

Understanding Commercial Building Energy Use in Amarillo-Lubbock-Abilene-Midland-San Angelo:

Building Stock Segmentation for Retrofit Planning

January 2025

Disclaimer

This work was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, its contractors or subcontractors.

Authors

The authors of this report are:

Lauren Adams, National Renewable Energy Laboratory (NREL)

Ry Horsey, NREL

Andrew Parker, NREL

Lauren Klun, NREL

Chris CaraDonna, NREL

Matthew Dahlhausen, NREL

Wenyi Kuang, NREL

Marlena Praprost, NREL

Eric Ringold, NREL

Amy Van Sant, NREL

The technical managers of this report are:

Hayes Jones, U.S. Department of Energy

Sam Petty, U.S. Department of Energy

Billierae Engelman, U.S. Department of Energy

Sydney Applegate, U.S. Department of Energy

Acknowledgments

The authors would like to acknowledge the valuable guidance and input provided during this report. The authors are grateful to the following list of contributors. Their feedback, guidance, and review are greatly appreciated by the authors.

Contributors:

Jessica Price, City of Madison, WI

Ross MacWhinney, Environmental Sustainability and Resiliency, New York City Mayor's Office of Management and Budget

Crystal Egelkamp, Colorado Energy Office

Andrew Held, Department of Energy and Environment, Washington DC

Maggie Kelley Riggins, Southeast Energy Efficiency Alliance

Chris Burgess and Michelle Thorsell, Midwest Energy Exchange Alliance

Cornelia Wu, Northeast Energy Efficiency Partnerships

Building Performance Standards (BPS) Laboratory Team: Joshua Kace, Haley Tong and Travis Walter, Lawrence Berkeley National Laboratory (LBNL); Isabel Langlois and Nicholas Long, NREL; Andrea Mengual, Pacific Northwest National Laboratory (PNNL)

Brendan Hall, Caterina Hatcher and Cindy Jacobs, U.S. Environmental Protection Agency (EPA)

Harry Bergmann, U.S. Department of Energy

This report was prepared by the National Renewable Energy Laboratory for the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Office.

List of Acronyms

BPS Building Performance Standards

EIA U.S. Energy Information Administration

EPA U.S. Environmental Protection Agency

ERV energy recovery ventilator

HPWH heat pump water heater

LBNL Lawrence Berkeley National Laboratory

NREL National Renewable Energy Laboratory

PNNL Pacific Northwest National Laboratory

Table of Contents

1	Ove	erview	1
	1.1	What Types of Questions Can This Report Help Me Answer for My City,	
		County, or Region?	1
	1.2	What Types of Questions Will This Report Not Help Me Answer?	2
	1.3	What Building Stock Segments Are Covered?	2
	1.4	What Audience Is This Report For?	5
	1.5	How to Best Utilize These Insights?	5
	1.6	How Were the Geographic Clusters Developed?	6
	1.7	What Building Types Are Covered?	6
	1.8	Vintage	7
2	Ge	ographies Covered in This Report	8
3	Res	sults Summary	9
	3.1	Site Energy and Emissions (Direct + Indirect)	9
	3.2	Segments with Similar Retrofit Solutions	10
	3.3	Resources for Actionable Next Steps	12
4	Bui	lding Site End Use Results	14
	4.1	HVAC	14
	4.2	Equipment	16
	4.3	Lighting	17
	4.4	Water Systems	19
5	Res	sults by Building Type for Your Top Four Segments	21
	5.1	Hydronically Heated Multizone Systems	21
	5.2	Rooftop Units, non-Food Service	22
	5.3	Rooftop Units, Food Service	23
	5.4	Electric Resistance Multizone Systems	24
6	Co	nclusion	26
Α	Cou	nties and County Equivalents Covered in this Report	27
В	Back	kground Information	28

С	Tables of Figure Values		
	0.1	Results Summary	31
	0.2	Building Site End Use Results	33
	0.3	Results by Building Type for Your Top Four Segments	36
Re	eferer	1ces	39

List of Figures

Figure 1.	Segmentation Analysis	3
Figure 2.	Map Showing the Cluster of Counties and County Equivalents	8
Figure 3.	Site Energy and Emissions by Fuel Type and End Use	10
Figure 4.	Top Four Segments	11
Figure 5.	HVAC: Site Energy Consumption	15
Figure 6.	HVAC: Emissions	15
Figure 7.	Equipment: Site Energy Consumption	16
Figure 8.	Equipment: Emissions	17
Figure 9.	Interior and Exterior Lighting by Interior Lighting Type: Site Energy	
Consu	umption	18
Figure 10.	Interior and Exterior Lighting by Interior Lighting Type: Emissions	18
Figure 11.	Water Heating: Site Energy Consumption	19
Figure 12.	Water Heating: Emissions	20
Figure 13.	Hydronically Heated Multizone Systems	22
Figure 14.	Rooftop Units, non-Food Service	23
Figure 15.	Rooftop Units, Food Service	24
Figure 16.	Electric Resistance Multizone Systems	25
Figure 17.	Fuel Types	28
Figure 18.	End Uses	29
Figure 19.	HVAC System Types	29
Figure 20.	Retrofit Solution Notes	30
List of	f Tables	
Table 1.	Segment Descriptions	4
Table 2.	User Guideline	5
Table 3.	Building Stock Building Types Covered in This Document	7
Table 4.	Retrofit Solutions	12
Table 5.	Site Energy by Fuel Type and End Use	31
Table 6.	Emissions by Fuel Type and End Use	32

Table 7	7.	Site Energy by Segment	32
Table 8	8.	Emissions by Segment	33
Table 9	9.	HVAC Site Energy Consumption by HVAC System Type and Building Type	33
Table 1	10.	HVAC Emissions by HVAC System Type and Building Type	34
Table 1	11.	Equipment Site Energy Consumption by Fuel Type and Building Type	34
Table 1	12.	Equipment Emissions by Fuel Type and Building Type	35
Table 1	13.	Interior and Exterior Lighting Site Energy Consumption by Interior Light-	
ing	g Ty	pe and Building Type	35
Table 1	14.	Interior and Exterior Lighting Emissions by Interior Lighting Type and	
Вι	uildi	ng Type	35
Table 1	15.	Water Heating Site Energy Consumption by Fuel Type and Building Type .	36
Table 1	16.	Water Heating Emissions by Fuel Type and Building Type	36
Table 1	17.	Hydronically Heated Multizone Systems	37
Table 1	18.	Rooftop Units, non-Food Service	37
Table 1	19.	Rooftop Units, Food Service	38
Table 2	20.	Electric Resistance Multizone Systems	38

1 Overview

This report is part of the second phase of a series of publications focusing on approximately 100 different local geographies, or "clusters." Each report provides characteristic features and energy data for commercial buildings in a specific area to help policy makers at the city, county, and state level better understand building energy use and emissions. This report breaks down the energy consumption and emissions of the building stock in Amarillo-Lubbock-Abilene-Midland-San Angelo counties, as shown in Figure 2, by building type, building size, end use, energy consumption, emissions, and segment.

