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heterojunctions: Band offset and spin-orbit coupling effects
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The electronic structure of surfaces and interfaces plays a key role in the properties of quantum devices.
Here, we study the electronic structure of realistic Al/InAs/Al heterojunctions using a combination of density
functional theory with hybrid functionals and state-of-the-art quasiparticle GW (QSGW) calculations. We find
a good agreement between QSGW calculations and hybrid functional calculations, which themselves compare
favorably well with angle-resolved photoemission spectroscopy experiments. Our paper confirms the need for
well-controlled quality of the interfaces to obtain the needed properties of InAs/Al heterojunctions. A detailed
analysis of the effects of spin-orbit coupling on the spin splitting of the electronic states shows a linear scaling
in k space, related to the two-dimensional nature of some interface states. The good agreement by QSGW and
hybrid functional calculations opens the door towards trustable use of an effective approximation to QSGW for
studying very large heterojunctions.
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I. INTRODUCTION

Because of their unique combination of material param-
eters (i.e., large spin-orbit coupling (SOC), small effective
mass, large Landé g factor), narrow-gap III-V semiconductors
(such as InAs or InSb) have generated considerable interest in
many technological applications.

Recently, these materials have been central to the
experimental realization of the so-called Majorana zero
modes [1–10]. In these devices, the main goal is to develop
topological p-wave superconductivity at the interface of a
conventional semiconductor and an s-wave superconductor.
An exceptionally good control of the interface properties is
needed to realize topological superconducting phases and to
manipulate Majorana zero modes, which are the key ingredi-
ent in topological quantum computation proposals [8,10–12].
The hybrid semiconductor-superconductor Majorana devices
are required to have a large g factor, strong Rashba spin-orbit
coupling, and significant proximity-induced superconducting
gap. Recently, proximity-induced superconductivity has been
studied in devices made of a semiconductor nanowire in
contact with a superconductor, including Al/InAs [13–19],
Al/InSb [20–23], Pb/InAs [24], and Sn/InSb [25].
High-quality superconductor/semiconductor interfaces (i.e.,
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uniform and transparent) are required to optimize the
topological gaps in these heterostructures.

The geometry of the interface may give rise to (desirable
or undesirable) interface states, alter the band bending and
band alignment, or affect the magnitude of the proximity-
induced gap and of the spin-orbit coupling. Understanding
the resulting surface/interface states and Fermi-level pinning
is important for engineering appropriate interface Hamil-
tonians and realizing topological superconductivity hosting
Majoranas.

Band bending and surface states have been ob-
served by angle-resolved photoemission spectroscopy
(ARPES) [26–28] and scanning tunneling microscopy
and spectroscopy [29]. First principles simulations based
on density functional theory (DFT) can help interpret
experiments and resolve the effects of the interfaces. DFT
studies of InAs and InSb surfaces and interfaces have been
limited because local [local density approximation (LDA)]
and semilocal exchange-correlation functionals severely
underestimate the band gap to the limiting point where
it reduces to zero [30]. More accurate methods involving
quasiparticle self-consistent GW (QSGW) approaches
or hybrid functionals provide results much closer to the
experimental (bulk) gap (0.42 eV for bulk InAs).

In this paper, we present calculations of realistic
Al(111)/InAs(001) heterojunctions using a QSGW method
implemented in the QUESTAAL package. The QSGW results
are also compared with hybrid functionals DFT calculations.
We focus our attention on the effects of “disorder” (us-
ing numerical “experiments”) on the electronic structure of
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realistic InAs/Al interfaces described at the atomic scale. The
disorder we consider is coming from (i) atomic relaxations
(i.e., the atoms at the InAs/Al interfaces do not rest at their
corresponding bulk atomic positions), (ii) substitution disor-
der which mimics in a simple way potential atomic diffusion
at the interface, and (iii) rescaling the spin-orbit coupling
strength on some atoms which mimics the presence of some
external electric fields at the interfaces.

The paper is organized as follows: In Sec. II, we present
the InAs/Al system we considered and the two software pack-
ages used for the electronic structure calculations, namely the
QUESTAAL and QUANTUMATK packages. The results of our cal-
culations are shown and analyzed in Sec. III, where we extract
the profiles of the valence band maxima (VBM) and conduc-
tion band minima (CBm) along the InAs/Al heterojunction
and study in detail the effects of SOC on some specific bands.
Conclusions are presented in Sec. IV. Additional information
is provided in the Appendixes, about the implementation of
the QUESTAAL code on GPUs in Appendix A, the hybrid
functional in Appendix B, and local density of states and bulk
versus heterojunction bands in Appendix C.

II. CALCULATIONS

First principles electronic structure calculations have been
performed using two different packages: the QUESTAAL pack-
age [31] and the pseudopotential QUANTUMATK package [32].

