all training cells to make zero-shot pre-
dictions and a local linear regression on the i samples for each i-shot
prediction, exactly as shown in Fig. 2. Comparison of the baseline,
SVM, and XGBoost models thus demonstrates the benefit of using
prior FTRC measurements as well as cell metadata for making

Fig. 2 | Linear regression fits for heat and mass output data. a Linear regression of total normalized heat output from total ejected mass fraction with 95% confidence
interval of the entire data set conveyed as a semi-transparent shading. b Local linear regressions for each cell type.

Fig. 1 | Distributions of heat andmass output behaviors of cells.Distributions of
(a) total ejected mass fraction, (b) total normalized heat output, and fractional
normalized heat outputs from (c) positive, (d) cell body, and (e) negative cell faces

during TR for 8 of the 22 cell types from theBattery FailureDatabank26. The number
above the distributions in (a) indicates the number of samples available in the data
set. All violin plots have an associated box-and-whisker diagram in their centers.
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zero-shot and i-shot predictions of heat output during TR events, as
opposed to treating each cell type as an independent experiment.

Figure 4a–h compares the RMSE between baseline, SVM, and
XGBoost models for each cell. Zero-shot SVM models perform better
than baseline for 4 of 8 cell types, comparably to baseline for 2 of 8 cell
types, and worse than baseline for only 2 of the 8 cell types. At i = 1 to
i = 5, the benefit of the SVMmodel becomes clear: with only a few FTRC
measurements, the SVM model estimates are near converged with

those made using all of the data. Cells with the worst i = 0 predictions
show the largest improvements at i = 1, demonstrating that heat output
predictions for ‘outlier’ cell types can be calibrated using a single FTRC
measurement. SVM confidence intervals rapidly narrow, demonstrating
that reasonableheatoutputpredictions canbemade for apopulationof
cells while being tolerant towhichever subset of that population is used
for measuring fractional heat output in the FTRC. In comparison, the
baseline model error is dramatically higher, with large confidence

Fig. 3 | Overview of data-treatment process. The data treatment process including pre-processing, model development, and model evaluation.
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intervals, because treating the TR heat output from each cell type
independently means that making any estimate of TR heat output
requires a significant number of samples, and the estimated heat out-
puts for the entire population of that cell type vary wildly depending on
which samples are characterized using the FTRC. Performance of the
SVM model does vary across cell types, with some cells showing an
RMSE of less than 1kJ/Ah at i = 0 (KULR 18650-K330), or 5̃% error
compared to the average total normalized heat output for the data set
of about 20kJ/Ah, while others barely convergebelowanRMSEof 2kJ/Ah
even when trained on all samples (LG 18650-MJ1, Sanyo 18650-A, Sony
18650-VC7). The convergence of baseline and SVM models to similar
error at highnumbersof training samples suggest that theSVMmodel is
well fit, i.e., not overfit, as an overfit model would begin to report high
error on test data as more samples are added to the training data.
Comparing the two machine-learning models, SVM and XGBoost, SVM
appears to be more accurate and have lower uncertainty across most
cell types, and all further results will report predictions from or analysis
of SVM models. Similar performance for the SVM model trained on all
data is seen on a secondary test set, which is comprised of cells with
fewer than 10 measurements or cells that were modified prior to the
FTRC measurement, demonstrating that the set of cells used for train-
ing extrapolates usefully to new data (Supplementary Fig. 1).

Figure 4i–l compares SVM model RMSEs between normalized
total, positive, cell body, and negative heat outputs for each cell type.
As noted previously, the worst total heat output RMSE at i = n (LG
18650-MJ1, 2.2kJ/Ah) is about twice that of the best cell (KULR 18650-
K330, 1kJ/Ah). This trend is shared for the positive (1−2kJ/Ah) and cell
body (0.5−1kJ/Ah) heat outputs, however, the RMSEs for the negative

heat outputs vary by more than 10 times (about 0.2−2kJ/Ah), sug-
gesting that negative heat output does not have a consistent rela-
tionship to ejected mass during TR for most cell types. Cell body heat
output is predictedwith thehighest accuracy andwith high confidence
even at i = 1, as was expected from analysis of Fig. 1d because cell body
heat output distributions show the least variability across the cell
types, that is, it is the easiest heat output to learn accurately fromFTRC
measurements conducted on other cells.