The source of the data in this report is the public release of "ComStock End Use Savings Shape 2023 Release 2 Baseline Dataset - 2018 Weather" 2023. The data and estimated values communicated in this report represent energy use from 2018; they are not present-day values.

At the time of this publication, with the abovementioned data source, ComStock underestimates annual natural gas use by roughly 20% relative to CBECS 2018. Emissions from site natural gas use are likewise underestimated. Consider this underestimation when using ComStock to make emissions reduction decisions.

Electricity emissions totals in the figures below use eGRID 2021 subregion emission factors, which are calculated based on the emissions associated with electricity generation in the year 2021 in each subregion. Electricity emission factors (pounds of CO_2e per kWh of electricity) are decreasing year-over-year as new low-emissions generation comes online, and projections show that this trend will continue in the future (Gagnon, Cowiestoll, and Schwarz 2023). Estimates of future electricity emission reductions using historical electricity emissions factors will likely overestimate realized emission reductions as a result. Using a weighted average of projected annual electricity emission factors corresponding to the useful life of an intervention or a change in the building stock is a preferred method.

Commercial building energy data are provided by the U.S. Energy Information Administration (EIA) for the nine U.S. census divisions, each of which covers multiple states (CBECS 2018). The EIA provides similar residential building data by state (RECS 2020). However, city, county, and state policymakers often need finer resolution to understand the building stock and guide decision-making. This report presents commercial building energy data for the counties shown in Figure 2. The energy data in this report are broken down by building type, building size, end use and segment.

For reference documentation please see Parker, Horsey, Dahlhausen, Praprost, CaraDonna, LeBar, and Klun 2023.

- 1.1 What Types of Questions Can This Report Help Me Answer for My City, County, or Region?
 - How many buildings exist, by type and size?

- Which buildings are responsible for the most emissions today, by type and size?
- How many buildings or what fraction of emissions are covered by a building size threshold?
- What end uses (e.g., HVAC, Equipment, Lighting or Water Heating) and segments (see Table 1) have the highest energy consumption and emissions for each building type?
- What technology solutions can be adopted to address energy efficiency and affordability?

1.2 What Types of Questions Will This Report Not Help Me Answer?

- What will the building stock, energy use, and emissions look like in 2030, 2040, or 2050?
- What metric and target levels are best for building energy policy?
- How should a policy acknowledge variation in use within a given building type?
- How will zoning and development changes impact building energy use?

1.3 What Building Stock Segments Are Covered?

The United States commercial building stock can be divided into nine segments common across jurisdictional boundaries that are based on common retrofit solutions. These nine segments are primarily based on HVAC System Types (see Appendix B for an explanation of each HVAC System Type).

Most commercial buildings have heating, air conditioning, ventilation, lighting and hot water, all which utilize various fuel types (see Appendix B for fuel type definitions). Historically, many buildings have been categorized by their building type (e.g., "offices" or "restaurants"), but end uses, such as HVAC, lighting, water heating and equipment (see Appendix B for a description and example of each end use) are similar across all building types. Therefore, it is helpful to identify building similarities, or "segments", that cross the boundaries of traditional building types for analyzing energy consumption and emissions.

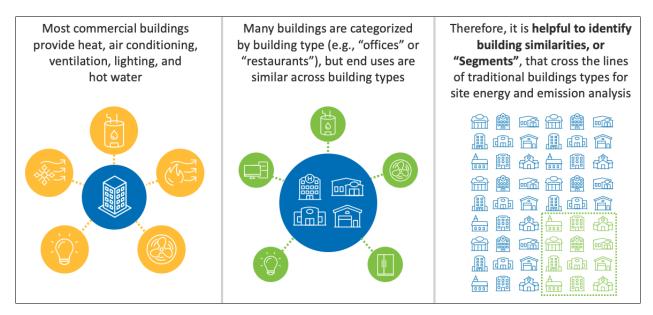


Figure 1. Segmentation Analysis

These nine segments are described in Table 1:

Table 1. Segment Descriptions

Segment	Description
Rooftop Units, non-Food Service	 Common Examples: 1 to 2 story strip malls, retail buildings, warehouses, offices Heating and cooling outside air drives the HVAC energy consumption Leased space will cause split incentive challenges for approximately 50% of the segment
Rooftop Units, Food Service	 Common Examples: freestanding restaurants Many small, high energy intensity buildings Heating and cooling outside air drives the HVAC energy consumption High ventilation because of cooking air exhaust hoods High service water heating needs, including high temperature water for dishwashing High process loads for cooking, primarily natural gas
Rooftop Units, Strip Malls with Some Food- Service	 Common Examples: strip malls with restaurants Many small, high energy intensity buildings Heating and cooling outside air drives the HVAC energy consumption High ventilation because of cooking air exhaust hoods in restaurant portions High service water heating needs, including high temperature water for dishwashing High process loads for cooking, primarily natural gas Leased space will cause split incentive challenges for most of the segment, but cooking and dishwashing equipment may be tenant supplied
Zone-by-Zone Units, non-Lodging	 Common Examples: small buildings of varying type Majority are heated with electric resistance
Zone-by-Zone Units, Lodging	 Common Examples: motels and hotels, typically part of large chains Majority are heated with electric resistance Significant service water heating demand for showering and sometimes laundry
Residential Central Units	 Common Examples: small buildings converted from residential uses (small offices such as accountant, lawyer, etc.) Commonly called central forced air in the residential context Typically do not have mechanical ventilation
Packaged Multi- zone Systems	 Common Examples: small to medium offices and schools Natural gas heating coils
Hydronically Heated Multi- zone Systems	 Common Examples: large buildings with boilers (schools, large offices, health-care facilities) Heating and cooling outside air drives the HVAC energy consumption Typically complex custom-engineered HVAC systems Split incentive less likely to be a barrier in institutional or healthcare, but still an issue in large offices More likely to be served by a district heating or cooling system
Electric Resistance Multizone Systems	 Common Examples: medium to large offices and healthcare facilities Often use electric reheat or electric resistance heat in the perimeter zones for construction cost reasons