QUESTAAL is an all-electron method, with an augmented
wave basis consisting of partial waves inside augmentation
spheres based on the linear muffin-tin orbital technique [33].
It includes conventional DFT-based calculations, as well as
many-body perturbation theory, especially with its implemen-
tation of a QSGW approach [34,35].

We have considered InAs/Al heterojunctions for which the
interface between the two materials is built from the (001)
surface for InAs and from the (111) surface for Al, with
As-terminated InAs surfaces in direct contact with the Al
surface (as suggested by the experiments in [27]). We took
a low temperature lattice parameter of a0 = 6.06 Å for InAl,
and a (001) surface supercell based on the two following
(001) surface vectors u1 = [2, 0]a0 and u2 = [−1, 3]a0. For
this (001) supercell, there are six atoms in each In (As) atomic
plane perpendicular to the z direction (see Fig. 1). For this
supercell, one can match the Al(111) surface rather well,
with a slight stretch (of 3%) in the u2 direction, using a bulk
lattice parameter of aAl = 4.05 Å. Then, each Al atomic plane
parallel to the InAs/Al interface contains 15 atoms.

In order to minimize the computational cost, more specif-
ically for the QSGW calculations, we have considered the
minimal possible size for the junctions. We have found that to
be able to keep the bulklike character for the electronic struc-
ture in the middle of the InAs slab, one needs to go beyond a
few layers of InAl: typically for six (seven) atomic planes of
In (As) (and beyond) we recover the bulklike density of states
for the In (As) atoms in the center of the InAs slab. As Al is
a metal with a shorter screening length, fewer atomic layers
are needed [typically four atomic (111) planes are enough] to
obtain a bulklike density of states in the central atomic layers
(see Appendix C).

Relaxation of the atomic positions has been performed
within DFT-LDA. We have allowed the atoms in the Al atomic

FIG. 1. Two sideviews, ball-and-stick representation, of the re-
laxed InAs(001)/Al(111) supercell. The In atoms are shown in gray,
As atoms in yellow, and Al atoms in purple. The largest supercell
contains 138 atoms with four, six, and seven atomic planes of Al, In,
and As respectively. Each plane contains either six atoms of In (As)
or 15 atoms of Al. The right panel shows the labeling, used in the
main text, of the different atomic layers in the z direction.

layers next to the interfaces, and the atoms of As and In in the
two outmost atomic layers close to the InAs/Al interfaces,
to relax until the force components are below 10 mRy/bohr
(257 meV/Å).

We did not impose any symmetry restrictions during the
atomic relaxation. Therefore, since the two InAs/Al interfaces
of the supercell are not symmetrically equivalent, the relax-
ation results in different local distortions at each interface.
This allows us to minimize the possible existence of unwanted
electronic states that may have arisen due to size and coupling
effects between two identical interfaces. To some extent, this
can be also seen as a simplified case of “geometric” disor-
der, for which the local environment of the relaxed atoms is
different from the bulk. Hence, for such atoms, some form
of spreading of the local density and potential will occur (in
comparison to the bulk) as reflected in the extracted values of
the local band edges shown below.

In DFT-LDA and even in GW calculations, band gaps
are often underestimated (LDA) or overestimated (GW ). In-
deed they should be because the random phase approximation
(RPA) screened Coulomb interaction W is not sufficiently
screened. Improvement of W by the addition of ladder dia-
grams indeed does improve the gaps [36,37]. In most of the
cases, the dielectric constant of semiconductors and insula-
tors is about 80% of the experimental value. This is because
the ladder diagrams are missing in the RPA. However, these
higher order diagrams are computationally costly, and here
we adopt a simpler approach. We have found that scaling
the dielectric constant by 0.8, or alternatively using a hybrid
of 80% QSGW and 20% LDA, we can mimic the effect of
the ladders. This eliminates most of the errors. Hence, we
use hybrid LDA and QSGW functionals, �scaled = �QSGW ×
0.8 + V LDA

xc × 0.2, in the calculations of our band structures.
The system we considered contains 138 atoms (4 × 15

atoms of Al, 6 × 6 of In, and 7 × 6 of As) [38]. In order
to treat such a large system within QSGW calculations, the
QUESTAAL package was redeveloped and optimized to take
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advantage of GPU-based computing on a multipetaflop mod-
ular supercomputer (see Appendix A).

We are interested in determining the profile of the VBM
and of the CBm along the InAs/Al heterojunction. There are
different ways to find such a profile, for example by consid-
ering the electrostatic potential of the heterojunction, or by
considering the change in energy position of deep electronic
levels of the junction in comparison to their bulk equivalent.
Obviously, the profile of the VBM or CBm obtained from such
atomic scale systems (for example, the thickness of the InAs
slab in the 138 atom supercell is ≈26.5 Å) will not reflect the
band bending of Schottky barriers expected from a continuum
model of the semiconductor/metal contact described on the
micron scale. However our atomic scale calculations incorpo-
rate the more local effects of the InAs/Al interfaces against
the bulk property of the materials.