The predicted versus actual distributions of the normalized total
heat output are shown in Fig. 5 for i = [0, 1, 3, 5]. As with the RMSE
results in Fig. 4, the distributions of half the cell types are accurately
predicted at i = 0. Of those distributions that are not being well pre-
dicted, the zero-shot model predictions show two consistent traits:
being biased towards the globalmeanof the data set, and havingmuch
lower predicted variance than the actual variance. At i= 1, the impact of
the selected sample for training can be clearly seen as themeans of the
predicted distributions vary substantially, especially for cell types with
higher or lower than average total heat outputs. As i increases,
approaching the total number of samples n, the means of the pre-
dicted distributions converge towards that of the actual distribution,
However, for those cells that are ‘harder’ to predict (LG 18650-MJ1, LG
18650 (BV-250), Sanyo 18650-A), the variability of the heat output
shown by the actual distribution is never learned. As noted when
describing Fig. 2b, certain cell types have no statistically significant
relationship between total ejected mass and total heat output during
TR (LG 18650-MJ1), so accurately predicting the actual heat output
distribution from ejected mass data is impossible, even with a better
performing model.

Fig. 4 | Rootmean squared errors (RMSE) for predictedheat outputs fromcells.
a–hRMSE for the total predictedheatoutputs for i=0 to i=n for each cell: (a) KULR
18650-K330, (b) KULR 21700-K500, (c) LG 18650-MJ1, (d) LG 18650 (BV-220) (e) LG
18650 (BV-250), (f) LG 21700-M50, (g) Sanyo 18650-A, and (h) Sony 18650-VC7. For
baseline (black), SVM (blue), and XGBoost (green) models, median RMSE for each i

is denoted using a line, while 1σ and 2σ confidence intervals are shown using the
dark and light shaded regions. i–lRMSEof SVMmodels for i =0 to i = n for each cell
with 2σ confidence intervals: (i) normalized total heat output, (j) normalized
positive heat output, (k) normalized cell body heat output, (l) normalized negative
heat output.
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Predicting heat output from cells sent into thermal runaway at
varying SOCs was tested using available data. Both heat and mass out-
put are strongly correlated with SOC, with higher SOCs resulting in
more extreme thermal runaway events, as would be expected. While a
model trained ononly 100%SOCdoes not extrapolatewell to lowSOCs,
including even a small amount of low SOC data in the model training
results in accurate extrapolations to new cell types. See the Supple-
mentary Information and Supplementary Fig. 4 for more details.

Overall, it has been demonstrated that ejected mass values and
cell metadata can be used by ML models to accurately predict the
average total and fractional heat output. However, while the mean of
the distributions was predicted quite well, it is important to also get an
initial estimate of outlier scenarios, i.e., the infrequent cells that
undergo thermal runaway with anomalously high heat output.

Performance on predicting outliers
Outliers of most interest are the infrequent cells that produce anom-
alously high heat during thermal runaway. The high heat outliers are
important to capture to guide design of battery systems that are
resistant to thermal runaway propagation. As found in previous work
by the authors, the thermal behavior of cells is strongly influenced by
not only how much mass is ejected but when that mass is ejected
during the thermal runaway process4, i.e., how hot the mass is during
thermal runaway. This complex dependence can lead to some failure
scenarios being considerably more hazardous than others, and pre-
dicting the distribution of responses needs to include infrequent
outlier behaviors. It has already been observed that some cells have

higher than average error (LG 18650-MJ1, Fig. 4i) or have predicted
distributionswithobviously lower variance than the actual distribution
(Sanyo 18650-A, Fig. 5). Here, we use Kullback-Leibler (KL) divergence
toquantify the similarity between the predicted and actual heat output
distributions, and utilize Mahalanobis plots to determine some of the
sources of error.

Figure 6 shows the KL divergence for the normalized total heat
output predictions for each cell. As opposed to RMSE, the KL diver-
gence more clearly shows which cell types have accurately predicted
distributions, rather than just accurately predicted means, as the best
and worst KL divergence differ by 4 times versus the 2 times of RMSEs,
additionally, the worst KL divergence and worst RMSE are from dif-
ferent cells (Sanyo 18650-A and LG 18650-MJ1, respectively), prompt-
ing further investigation of both. The KL divergence also shows
continual learning for all cells with more data, obviously decreasing in
value and confidence interval for most cell types even up to i = 25,
while the RMSE values plateau at i = 5 to i = 10. Similar behavior is seen
on cells from the secondary test set (Supplementary Fig. 2).