1.4 What Audience Is This Report For?

Below is a guideline on how the data and findings outlined within this document pertain to you based on the type of stakeholder you are:

Table 2. User Guideline

Stakeholder	How data and findings pertain to you:
City Manager / Sustainability Manager	 Learn about the composition of your building stock in more detail Understand retrofit solutions to address energy efficiency and affordability for your building stock's top four segments Know how to apply retrofit solutions for each segment Assist in identifying technical solutions that can be promoted alongside state/federal tax credit and utility incentive programs
Building Codes	 Understand how much of your building stock will be affected by the applicable requirements if BPS or fuel switching code requirements are considered
City Facilities Manager or Public Works	 Understand the technology packages that can be impactful for the subset of buildings owned by your jurisdiction (e.g. offices, schools) Know what additional retrofit solutions can be utilized for your building stock to enhance your tracked buildings and allow a deeper dive into city-owned buildings

1.5 How to Best Utilize These Insights?

Step 1: Refer to the first report in this publication series "Understanding Building Energy Use in Amarillo-Lubbock-Abilene-Midland-San Angelo: Basic Building Stock Characterization" to better understand your building stock by building type, building size, site energy and emissions external to end use and segmentation analysis, as presented in this report.

Step 2: Identify key building segments for your building stock or an applicable retrofit program and understand how buildings are similar to each other from the perspective of how energy is consumed

- Segments are based on similarities of installed HVAC system types
- Different from traditional perspectives, which categorizes buildings based on their use case (e.g., "Office" or "Restaurant")

Step 3: Consider the common retrofit solutions for your key building segment(s)

 Understand the amount of site energy consumed and/or emissions from energy use you will be addressing if you apply a particular retrofit solution for the buildings within your segment(s)

Step 4: Develop next steps with the provided "Resources for Actionable Next Steps" section:

- Use the Building Stock Characteristic and Segmentation Analysis 2023 Microsoft Excel template to review these insights, and more, for your custom geography
- Read Introduction to ComStock 2023 for example use cases on how the provided analysis can be utilized for your building stock

1.6 How Were the Geographic Clusters Developed?

Clusters are formed on a county basis and depend on building type, age, and climate. Adjacent counties with similar commercial densities, types, and age distributions form a cluster. Clusters form regional groups if they belong to the same American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE Std. 169) climate zone. See Horsey, Rozenfeld, and Bergmann 2023 for more detail on the clustering method.

1.7 What Building Types Are Covered?

This report includes the commercial buildings listed in Table 3. The commercial building types considered in this analysis represent two-thirds of annual commercial building site energy consumption across the entire United States.

This report excludes several building types not currently included in the underlying data. The omitted building types with the highest national energy use include colleges, laboratories, grocery stores, entertainment venues, recreation centers, religious buildings, and vehicle repair shops. Some of these may be added in the future. Information on omitted building types, such as counts, energy use, and floor area can be found in CBECS 2018.

Table 3. Building Stock Building Types Covered in This Document

Sector	Building Type Group	Building Type	
	Food Service	Full Service Restaurant	
	Toda Service	Quick Service Restaurant	
	Mercantile	Retail Strip Mall	
	Weredittie	Retail Standalone	
	Office	Small Office	
		Medium Office	
Commercial		Large Office	
	Education	Primary School	
	Ladoulleri	Secondary School	
	Healthcare	Outpatient	
	Tiodia iodio	Hospital	
	Lodging	Small Hotel	
		Large Hotel	
	Warehouse and Storage	Warehouse	

1.8 Vintage

The analysis in this report is not segmented by vintage (year constructed). The data do not support the common perception that older commercial buildings have a higher energy use per square foot. For example, commercial buildings constructed between 2000 and 2018 have roughly 10% higher energy use per square foot than buildings constructed before 2000. There do not appear to be other vintage-related energy use per square foot trends in the data (EIA 2022).

2 Geographies Covered in This Report

Figure 2 shows the map of the buildings covered in this report for Amarillo-Lubbock-Abilene-Midland-San Angelo. The building stock within these counties have their own unique outcomes with similar site energy consumption and emissions from energy use. See Appendix A for a list of the counties and county equivalents included in the map.

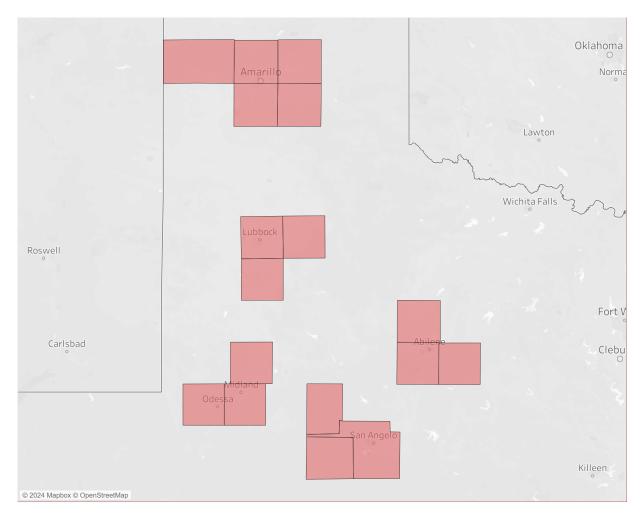


Figure 2. Map showing the cluster of counties and county equivalents covered in this report (See Appendix A for a list of the counties and county equivalents)

3 Results Summary

3.1 Site Energy and Emissions (Direct + Indirect)

Figure 3 summarizes the site energy and emissions from energy use by fuel type and end use for your building stock (see Appendix B for descriptions and examples of fuel types and end uses). In this figure we see that 73% of your building stock's site energy consumption is Electricity, with 38% of the Electricity consumption accounted to HVAC. In addition, 86% of your building stock's emissions are attributable to emissions from Electricity use, with 45% of the Electricity consumption accounted to HVAC.