To evaluate the profile of the valence (conduction) band
maxima (minima), we extract the energy position of the deep
electronic levels on each In atom (deep d orbital) and each As
atom (deep s orbital). Assuming a rigid energy shift of these
deep electronic levels relative to the Fermi level EF in both
the bulk and the heterojunction systems, we can determine the
profile (averaged over the number of atoms in each atomic
layer) of the VBM (along the main direction of the junction)
relative to the exact QSGW Fermi level of the junction. The
profile of the CBm is obtained from a rigid shift of the VBM
by the bulk QSGW band gap (0.47 eV in the present case).

It is important to note that all the QSGW calculations
were performed in the presence of SOC. Orbitals with s-like
character are not affected by the presence of SOC. However
the d orbitals are split by the SOC. For a bulklike environment,
the d orbitals are split into two subsets according to the crystal
symmetry. For In atoms close the Al/InAs interfaces the sym-
metry is reduced (further reduced by the atomic relaxations),
and different energy shifts occur for the different d orbitals on
these atoms. There is more “fluctuation” of the energy shift for
these atoms in comparison to bulklike In atoms in the center
of the InAs slab.

As a final comparison, we also perform calculations on
the same system using a different methodology for correcting
the band gap problem: hybrid functionals. Traditional hybrid
functionals which use a fixed global mixing fraction α of Fock
exchange can show limitations in the case of inhomogeneous
interface systems, specifically if the different materials require
different values of α to recover the correct bulk electronic
structure and band gap. The situation is even more severe for
the present case of semiconductor/metal interfaces.

To overcome this problem, we build on a recently de-
veloped scheme for a local (i.e., spatially varying) mixing
fraction, based on an estimator of the local dielectric constant
defined as a functional of the electronic density [39,40]. In
order to deal with the metallic region in our system, a second,
metallic, estimator is introduced, which determines locally if
the material is a metal and, if so, sets α to zero. A more de-
tailed explanation of the method can be found in Appendix B.
We apply this scheme to the HSE06 functional [30]. We
shall refer to these calculations as HSE06+DDH (dielectric-
dependent hybrid).

The HSE06+DDH calculations are performed using the
QUANTUMATK package [32] (version T-2022.03) within a

pseudopotential and linear combination of atomic orbitals
(LCAO) formalism. The calculations are carried out with
a spin-polarized noncollinear Hamiltonian. We use norm-
conserving pseudopotentials from the PSEUDODOJO [41] fully
relativistic set and the medium basis set (LCAO-M [32]) from
QUANTUMATK. The auxiliary density matrix method [42] is
used to speed up the calculation of the exchange matrix. A
k-point grid of (4 × 4 × 2) for the interface system is used to
match the QSGW calculations.

The determination of the VBM/CBm is performed in the
same way as for the QSGW calculations, i.e., by extracting
the energy position of the core levels relative to EF. However,
due to the configuration of the pseudopotentials, we use the
semicore d orbitals for both In and As. The bulk InAs band
gap obtained with HSE06+DDH is 0.47 eV, in agreement
with QSGW.

III. RESULTS

A. Band alignment

Figure 2 shows the profile of the VBM in the InAl/Al het-
erojunctions (black dashed line for the QSGW calculations,
and black dashed-dotted line for the LDA calculations). It
corresponds to a shallow paraboliclike curve where the VBM
is higher close to the InAs/Al interfaces than in the bulklike
part of InAs. Such a profile does not directly compare with
conventional band bending in Schottky barriers; the latter
occurs on much larger length scales (≈ μm) than the scale
corresponding to our atomic-scale calculations. However, the
inflection of the VBM reflects the effect of the interfaces
against the bulk, most certainly due to the presence of inter-
face electric dipoles.

The dispersion in the energy shifts displayed by the sym-
bols (red circles for the In deep d orbital, green up triangles for
the As deep s orbital obtained from the QSGW calculations)
reflects that each atom in a given atomic layer is different. This
is mostly true for the atoms near the InAs/Al interfaces which
have been allowed to relax. Such a dispersion is minimal for
the atoms in the center of the InAs slab where their positions
correspond to bulk unrelaxed atomic positions.

The QSGW calculation for bulk InAs provides a band gap
0.47 eV, close to the experimental band gap of 0.42 eV at
low temperature. From that value, we can see that the CBm
(obtained from rigid shift of the VBM) crosses the Fermi level
of the junction. The CBm lies below EF, by an amount of
≈ 80 meV, in the “bulk” part of the InAs slab. This prediction
of an accumulation layer in InAs is in agreement with ARPES
measurements [27], although the band offset extracted from
experiment is somewhat larger than what is seen in the present
cell simulation. This may be related to finite size effects or the
other InAs/Al interface effects. We explore one possibility in
the following.