The Mahalanobis plots shown in Fig. 7 demonstrate model beha-
vior on two example cells, one where increasing i values results in
continual improvement (LG 21700-M50, Fig. 7a–c), and one where
increasing i values shows little change after i = 1 (Sanyo 18650-A,
Fig. 7d–f). When examining Mahalanobis plots, consider that a narrow
ellipsoid corresponds to a strong correlation between the two vari-
ables, while a more circular ellipse corresponds to no correlation, i.e.,
two independent randomdistributions. For the LG 21700-M50 cell, it is
clear that the actual distribution shows a correlation between total

Fig. 5 | Actual and SVM predicted distributions of normalized total heat outputs from cells. Actual and SVM predicted distributions for (a) i = 0, (b) i = 1, (c) i = 3, and
(d) i = 5 models. For i >0, a maximum of 20 random results from the possible ðn

i
Þ training sets are shown for visual clarity.
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heat output and total ejected mass, though the zero-shot case is not
able to perfectly capture this correlation, with both the mean and
variance of the heat output predicted poorly. At i = 3, the mean heat
output is predicted correctly with slightly improved variability, and by
i = 10 both the mean and variance of the heat output are near correct;
as expected, since 10 of the 18 samples shown were used for model
training. In comparison, the actual Sanyo 18650-A cell data shows little
correlation between total heat output and total ejected mass, so the
model can only learn the mean heat output, and has no input features
that enable it to accurately predict the variability of the observed heat
output even when training on 10 of the 12 samples. The SVM model,
which is forced to learn a relationship between ejected mass and heat
output, always predicts a distribution with a strong correlation

between ejected mass and heat output, especially for cells like the
Sanyo 18650-A, which has a small range of ejectedmass values relative
to the rest of the data set.

Despite some cells showing near zero correlation between total
ejected mass and total heat output, the fractional ejected mass and
heat output values may still show strong correlations, enabling mass
ejected data to be used to predict the variance of the fractional heat
outputs accurately, even if the variance of the total heat outputs
unlearnable. Figure 8 showsMahalanobis plots for total and fractional
mass/heat for the LG 18650-MJ1 cell at i = 0 and i = 3. The ellipse for the
actual distribution of total ejected mass and total heat output
(Fig. 8a,e) is nearly a perfect circle, showing near zero correlation.
However, the fractional ejected mass and heat output values are all
either partially or strongly correlated, with very narrow ellipses for the
cell body and negative fractional values. Thus, as i increases, even as
the total heat output prediction does not substantially improve, the
fraction heat output predictions are able to learn both the mean and
variance of the actual distribution.

The relative impact of each feature on model predictions is
quantified using Shapley additive explanations (SHAP)28. Figure 9
reports the mean absolute SHAP value for each input feature and each
regression model. Cell type has a modest impact on regression out-
puts, with the exception of the LG 18650-MJ1 type, which has a strong
impact on the cell body and total heat output predictions. This cell
type is the only cell type in this data set that contains a graphite-silicon
composite electrode, which has higher specific energy density than
graphite, thus resulting in a higher heat output. None of the cell types
havemuch influence at all on the negative heat output, suggesting that
the negative ejected mass fraction and heat output are not strongly
related to howmanufacturers design the cell casings.Of the cell design
details and trigger mechanisms, the presence of a top vent (positive
side) and the cell capacity have the largest impacts, with the presence
of a top vent most strongly impacting positive heat output and total
heat output. The presence of a bottom vent has almost zero impact on
model predictions; this may be simply because this feature is redun-
dant with the ’Bottom Vent (BV) actuated’ feature, as the bottom vent
can only actuate if it isn’t there, and if it doesn’t actuate, it’s as if the
bottom vent wasn’t actually there. The experimentally measured
values, that is, the ejected mass quantities, are the most important
features for model prediction. Both absolute (raw) and relative

Fig. 7 | Mahalanobis plots of the total ejected mass fractions versus actual and
SVM predicted normalized total heat outputs. Mahalanobis plots for the (a–c)
LG 21700-M50 and (d–f) Sanyo 18650-A cells for (a, d) i = 0, (b, e) i = 3, and (c, f)
i = 10. Blue shading marks the area of actual points with the highest mahalanobis

depth. Red shading denotes the same for the predicted points. Blue and red
ellipses, for actual and predicted distributions respectively, cover 66% of the dis-
tribution. For i = 3 and i = 10 plots, only one random set from the ðn

i
Þ possible

sample sets is shown for clarity.