Emissions include both direct and indirect greenhouse gas emissions. Direct emissions are from on-site fossil fuel combustion, and indirect emissions are from regional electricity generation. Direct emissions include both combustion and pre-combustion emissions (e.g., methane leakage for natural gas) and are based on RESNET/ANSI/ICC Standard 301 2018. Indirect emissions are calculated using subregion data from the EPA for 2021 (eGRID 2021). As mentioned above, electricity emissions factors (pounds of $\rm CO_2e$ per kWh of electricity) are decreasing year-over-year as new low-emissions generation comes online, and projections show this trend continuing in the future (Gagnon, Cowiestoll, and Schwarz 2023). Estimates of future electricity emissions reductions using historical electricity emissions factors will likely overstate realized emission reductions as a result. Using a weighted average of projected yearly electricity emissions factors corresponding with the useful life of an intervention or change in the building stock is a preferred method. Figure 3 does not include emissions for direct systems because ComStock currently does not model emissions from district systems as there is considerable variation by location and type of district system.

When considering end uses and building types, most of the site energy from HVAC in the building stock is attributed to buildings with Multizone Systems, particularly in Education and Healthcare buildings. Most of the emissions from energy use from HVAC in the building stock are attributed to buildings with Multizone Systems, particularly in Education, Healthcare, and Office buildings.

Building energy use and emissions from energy use depend on the total floor area, not the number of buildings. This is because lighting, heating, cooling, and ventilation scale with floor area.

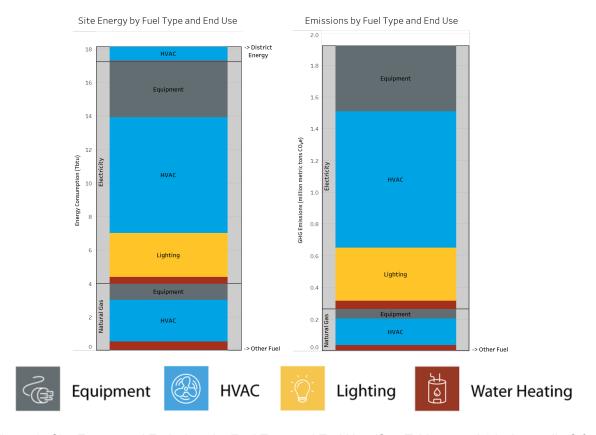


Figure 3. Site Energy and Emissions by Fuel Type and End Use (See Tables 5 and 6 in Appendix C for data in tabular format)

3.2 Segments with Similar Retrofit Solutions

The United States commercial building stock can be divided into nine segments across common jurisdictional boundaries that have similar retrofit solutions. A description of these nine segments, along with examples of building types within each segment, can be found in Table 1.

Figure 4 shows that the top four segments make up 76% of the site energy consumed and 75% of the emissions from energy use by your building stock.

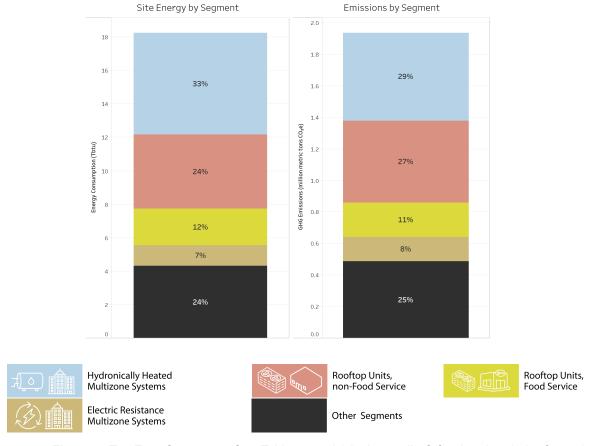


Figure 4. Top Four Segments (See Tables 7 and 8 in Appendix C for data in tabular format)

Effective retrofit solutions for your top four segments can be broken down by end use. The Xs in Table 4 represent retrofit solutions that apply to the segments of your building stock that consume the most site energy and generate the most emissions. For instance, buildings that have Rooftop Units, non-Food Service could be retrofitted by installing Packaged Heat Pumps or Rooftop energy recovery ventilator (ERV) + Split System HVAC Systems instead (see Appendix B for an explanation of each HVAC System Type). In addition, many buildings across all segments could save energy by installing LED lighting. Please refer to Appendix B for additional notes about each retrofit solution.

Table 4. Retrofit Solutions

End Use	Effective Retrofit Solutions	Hydronically Heated Multizone Systems	Rooftop Units, non-Food Service	Rooftop Units, Food Service	Electric Resistance Multizone Systems
	Packaged Heat Pumps		X	X	
HVAC	Rooftop ERV + Split System		X		
	Heat Pump Chillers + Potentially Needed Fossil Supplement	X			
Lighting	LED Lighting	X	X	X	X
	Higher-Capacity heat pump water heaters (HPWHs) with Recircu- lation	X		X	
Water Heating	Residential-Style HPWH		X		
	Dishwashing and Laundry Equipment Efficiency			X	

3.3 Resources for Actionable Next Steps

The following resources available on ComStock's website can support you with actionable next steps to implement retrofit solutions for your building stock:

- Interact with the Building Stock Characteristic and Segmentation Analysis 2023 Microsoft Excel template to review these insights, and more, for your custom geography
 - Dive into your data deeper (e.g., filter by county, building type and/or climate zone)
 - Utilize data fields that can be applied to your own additional analysis (e.g., cooling tons, insulation values, window surface area)
 - Guidance is provided to support suitable use of the ComStock Dataset

- 2. Read through the Introduction to ComStock 2023 presentation to understand how the provided analysis can be utilized for your building stock
 - Includes use case examples demonstrating Com-Stock's data in action
 - Describes how ComStock's analysis can be used for:
 - Climate action plans;
 - o Grant, rebates or incentive programs;
 - o Electrification planning; and
 - o Codes and standards.

4 Building Site End Use Results

In this report series, "end use" is defined as the equipment that directly consumes energy in a building such as heating, cooling and ventilation, lighting, water heating, or other interior equipment (e.g., computers, cooking equipment, etc.). Refrigeration is excluded from this report since ComStock does not have recommendations for the end use currently. The relative importance of each end use varies by building type. For example, lighting represents a greater fraction of the energy consumption in mercantile buildings than in warehouses. Restaurants are considered energy intensive because of their high cooking and water heating needs.