But for now, we turn to our hybrid functional calculations
using the HSE06+DDH method. This method represents a
more empirical and less accurate approach than QSGW, but
also significantly less demanding of computational resources,
and therefore potentially able to scale to larger systems.
Figure 3 shows the comparison of the local band edges

calculated with QSGW (solid lines) and HSE06+DDH (filled
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FIG. 2. Profile of the local valence band maximum (VBM) for
the InAs/Al junction made of 138 atoms. Symbols represent the
different shifted energy levels (deep In-d and As-s orbitals) of the
In and As atoms located in each atomic plane along the main axis of
the junction. Lines correspond to the averaged value of the energy
shift in each atomic plane. The black dashed and dashed-dotted
lines correspond to the QSGW and LDA VBM respectively. The red
dashed line is the QSGW conduction band minima (CBm), i.e., the
VBM shifted by the QSGW bulk band gap. The blue line presents
the Fermi level EF position. Both QSGW and LDA have been shifted
to correspond to this energy reference EF = 0. The QSGW CBm lies
≈ 80 meV below EF in the center of the InAs slab. Note that the
band profile is not symmetric with respect to the central As layer
because the left and right InAs/Al interfaces are not symmetrically
equivalent, and the atomic relaxation increases the asymmetry.

circles). The overall shape of the band edges is well repro-
duced by HSE06+DDH, and there is an excellent quantitative
agreement in the bulk of the semiconductor (within two layers
of the interface). The last layer of As atoms at the interface
with Al deviates both from the smooth profile and from the
QSGW result (however, it should be noted that the com-
plete QSGW data set in Fig. 2 shows a qualitatively similar
discontinuity for the majority of As atoms at the interface).
These uncertainties are not surprising, as the use of core levels
to extract the band edges depends on a sufficiently bulklike
local environment, while the last layer is expected to deviate
significantly due to the different bonding.

As an additional check, we have also compared the LDA
band edges calculated with the package QUESTAAL (shown
in Fig. 2) with QUANTUMATK (not shown) and recovered a
similar good agreement. Therefore, the HSE06+DDH method
provides an effective approximation to the full QSGW for this
system, and might be used to explore much larger interface
cells or multiple different interface configurations at a lower
computational cost.

In order to get a better understanding of the effects of dis-
order at the InAs/Al interfaces on the energy level alignment,
we have considered the following numerical experiment.

We simulate the possible atomic diffusion at the interfaces
by substituting some atoms by others. From the valence prop-
erties of In, As, and Al, it appears reasonable to envisage
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FIG. 3. Profile of the local VBM and CBm for the InAs/Al
junction obtained from QSGW (same averaged values as in Fig. 2)
and HSE06+DDH.

substitutional disorder between In and Al atoms. Furthermore,
previous molecular beam epitaxy experiments have shown
that AlAs can be readily grown as a thin interlayer at the
InAs/Al interface [13]. We have therefore considered inter-
faces for which some In atoms (in the atomic layers closest to
the interfaces) are replaced by Al atoms.

There are many possible combinations to realize such sub-
stitutions, and we have considered only a few of them. We
started by replacing only one In atom by one Al atom in the In
atomic layer located the closest to the right InAs/Al interface
(see labels for the atomic planes in Fig. 4). We have performed
calculations for only two cases over the six possible cases of
one atom substitution. The results for the VBM profile for
one of these cases is shown in Fig. 4 by the black dashed
line. We have also considered one case in which two In atoms
are swapped by two Al atoms and we have found similar
trends for the profile of the VBM (results not shown here).
Our calculations indicate that the VBM is pushed down, by a
further ≈ 100 meV, to lower energy in the case of the “dirty”
interfaces compared to the case of “perfect” interfaces.

B. Spin-orbit coupling effects

The presence of Rashba-like SOC in narrow-gap InAs
semiconductors is one of the central ingredients for inducing
a superconducting property by proximity of an s-wave super-
conductor like Al. Once superconducting, a InAs nanowire
can eventually host a pair of Majorana states at each of its
ends where the superconducting order parameter vanishes.

In the previous section, we have studied how band align-
ment in InAs deviates from pure bulk to InAs/Al interfaces,
including some form of disorder of the interfaces. We now
consider the possibility of another type of disorder and its
effects on the band structure of the InAs/Al junction.