Fig. 6 | Kullback-Leibler (KL) divergence of SVM model predictions of nor-
malized total heat outputs. KL divergence for i = 0 to i = n for each cell with 2σ
confidence intervals conveyed as shaded regions.
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(calculated) values are important, with the post-test cell-body mass
and the negative ejectedmass fraction having the highest impacts. The
impact of these features on model predictions is intuitive, with the
post-test cell-bodymass being themost important feature for the total
heat output, while negative ejected mass fraction is the most impor-
tant for the negative heat output. Force plots for each feature and
regression model, shown in Supplementary Fig. 3, give more insight
into the relationship between features and model outputs. For
instance, lowpost-test cell-bodymass is associatedwith high total heat
output, as high amounts of ejected mass is correlated with both low
post-test cell-body mass as well as heat generation. Overall, the SHAP
analysis demonstrates that the regression models are influenced sen-
sibly by the features, giving confidence that heat output can be pre-
dicted using ejected mass and cell details.

Discussion
Like most machine learning approaches on predicting battery beha-
viors in literature to-date, the technique presented here is limited to
the specific set of training data available. The tests used for training
mostly contained similar cathodes (varying stoichiometries of
LiNiMnCoO2 and LiNiCoAlO2) and similar anodes (graphite with some
cells expected to include a smallmass fraction of SiOx). Therefore, this
training set and model, in its current form, should only be applied to
similar cell types and test conditions, for example, see results on the
secondary test set cells in Figures S1 and S2. Diverging from these
conditions, like to cells with LiFePO4 cathodes or pure Si/SiOx anodes,
cells at the end of cycle lives with complex histories, cells at lower
states of charge, and cells undergoing different abuse conditions such
as overcharge or nail penetration, is not recommended. As the Battery
Failure Databank continues to expand over the coming years, addi-
tional chemistries, states of charge, and cycle histories may be added,
which may give further confidence for predicting behaviors in new
realms. Other research groups are encouraged to make their thermal
runaway test data open-access, in the hope that collectively, a robust
global resource of high-quality data becomes available to strengthen
this predictive approach.

In its current form, this approach is anticipated to find many
applications. There is an abundance of 18650 and 21700 cell models to
choose from on themarket, many of which have similar chemistries to
the cells evaluated here but with varying power- and energy-densities
due to differences in engineering and minor changes in composition.
The approach provided here can be used to accurately estimate the
distributions of total and fractional heat outputs of such cells by
leveraging a large number of cheap and rapid measurements of ejec-
ted mass; for example, 5 FTRC measurements could be used to
establish the relationship between ejected mass and heat output for a
given cell type, and then tens to hundreds of ejected mass measure-
ments could be used to with the machine-learned model to estimate
the variability of heat output from thermal runaway events. This can
give a guideline for benchmarking cells with regard to their thermal
behaviors and therefore quickly assess the suitability of cells for spe-
cific applications or for investigating the impact of design changes on
cell safety. For example, the secondary test set containsmeasurements
on LG 18650 M36 cells with modified cell casing thickness and with or
without a bottom vent, and the SVM model is able to capture the
variance and magnitude of heat output from each cell type with low
uncertaintywith 5 or fewer FTRCmeasurements. However, while quick
and easy predicted estimations are valuable, this approach should not
replace conducting actual experiments and measuring the real dis-
tributions of behaviors. The results shown here demonstrate that
about 5 FTRC measurements are necessary to be confident that the
ejected mass data will lead to accurate estimations of the distribution
of heat outputs. For cell types where there is no statistical relationship
between ejected mass and heat output after 5 FTRC measurements,
the most effective method to determine heat output variability is
simply to perform as manymore FTRCmeasurements as possible. For
example, several of the cells in the secondary test set show no
improvement in KL-divergence when adding FTRC measurements to
the model training (i = n models), suggesting the heat output from
these cells cannot be estimated using ejectedmass, and instead would
require further FTRCmeasurements to confidence predict heat output
variability.