The following figures show building stock characteristics by end use and building type. The far-left chart in each figure shows end uses for the whole building stock. The two right charts dive into the end use group itself. Tables in Appendix B provide these data in a tabular format.

4.1 HVAC

HVAC here refers to primary heating and cooling equipment used for space conditioning and ventilation such as: boilers, chillers, furnaces, fans, pumps, cooling towers, heat recovery equipment, and direct expansion air conditioning coils.

For your location, most of the site energy from HVAC Systems in the building stock is attributed to buildings with Multizone Systems, particularly in Education and Healthcare buildings. Most of the emissions from energy use from HVAC Systems in the building stock are attributed to buildings with Multizone Systems, particularly in Education, Healthcare, and Office buildings.

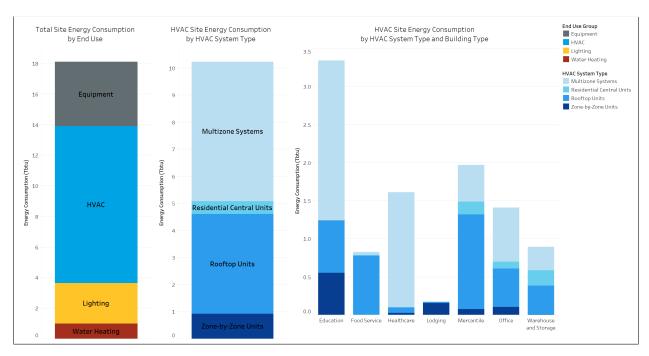


Figure 5. HVAC: Site Energy Consumption (TBtu) (See Table 9 in Appendix C for data in tabular format)

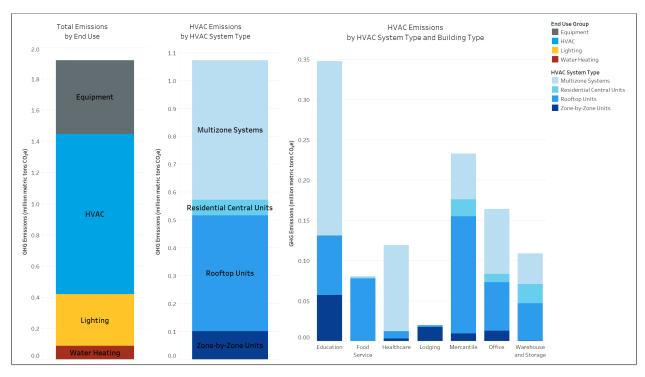


Figure 6. HVAC: Emissions (million metric tons CO₂e) (See Table 10 in Appendix C for data in tabular format)

4.2 Equipment

Equipment can be defined as everything in the building that is not in another end use group, such as: computers, cooking equipment, elevators, on-site networking equipment, data centers, etc.

For your location, most of the site energy from Equipment in the building stock is attributed to Electricity, particularly in Healthcare, Office, and Warehouse and Storage buildings. Most of the emissions from energy use from Equipment in the building stock are attributed to Electricity, particularly in Healthcare, Office, and Warehouse and Storage buildings.

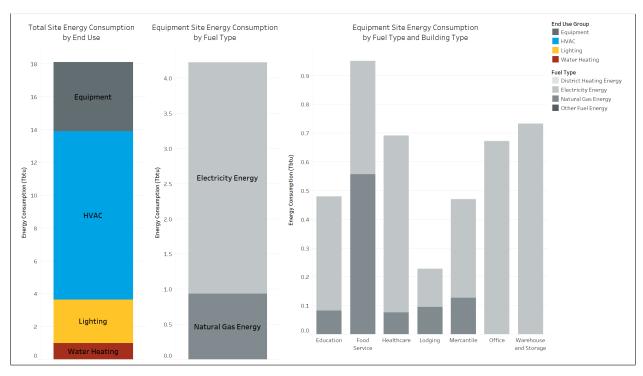


Figure 7. Equipment: Site Energy Consumption (TBtu) (See Table 11 in Appendix C for data in tabular format)

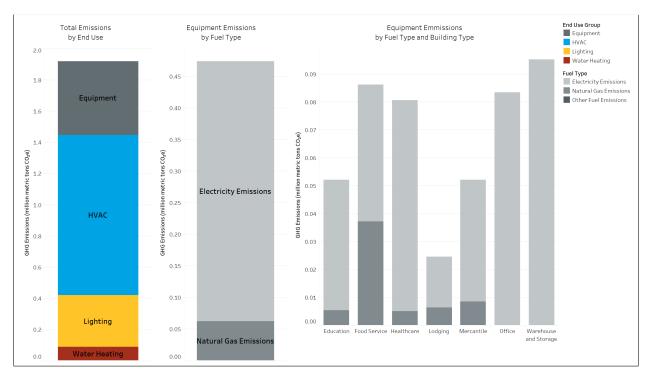


Figure 8. Equipment: Emissions (million metric tons CO₂e) (See Table 12 in Appendix C for data in tabular format)

4.3 Lighting

Lighting is defined as the components used for interior and exterior lighting of buildings. This includes interior space lighting, attached parking, walkways, entrances, and façade lighting.

In Figures 9 and 10, total lighting energy is broken out by interior lighting technology. The estimates for lighting in this report represent the 2018 building stock and ComStock does not believe the values shown represent the building stock at the time this report is released. For instance, it is likely that more LED lighting is represented in your location's building stock today. Please refer to Parker, Horsey, Dahlhausen, Praprost, CaraDonna, LeBar, and Klun 2023 for additional details on the interior lighting type definitions.

For your location, most of the site energy from Lighting Systems in the building stock is attributed to buildings with T8 bulbs, particularly in Education, Mercantile, and Warehouse and Storage buildings. Most of the emissions from energy use from Lighting Systems in the building stock are attributed to buildings with T8 bulbs, particularly in Education, Mercantile, and Warehouse and Storage buildings.