For that we now consider the following numerical experi-
ment: the strength of the SOC, on some atoms in the system,
is rescaled to larger values. The SOC rescaling is applied
on either all the In and As atoms or only the In and As
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FIG. 4. Profile of the local valence band maximum (VBM) for
the InAs/Al junction with similar notations as in Fig. 2. Comparison
between perfect and disordered interfaces nis shown. One atom of
In is replaced by one Al atom in the In atomic plane closest to the
right InAs/Al interface (see label InAl on the horizontal axis). All
calculations are performed with QSGW. The VBM/CBm are pushed
down to lower energy in the case of the dirty interface, i.e., compare
dashed lines with dotted lines (black for VBM, red for CBm). Inter-
face disorder seems to push the CBm down by a further ≈100 meV. A
similar behavior has also been obtained in two different cases of one
In ← Al atom substitution (the Al atom is located at a different site in
the corresponding In atomic plane), as well as for a case of two In ←
Al atoms substitution in the corresponding In atomic plane (results
not shown here).

atoms close to the InAs/Al interfaces, i.e., In atoms labeled
z = 12 and 27 and As atoms labeled z = 0.3 and 10 (see right
panel in Fig. 1). Note that a light element like Al does not have
strong SOC and rescaling the SOC on Al is not relevant. The
increase of the SOC can be seen as an indirect effect of the
presence of an extra external electric field (perpendicular to
the InAs/Al interface in the case of Rashba-like SOC) due to
gating or other effects not taken into account in our model
of heterojunctions. We analyze the effects of rescaling the
SOC on a specific set of bands which we identify to be the
counterpart of the bottom of the bulk InAs conduction band,
as we explain below.

But first, we show how the band structure of the InAs/Al
junction differs strongly from the bulk InAs bands due to
the coupling to the metallic As states. Figure 5 shows the
bulk band structure of InAs. To be able to compare directly
bulk and junction band structures, we have calculated the bulk
bands with a cell having the same lattice vectors u1,2 in the
(001) plane as the cell for the InAs/Al junction. The bottom of
the conduction band around the � is mostly consisting of As
s states as expected. The color scheme in Fig. 5 will allow us
to identify the corresponding bulklike InAs conduction band
in the band structure of the heterojunction.

For the InAs/Al junction, most of the bands in the junction
come from a mixture of all In, As, and Al orbitals as can be
seen in Fig. 6. This can be expected from the strong bonding
between the InAs semiconductor and the Al metal parts in our
model of heterojunction. The band structure looks much more
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FIG. 5. QSGW bulk band structure of InAs (including SOC).
Left panel: Wide energy range. Right panel: Energy range closer to
the Fermi level EF. For allowing direct comparisons between bulk
and heterojunctions, the bulk bands have been calculated with a cell
having the same lattice vectors u1,2 in the (001) plane as the cell
for the InAs/Al junction. Qx, y, z represents the (x, y, z) direction in
the reciprocal space. The color scheme corresponds to the weight of
the As s orbital in the bands, i.e., bright red indicates large weight
of the As s orbital, where less bright red means less weight, down
to black, which means no As s-orbital weight. One can see that the
bottom of the conduction band is mostly consisting of As s states.

complex than for bulk InAs due to the large size of the system,
the presence of the Al metallic states, and the relaxation of the
InAs/Al interfaces. There is clearly no band gap anymore in
the heterojunction.

Figure 7 shows the zoomed-in energy of the bands shown
in Fig. 6. The bands are colored in red according to the
projection weight of the states onto the s orbitals of the
bulklike atomic layers of As z = 20. In Fig. 5, it was shown
that the bottom of the bulk InAs conduction band, around
the � point, is mostly of As s character. For the InAs/Al
heterojunction, we can infer that some bands around the �

point still keep a non-negligible weight of the bulklike As s
orbitals, more specifically the bands ≈50 meV below EF. This
energy position below EF corresponds well with our estimate
of the energy shift of the bulklike conduction band minimum
shown in Fig. 2. We therefore consider that these bands are
the equivalent of the bottom of the bulklike conduction band
of InAs which strongly couples to the Al states in the InAs/Al
heterojunction. We now study how these bands are modified
by the rescaling of the strength of the SOC. For that, we
calculate the energy difference �E (k) between these SOC
spin-split bands for different SOC rescalings.

Figure 8 shows the energy difference �E (k) of the spin-
split bands around the � point versus the k vector along the
�-Qy direction. The spin splitting is more important (for small
k values away from �) when the SOC rescaling is applied
to all In and As atoms, instead of only on the interface In
and As atoms. However, it is clear that, in both cases, the
spin splitting �E (k) is linear in k (for k/Qy < 0.1), which
is most probably the signature of the two-dimensional-like
character of the corresponding states parallel to the InAs/Al
interface [43,44]. The main point is that the interface gives
rise to large electric fields, which can yield Rashba-like terms
within a few atomic planes of the interface; these Rashba-like
terms then cause the linear in k splitting of states there.