Fig. 8 | Mahalanobis plots for the LG 18650-MJ1 cell of the relative ejected/
retained mass features versus the SVM predicted and actual normalized heat
outputs. Predicated and actual heat outputs andmasses ejected for (a–d) i = 0 and
(e–h) i = 3: (a, e) total, (b, f) positive, (c, g) cell body, and (d, h) negative. For i = 3

plots only one random set from the ðn
i
Þ possible sample sets is shown for clar-

ity.Blue shading marks the area of actual points with the highest mahalanobis
depth. Red shading denotes the same for the predicted points.
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Future work in battery safety will aim to extend the FTRC tech-
nique to other cell formats, like prismatic or pouch cells and, poten-
tially, the approach shown here to estimate heat output from ejected
mass could be extended to those new formats as well; given the safety
risk and costs associated with destructive safety testing of larger cells,
this would dramatically reduce costs of safety testing for large-format
lithium-ion batteries. This approach should be combined with other
types of battery safety tests, such as utilizing accelerating rate calori-
metry to determine thermal runaway onset temperatures, to make
quantitative safety maps of commercial lithium-ion batteries so that
system engineers may better design zero-propagation battery packs
for a variety of applications. The usefulness of the model demon-
strated in thismanuscript for estimating heat output of 18650or 21700
format lithium-ion batteries should only improve asmore FTRC data is
collected and added to the Battery Failure Databank.

In summary, this work demonstrates that the distribution of
fractional heat output during thermal runaway can be accurately
predicted for many commercial 18650 and 21700 format lithium-ion
batteries by leveraging a small number of fractional thermal runaway
calorimetry (FTRC)measurements, supplemented by a large number
of cheap and rapid measurements of ejected mass. Analysis of the
performance of an SVM model, tested on 139 FTRC measurements
from 8 different cell types, demonstrates that the average heat out-
put of most cell types can be predicted with only a single FTRC

measurement with an error of less than 2kJ/Ah (about 10% error for
the cells investigated here), and that only 5 FTRC measurements are
required to confidently estimate the distribution of heat outputs
including the occurrence of anomalously high heat outputs. This is
achieved by using ML to estimate heat output from 10-30 ejected
mass measurements. Adding further ejected mass measurements
than available here would simply increase confidence that outlier
values of the heat output distribution for any cell are adequately
predicted. Additionally, the ML approach is able to distinguish cells
with highly variable heat output with only 5 FTRC measurements,
flagging out cells with highly variable failure from those with more
predictable failures and prompting investment in further calorimetry
measurements for ‘unruly’ cell types. Further testing on a secondary
test set of cells with fewer than 10 measurements or with structural
modifications demonstrates good performance of the trained SVM
model when applied to new data, as well as demonstrating how the
machine-learned model can be used to identify cells where ejected
mass and heat output are not correlated, and thus additional FTRC
measurements would be required to improve estimates of the heat
output variability.

Implementing data driven methods could vastly reduce the
amount of resources required for battery safety testing by predicting
an initial distribution of heat output using few experimental calori-
metry trials. However, the prediction approached used here is not
recommended to replace experiments and instead only used as a
preliminary estimating tool to evaluate the suitability of cells for spe-
cific applications. The current training data only covers pristine cells at
full state of charge with a limited range of electrode and electrolyte
chemistries; while the Battery FailureDatabank continues to expand to
include new cell chemistries, variable states of charge, and variable
cycle histories, this approach can help improve confidence in the
safety and reliability of lithium-ion batteries, by providing amethod to
accelerate the acquisition of critical data for designing safe lithium-ion
battery systems.

Methods
Data collection
Experiments measuring the thermal runaway outcomes using a
Fractional Thermal Runaway Calorimeter (FTRC)5,8 were taken over
many years and collected into the Battery Failure Databank25. Hun-
dreds of thermal runaway events from various cell designs were
measured by recording the total heat output, heat ejected from the
positive end of the cell, heat ejected from the negative end, heat from
the cell casing, as well as mass ejection from the cells. Most FTRC
measurements were conducted at synchrotron facilities that facili-
tated simultaneous high-speed X-ray radiography to visualize internal
occurrences during thermal runaway, but these data are not used in
this work. The version of the Battery Failure Databank used here was
V2 that was available open-access on November 2023. Additions to
the Databank are expected to occur periodically over the follow-
ing years.

Data pre-processing
A subset of the databank was used to maintain a balanced dataset for
training models. Custom cells in the Battery Failure Databank, such as
those with Soteriamaterials or test-cells with embedded Internal Short
Circuiting Devices (ISCDs)1, were excluded from the training set. Only
cellswithmore than 10 sampleswere used.Only trials with commercial
cells at 100% state of charge were included.