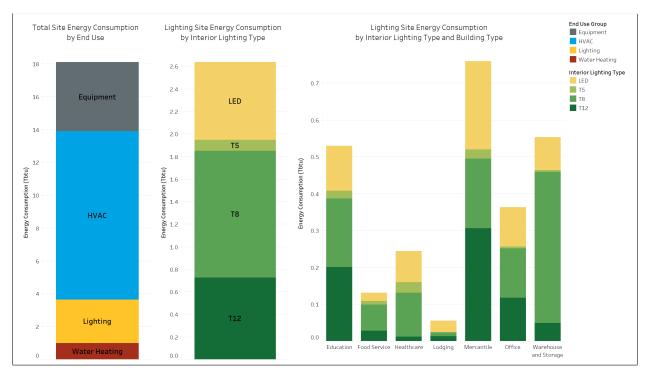


Figure 9. Interior and Exterior Lighting by Interior Lighting Type: Site Energy Consumption (TBtu) (See Table 13 in Appendix C for data in tabular format)

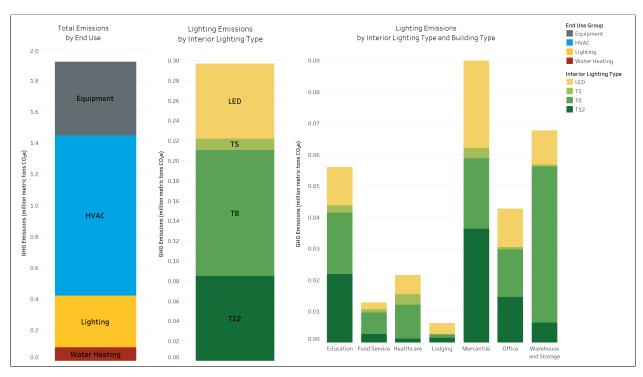


Figure 10. Interior and Exterior Lighting by Interior Lighting Type: Emissions (million metric tons CO₂e) (See Table 14 in Appendix C for data in tabular format)

4.4 Water Systems

Service water heating (SWH) includes all water heating usage other than space heating and process requirements, i.e., primary heating equipment used to create hot water for non-space-conditioning. This includes general water heating for uses such as sink faucets and showers, but also building-type-specific uses like commercial dish washing and laundry.

For your location, most of the site energy from Water Heating Systems in the building stock is attributed to Natural Gas, particularly in Education, Food Service, Lodging, and Mercantile buildings. Most of the emissions from energy use from Water Heating Systems in the building stock are attributed to Natural Gas, particularly in Education, Food Service, Lodging, and Mercantile buildings.

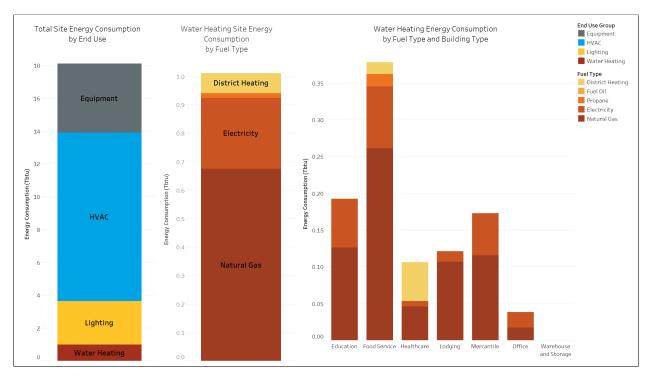


Figure 11. Water Heating: Site Energy Consumption (TBtu) (See Table 15 in Appendix C for data in tabular format)

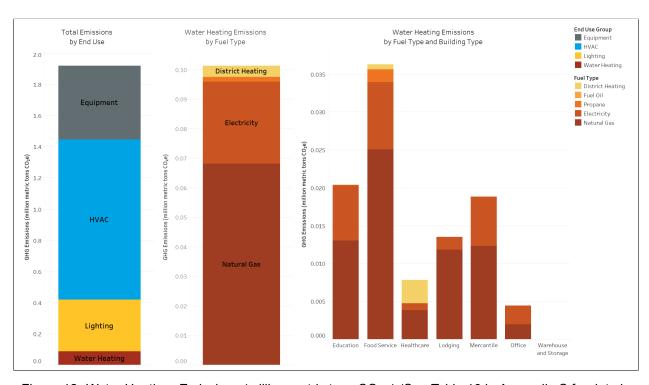


Figure 12. Water Heating: Emissions (million metric tons CO₂e) (See Table 16 in Appendix C for data in tabular format)

5 Results by Building Type for Your Top Four Segments

The following subsections provide insights for your top four segments. Within each segment is a summary of the:

- Number of Buildings by Building Type;
- Floor Area by Building Type;
- Site Energy by Building Type; and
- Emissions by Building Type.

The existing building types within each segment can help you determine where to apply the appropriate retrofit solution(s), as shown in Table 4, to provide the largest impact for your building stock.

5.1 Hydronically Heated Multizone Systems

Buildings with Hydronically Heated Multizone Systems consume 33% of your building stock's site energy and generate 29% of the emissions associated with energy consumption. Within the segment, Education, Healthcare and Office buildings consume 90% of your building stock's site energy and Education, Healthcare and Office buildings generate 89% of the emissions associated with energy consumption.

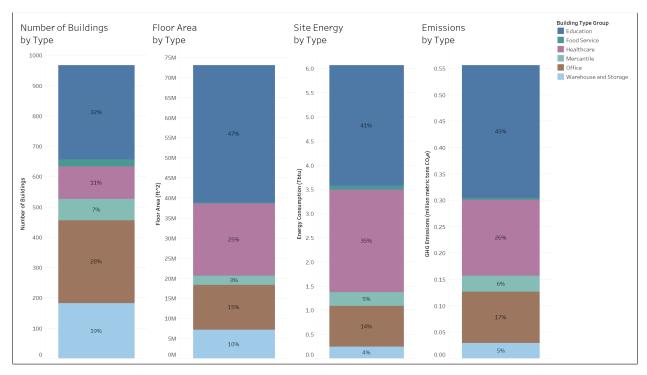


Figure 13. Hydronically Heated Multizone Systems (See Table 17 in Appendix C for data in tabular format)

5.2 Rooftop Units, non-Food Service

Buildings with Rooftop Units, non-Food Service consume 24% of your building stock's site energy and generate 27% of the emissions associated with energy consumption. Within the segment, Education, Mercantile, Office and Warehouse and Storage buildings consume 95% of your building stock's site energy and Education, Mercantile, Office and Warehouse and Storage buildings generate 95% of the emissions associated with energy consumption.