It is also interesting to check how the linear dependence
of the spin splitting varies with the rescaling of the SOC.
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FIG. 6. QSGW band structure of the InAs/Al heterojunction
made of 138 atoms. In comparison to the bulk InAs case, the band
structure is more complicated due to the presence of the Al metallic
states, the relaxation of the InAs/Al interfaces, and the large number
of atoms in the supercell. There is no more band gap in the hetero-
junction. The bands in panels (a), (b), and (c) are colored in red,
blue, and green respectively according to the projection weight of
the states onto the bulklike atomic layers of As z = 20, In z = 18,
and In z = 21. There is a strong mixing of all As and In orbitals in
the bands, as well as mixing with Al orbitals. Note the two flat bands
around EF = 0 along the �-Qz direction implying the existence of
localized “interface” states. These states are however delocalized in
the (xy) planes of the InAs/Al interfaces. A careful analysis of the
composition of these states (not shown here) reveals that they consist
mostly of orbitals of the As z = 10 and Al z = 9 (and of the As
z = 0.3 and Al z = 2) atomic layers.
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FIG. 7. QSGW band structure of the InAs/Al heterojunction:
zoomed-in energy of the bands shown in Fig. 6. Here the red coloring
scheme follows the weight of the projection onto the s orbitals of the
bulklike central atomic layer of As z = 20. Some bands around �, in
the heterojunction, keep a non-negligible weight of the bulklike As s
orbitals, more specifically the bands ≈50 meV below EF. Knowing
that the bottom of the bulk InAs conduction band, around the �

point, is mostly made of As s character, we consider that these
bands (encircled in blue) correspond to the bottom of the bulk InAs
conduction band in the case of the junction.

We determine the slope of the linear relation �E (k) ≡ αk
for small k values (for k/Qy < 0.05). The dependence of
α(socscl) on the SOC rescaling is shown in Fig. 9. We obtain
a linear dependence on SOC rescaling when the rescaling is
applied to all In and As atoms, and a sublinear dependence
when the rescaling is only applied to the interface In and As
atoms, indicating different screening effects on the local SOC
rescaling.

IV. CONCLUSION

We have studied the electronic structure of realistic
Al/InAs/Al heterojunctions using a combination DFT with
hybrid functionals and state-of-the-art QSGW calculations.
The InAs/Al heterojunctions we considered are central to
superconducting induced properties in InAs and to the design
of topological quantum computation platforms. The InAs/Al
heterojunctions are described at the atomic level and include
atomic relaxations at the InAs/Al interfaces. Our paper con-
firms the need for well-controlled quality of the interfaces to
obtain the needed properties of InAs/Al heterojunctions. The
local band alignment (i.e., top of VB, bottom of CB) obtained
from QSGW for semiconductor/metal interfaces can be well
reproduced using dielectric-dependent hybrid functional DFT
with the metallic estimator which automatically switches off
the Fock exchange within the bulk of the metal. The prediction
of an accumulation layer for InAs/Al is in agreement with
experimental evidence. The HSE06+DDH method appears
to provide an effective approximation to the full QSGW for
this system, and opens paths for exploring larger interface
cells or multiple different interface configurations in relation
with experimental devices. Furthermore, a detailed analysis
of the effects of spin-orbit coupling on the spin splitting of
some electronic states shows a linear scaling in k space, a
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FIG. 8. (a) Bands around the � point, in the �-Qy direction,
corresponding to the bands encircled in blue in Fig. 7 calculated for
different rescaling (socscl) of the SOC. The rescaling is applied to all
In and As atoms. (b) Energy difference �E (k) of the spin-split bands
shown in panel (a). (c) Energy difference �E (k) of the spin-split
bands when the rescaling socscl is applied only to the In and As
interface atoms. In both cases, the spin splitting is linear in k for
k/Qy < 0.1 around each band crossing, i.e., �E (k) ≡ αk.

behavior most probably related to the two-dimensional nature
of the interface states. Our paper indicates the possibility of
tailoring the properties of the electronic states central to the
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FIG. 9. Dependence of the slope α of �E (k) ≡ αk upon the
rescaling socscl of the SOC. A linear dependence on the rescaling is
obtained when it is applied to all In and As atoms, while a sublinear
dependence is obtained when the rescaling is applied only to the
interface In and As atoms.

realization of topological computers from the quality of the
semiconductor/metal interface.
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APPENDIX A: QUESTAAL ON GPU

Due to the relatively large simulation cell for QSGW
standards, together with (i) relatively dense Brillouin zone
sampling and (ii) high angular momentum cutoffs required,
the all-electron full frequency QSGW calculations are rather
difficult to achieve. They were only made practical with the
efficient use of new clusters with high-density, high-memory
GPU nodes and good interconnect.