The total and fractional heat outputs were normalized by dividing
by the discharge capacity of the cell (kJ/Ah). Prior explorationof trends
in the Battery Failure Databank1,2,4,5 revealed that normalizing heat
output by capacity resulted in clear relationships between the heat
output and other measured quantities such as the ejected mass
fractions.

Fig. 9 | Mean absolute Shapley additive explanations (SHAP) value of each
feature for each of the fourmodel targets. Total heat output (blue), positive heat
output (pink), cell body heat output (purple), and negative heat output (grey). A
high SHAP value corresponds to a large impact on the model output. Features
ordered into categories to ease interpretation.
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Modeling approach
Regression models predicted normalized total, positive, cell
body, and negative heat outputs using a chain regression
approach (predicted values from prior regressions are used as
features for further regressions), on the basis that the total heat
output is the sum of the fractional heat outputs. The chain
regression was done in the order (cell body, negative, positive,
total), as the cell body heat output was expected to be the easiest
to predict, avoiding the accumulation of errors. It was found that
model performance was not very sensitive to chain order. A risk
of the chain regression approach is that errors will accumulate
when making test predictions, but separate models treating each
heat output as independent resulted in marginally worse perfor-
mance across all cells. Regression targets were all z-score nor-
malized prior on the training set.

Features formaking predictions included cell metadata (cell type,
manufacturer, format, charge capacity, TR trigger mechanism), FTRC
experiment notes (cell failuremechanism, bottomvent actuation), and
mass data after TR, in both absolute and normalized values (total
ejected mass, positive ejected mass, negative ejected mass, cell body
remaining mass, unaccounted mass, i.e., initial mass minus all mea-
sured masses after TR). The numerical features were all z-score nor-
malized on the training set. Categorical features such as cell
manufacturer were one-hot-encoded, i.e. converted to a form that can
be interpreted by ML models by treating each category option as an
independent variable with 1 or 0 binary values.

‘Zero-shot’ models performed predictions on test data from one
held-out cell type at a time, making heat output predictions with no
measuredheatoutputs from that cell. ‘i-shot’modelsmadepredictions
for held-out cell types after copying i samples from the test data to the
training data. But, this introduces model bias due to the selected
samples, for instance, a cell typewith 30FTRCmeasurements will have
30 separate ‘1-shot’models, each with their own predictions and error
statistics. However, it is not feasible to sample every possible combi-

nation of samples as there are
n
i

� �
possible combinations of i cells

from n total samples. So, i-shot models were either trained on 300

randomly sampled sets of sample combinations for
n
i

� �
greater than

300, or all combinations for
n
i

� �
less than or equal to 300, and error

metrics like root-mean-square-error (RMSE) or Kullback-Leibler (KL)
divergence are reported as distributions for each i. Figure 3 shows our
process and evaluation.

Two model architectures were used, a baseline model and a
Support Vector Machine (SVM) model with a linear kernel, squared L2
norm weight of 1, and an epsilon of 0.1. The baseline model used just
the mass features, performing a global linear regression for zero-shot
predictions and a local linear regression on just the i samples copied
from the held-out cell type for i-shot predictions. A SVMwas chosen as
the ML architecture, as it works well for small data sets and optimizes
for the a hyperplane where the margin between the points closest to
the decision boundary are maximized29, which was hoped to result in
accurate predictions of the heat output distribution. An XGBoost
architecture was also tried, and resulted in slightly worse performance
across all cell-types.

The model predictions were further evaluated by calculating the
Mahalanobis depth for the predicted and actual values. The predicted
and actual heat outputs were plotted against the ejected masses. The
Mahalanobis depth is a statistical depth function that accounts for the
distance one point is from all other points in a distribution considering

the covariance of the data. The covariance matrix dP�1
x describes how

close a point is from every other point in the data set.

D =
1

1 + ðz � �xÞ dP�1
x ðz � �xÞ

ð1Þ

A point with higher depth is more similar to other points in the
distribution. The various depths may then be plotted using ellipses.
The ellipse borders are cutoffs, where an ellipse contains somedensity
of points.

TheMLmodels used in this work were developed in Python using
the sklearn library30.

Data availability
The data used in this study is available open-access in the Battery
Failure Databank: https://www.nrel.gov/transportation/battery-failure.
html. Given that there may be future updates to the Battery Failure
Databank, the version used in this work is also available from
Zenodo31. Source data are provided with this paper.

Code availability
The code used in this work is available open-access at https://github.
com/NREL/battery-heat-outputand Zenodo31.
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