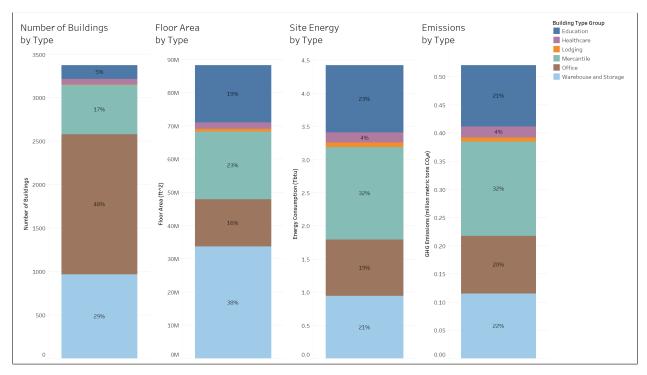


Figure 14. Rooftop Units, non-Food Service (See Table 18 in Appendix C for data in tabular format)

5.3 Rooftop Units, Food Service

Buildings with Rooftop Units, Food Service consume 12% of your building stock's site energy and generate 11% of the emissions associated with energy consumption. Within the segment, Food Service buildings consume 100% of your building stock's site energy and Food Service buildings generate 100% of the emissions associated with energy consumption.

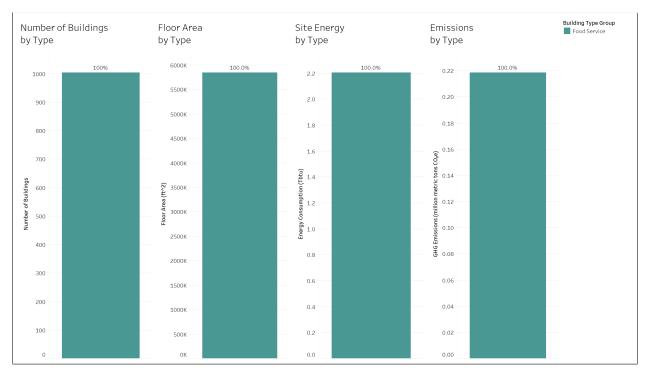


Figure 15. Rooftop Units, Food Service (See Table 19 in Appendix C for data in tabular format)

5.4 Electric Resistance Multizone Systems

Buildings with Electric Resistance Multizone Systems consume 7% of your building stock's site energy and generate 8% of the emissions associated with energy consumption. Within the segment, Healthcare, Mercantile, Office and Warehouse and Storage buildings consume 99% of your building stock's site energy and Healthcare, Mercantile, Office and Warehouse and Storage buildings generate 99% of the emissions associated with energy consumption.

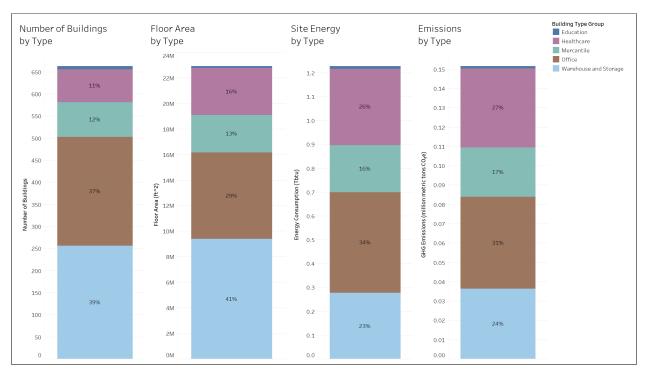


Figure 16. Electric Resistance Multizone Systems (See Table 20 in Appendix C for data in tabular format)

6 Conclusion

In conclusion, 73% of your building stock's site energy consumption is Electricity, with 38% of the Electricity consumption accounted to HVAC. Most of the site energy consumed by HVAC is attributed to buildings with Multizone Systems, particularly in Education and Healthcare buildings. Your building stock's segment with the most site energy consumed is Hydronically Heated Multizone Systems. A potentially effective efficiency solution you can implement for your building stock is replacing Hydronically Heated Multizone Systems with Rooftop Heat Pump Chillers + Potentially Needed Fossil Supplement. This solution should be considered primarily for Education, Healthcare and Office buildings.

In addition, 86% of your building stock's emissions are attributable to emissions from Electricity use, with 45% of the Electricity consumption accounted to HVAC. Most of the emissions from energy use from HVAC are attributed to buildings with Multizone Systems, particularly in Education, Healthcare, and Office buildings. Your building stock's segment with the most emissions from energy use is Hydronically Heated Multizone Systems. A potentially effective retrofit solution you can implement for your building stock is replacing Hydronically Heated Multizone Systems with Rooftop Heat Pump Chillers + Potentially Needed Fossil Supplement. This solution should be considered primarily for Education, Healthcare and Office buildings.

Potentially effective efficiency and retrofit solutions for Equipment are listed below. Please refer to the *Advanced Energy Design Guides* 2022 for additional Equipment retrofit strategies.

- Replacing equipment with energy efficient models (ENERGY STAR[®]), especially equipment that has reached end-of-life.
- Replacing gas-powered equipment, such as commercial cooking and laundry equipment, with electric models.
- Installing control technologies, such as smart outlets or advanced power strips, to automatically turn off non-critical equipment when the building is unoccupied.
 Educate occupants to ensure they know how to interact with the technologies.
- Enabling low-power or sleep settings on equipment, especially computers and printers.
- Consolidating redundant equipment and removing obsolete equipment that is energized but not being used.

Additional effective efficiency and retrofit solutions to address lighting and water heating systems can be found in Table 4 for each of your building stock's top four segments.

A Counties and County Equivalents Covered in this Report

The following counties (or equivalents thereof) are included in this analysis:

Texas Armstrong, Callahan, Carson, Crosby, Ector, Irion, Jones, Lubbock, Lynn, Martin, Midland, Oldham, Potter, Randall, Sterling, Taylor, Tom Green.