Algorithmic improvements avoided most of the filesys-
tem IO. Together with a more flexible memory management,
they allowed efficient parallelization across multiple levels
of processes and threads enabling various launch configura-
tions. Nearly all of the remaining IO was moved to parallel
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HDF5 maintaining the same file layout independent of the
parallelism.

The screened Coulomb potential and the mixed product
basis projectors occupy the bulk of the memory available and
in the present case could not fit together entirely; fortunately
the projectors can be generated and used in piecewise fashion
with little overhead.

In the GPU context, each device is handled by a thread al-
lowing simple use of multiple devices per process. The threads
distribute batches of matrix operations across dynamically es-
timated number of streams depending on dimensions and the
available memory. In this way host-device transfers and kernel
launches are overlapped through asynchronous executions,
hiding latency and maximizing occupancy and efficiency.

Most of the computing routines make heavy use of the per-
formance libraries CUBLAS, CUSOLVER, CUFFT, and CUSPARSE

in this mode. Certain larger matrix operations were done col-
lectively with CUSOLVERMG (CU*MP was not available at the
time).

The heaviest step in the computations is the calculation of
the full off-diagonal self-energy, which sustained close to 20
petaflops on the Juwels-Booster cluster using 288 nodes.

APPENDIX B: LOCAL DDH FUNCTIONAL WITH
METALLIC CORRECTION USING LOCALIZED ORBITALS

1. DDH overview

The exchange-correlation energy in HSE is constructed by
splitting up the Coulomb interaction in a long and short range
part using the error functions

1

r
= erf (ωr)

r
+ erfc(ωr)

r
,

in which ω is a range separation parameter that determines
what is defined as long and short range. The exchange corre-
lation energy is then split up as

EHSE
xc =αEHF,SR

x + (1 − α)EPBE,SR
x (ω) + EPBE,LR

x (ω)+EPBE
c .

The amount of exact exchange included is determined by
α, the exchange fraction. In HSE it is taken to be a constant of
0.25, which is reasonably accurate for medium gap semicon-
ductors but produces some errors for large and small gaps.
This is because one can derive that the value of α should
be related to the dielectric constant of the material, which
is in turn related to the screening. The DDH approach is to
create a hybrid functional for which the exchange fraction is
determined self-consistently based on the dielectric constant.
This is too computationally expensive to calculate, and so
an estimator for the dielectric function is used instead (as
presented in [39,40]):

ḡ = 1

V

∫
dr

√
∇ρ(r)

ρ(r)
.

The exchange fraction is then related to this estimator by a
quartic function:

αDDH = a0 + a4ḡ4,

which we have fitted to the correct experimental band gap for
a large set of semiconductors and insulators.

2. Local DDH using localized orbitals

To study interfaces, it might be that different values of the
exchange fraction are needed in different parts of the system.
This is why a local estimator is introduced:

ḡ(r, σ ) = 1

(2πσ )
3
2

∫
dr′

√
∇ρ(r′)
ρ(r′)

exp

(
−|r − r′|2

2σ

)
,

from which we can calculate an exchange fraction field

a(r, σ ) = a0 + a4ḡ(r, σ )4.

In [40] this is used in the calculation of the integrals, so that
the exchange matrix becomes

Xi j =
∑

kl

Vik; jl Dkl ,

in which Dkl is the single-particle density matrix. The
coulomb integrals are defined as

Vik; jl =
∫

drdr′φi(r)φk (r)α(r, r′; σ )K (|r − r′|)φ j (r′)φl (r′),

in which φi are the LCAO basis orbitals, with

α(r, r′; σ ) =
√

a(r, σ )a(r′, σ )

and K the short range Coulomb kernel.
Instead of recalculating the integrals we use the fact that in

QUANTUMATK a resolution of identity [45] approach is used to
calculate the Coulomb integrals:

Vik; jl ≈ Cμ

ikVμνCν
jl ,

with the introduction of an auxiliary basis Pμ(r) such that

φi(r)φ j (r) =
∑

μ

Cμ
i jPμ(r).

We assume that the auxiliary basis coefficients Cμ
i j are un-

affected, and only the integrals between the auxiliary basis
functions change,

Vμν =
∫

drdr′Pμ(r)α(r, r′; σ )K (|r − r′|)Pν (r′)

≈√
āμāν

∫
drdr′Pμ(r)K (|r − r′|)Pν (r′),

in which we have taken a Gaussian average of the a coeffi-
cients around the center they are located on:

āμ(σ, τ ) =
∫

dra(r, σ ) exp

(
−|r − rμ|2

2τ

)
. (B1)

The approximation being made here is that the local estimator
is approximately constant or at least slowly varying over the
region where a single auxiliary basis function has support,
which is on a center.

3. Metallic correction to local DDH

For metals there is perfect screening, and we would expect
the exchange fraction to go down to zero. Unfortunately the
DDH method does not reproduce this behavior. This is why
we introduce a second metallic estimator. At every step of
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FIG. 10. The local exact exchange fraction on each atomic
center obtained with the HSE06+DDH method for the InAs/Al
heterojunction.

the self-consistent loop we calculate the Fermi level density
matrix

Fi j =
∑

k

∑
n

exp

[
− (εF − εk,n)2

2σF

]
〈φi|ψkn〉〈ψkn|φ j〉,

where ψkn are the Kohn-Sham eigenstates at the current step
in the self-consistent field (SCF) loop and σF is the Fermi level
broadening, chosen to be 0.001 eV. The Fermi level density
matrix is used to calculate the Fermi level density:

f (r) =
∑

i j

Fi jφi(r)φ j (r).

We then define the following metallic estimator function:

M(r) = 1 if f (r) < cμ,

M(r) = 0 if f (r) � cμ,

where cμ is a cutoff parameter we have chosen to be 0.0003.
This parameter in combination with σF determines what parts
of the material will be identified as metallic. They have been
chosen empirically after extensive testing on a wide variety of
materials.

This function is convoluted with a Gaussian to get a smooth
metallic estimator function:

m(r) =
∫

dr′M(r′) exp

(
−|r − r′|2

2σμ

)
,

where the width of the Gaussian is chosen to be 1 Å by
default, which we have found to give stable and smooth con-
vergence of the SCF loop; the final simulations in this paper
were checked with respect to this parameter, showing a weak
dependence on the smoothing length. We then multiply the
metallic estimator with the function a(r, σ ):

am(r, σ ) = m(r)a(r, σ ),

before the averaging around a center is performed in Eq. (B1).

FIG. 11. (a), (b) Local density of states (LDOS) per atomic layer
in the InAs/Al heterojunction, obtained from QSGW (solid lines)
and LDA (dotted lines) calculations. (c) Corresponding bulk LDOS
for In and As atoms respectively. In panels (a) and (b), the LDOS
of the central In and As atomic layers, labeled z = 18, 20, 21, are
similar to the bulk LDOS. The LDOS of the In and As atomic layers
acquires a stronger admixture with the Al states, the closer the layers
are to the InAs/Al interfaces. Note that in the bulk LDOS, the Fermi
energy EF is located at the top of the valence band as a convention
for any semiconductors at zero temperature. For the heterojunction,
the position of EF is governed by the metallic states of the Al slab.
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4. Application to the InAs/Al heterojunction

Figure 10 shows how the local DDH scheme with the
addition of the metallic estimator described here results in
a smoothly varying α for the semiconductor/metal interface
system of interest. The mixing fraction is close to zero in the
metallic Al layers, and then transitions to a finite value for
InAs over two layers of the semiconductor. It can be seen that
the DDH scheme results in a value of α for InAs that is sig-
nificantly increased by 41% with respect to the default value
of 0.25, resulting in a more accurate band gap. Furthermore,

even within the bulk of the semiconductor the DDH gives a
locally varying α, with a difference of ≈0.01 between the In
and As layers.

APPENDIX C: LOCAL DENSITY OF STATES

In Fig. 11, we show the LDOS per atomic layer in the
InAs/Al heterojunction, with the labeling of the different
atomic planes defined in Fig. 1. One can see that the LDOS
of the central In and As atomic layers, labeled z = 18, 20, 21,
is very similar to the bulk LDOS.
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[16] S. Vaitiekėnas, A. M. Whiticar, M.-T. Deng, F. Krizek, J. E.
Sestoft, C. J. Palmstrøm, S. Marti-Sanchez, J. Arbiol, P.
Krogstrup, L. Casparis, and C. M. Marcus, Selective-area-
grown semiconductor-superconductor hybrids: A basis for
topological networks, Phys. Rev. Lett. 121, 147701 (2018).

[17] S. Matsuo, M. Tateno, Y. Sato, K. Ueda, Y. Takeshige, H.
Kamata, J. S. Lee, B. Shojaei, C. J. Palmstrøm, and S. Tarucha,
Evaluation of the vortex core size in gate-tunable Josephson
junctions in Corbino geometry, Phys. Rev. B 102, 045301
(2020).

[18] G. C. Ménard, G. L. R. Anselmetti, E. A. Martinez, D.
Puglia, F. K. Malinowski, J. S. Lee, S. Choi, M. Pendharkar,
C. J. Palmstrøm, K. Flensberg, C. M. Marcus, L. Casparis,
and A. P. Higginbotham, Conductance-matrix symmetries of
a three-terminal hybrid device, Phys. Rev. Lett. 124, 036802
(2020).
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