B Background Information

The following figures include examples and definitions for the Fuel Types, End Uses, HVAC System Types and Retrofit Solution Notes referred to throughout this report:

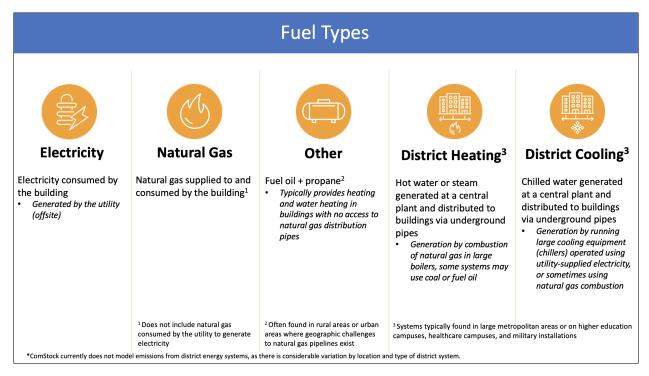


Figure 17. Fuel Types

End Uses Refrigeration Water Heating² Equipment Primary heating/cooling Equipment used for Hardwired commercial Primary heating Everything in the interior and exterior refrigeration1 equipment used to equipment used for building not in another create hot water for space conditioning and lighting of buildings Display cases **End Use Group** Attached parking Walk-ins non-space-conditioning ventilation Computers Walkways Dishwashers Boilers Cooking equipment Entrances Showers Chillers Elevators Facades **Furnaces** Laundry Onsite networking Fans Other process needs equipment * 8 types of Lighting Pumps Data centers Cooling towers Other equipment Heat recovery eauipment Direct expansion air conditionina coils ¹Typically found in grocery stores, ² Electricity used for pumping water *58 types of HVAC Systems convenience stores, and restaurants is captured in HVAC end uses

Figure 18. End Uses

HVAC System Types

Multizone System

Forced air system that simultaneously serves multiple thermal zones in the building, each with different heating/cooling needs

 Typically, large rooftop equipment or an engineered system designed for a building

Residential Central Unit

Small systems that do not provide ventilation like a residential central heating & AC system

 Typically contains a fan, gas heating coil, and DX condenser coil inside the building and a DX evaporator coil outside the building

Rooftop Unit (RTU)

Factory-built unit usually with <10 tons cooling capacity that is often rooftop mounted and called "Gas Packs" or "Small Packaged Units"

 Typically contains a fan, gas heating coil, DX condenser and evaporator coils, and an outdoor air intake

Zone-by-Zone System

Heating/cooling system using small individual equipment for each zone in the building

- Often through-the-wall Packaged Terminal Air Conditioners or Fan Coil units found in hotels; also includes less-common systems like zone-level water-to-air heat pumps
- Central Ventilation: Air is conditioned and supplied to the zone by a separate air-delivery system
- Zone- or No Ventilation: Air is either not provided or is brought in directly to each zone via the small individual equipment in each zone

Figure 19. HVAC System Types

^{*} Other: Any system that does not fall into one of these categories.

Effective Retrofit Solutions by End Use		Notes				
	Packaged Heat Pumps	Many existing buildings in this climate already use this technology, but higher efficiency options will improve heating and cooling savings.				
HVAC	Rooftop Ventilator + Split System	Less common but gaining adoption in US engineering & HVAC installation market and widely demonstrated.				
	Heat Pump Chillers + Potentially Needed Fossil Supplement	Engineered systems currently designed and operating with hot water temperatures high than HPWHs can today. Will require detailed engineering and convincing engineers the heat pump chillers plus innovative design is a reliable design.				
Lighting	LED Lighting	Widely available for most applications.				
	Higher-capacity HPWHs with Recirculation	Engineered system combining one or more heat pump water heaters plus potentially electric resistance elements to reach temperatures above what HPWHs can reach.				
Water Heating	Residential-style HPWH	Service water heating mostly for hand washing.				
	Dishwashing and Laundry Equipment Efficiency	Significant potential in switching to dishwashing and laundry equipment that uses less hot water, making HPWHs more feasible.				

Figure 20. Retrofit Solution Notes

C Tables of Figure Values

The following tables summarize the figures shown throughout the report.

0.1 Results Summary

Table 5. Site Energy by Fuel Type and End Use (Figure 3)

Fuel Type - End Use	Site Energy (TBtu)
District Energy - HVAC	0.839
District Energy - Water Heating	0.0689
Electricity - Equipment	3.29
Electricity - HVAC	6.89
Electricity - Lighting	2.64
Electricity - Water Heating	0.41
Natural Gas - Equipment	0.938
Natural Gas - HVAC	2.49
Natural Gas - Water Heating	0.515
Other Fuel - HVAC	0.0163
Other Fuel - Water Heating	0.0173

Table 6. Emissions by Fuel Type and End Use (Figure 3)

Fuel Type - End Use	Emissions (million metric tons CO ₂ e)
Electricity - Equipment	0.412
Electricity - HVAC	0.859
Electricity - Lighting	0.334
Electricity - Water Heating	0.0513
Natural Gas - Equipment	0.0627
Natural Gas - HVAC	0.167
Natural Gas - Water Heating	0.0344
Other Fuel - HVAC	0.00136
Other Fuel - Water Heating	0.0014

Table 7. Site Energy by Segment (Figure 4)

Segment	Site Energy (TBtu)
Hydronically Heated Multizone Systems	6.07
Rooftop Units, non-Food Service	4.43
Rooftop Units, Food Service	2.21
Electric Resistance Multizone Systems	1.23
Zone-by-Zone Units, non-Lodging	1.16
Residential Central Units	1.08
Packaged Multizone Systems	0.832
Rooftop Units, Strip Malls with Some Food-Service	0.718
Zone-by-Zone Units, Lodging	0.519

Table 8. Emissions by Segment (Figure 4)

Segment	Emissions (million metric tons CO ₂ e)
Hydronically Heated Multizone Systems	0.556
Rooftop Units, non-Food Service	0.52
Rooftop Units, Food Service	0.219
Electric Resistance Multizone Systems	0.152
Zone-by-Zone Units, non-Lodging	0.128
Residential Central Units	0.127
Packaged Multizone Systems	0.0998
Rooftop Units, Strip Malls with Some Food-Service	0.0761
Zone-by-Zone Units, Lodging	0.0577

0.2 Building Site End Use Results

Table 9. HVAC Site Energy Consumption by HVAC System Type and Building Type (site energy is in TBtu) (Figure 5)

HVAC System Type	Education	Food Service	Healthcare	Lodging	Mercantile	Office	Warehouse and Storage
Multizone Systems	2.1	0.0403	1.51	0	0.481	0.714	0.305
Residential Central Units	0	0.00965	0	0	0.171	0.0906	0.206
Rooftop Units	0.69	0.778	0.0737	0.0193	1.24	0.501	0.379
Zone-by- Zone Units	0.553	0.0011	0.0299	0.156	0.0768	0.108	0.00574

Understanding Commercial Building Energy Use in Amarillo-Lubbock-Abilene-Midland-San Angelo: Building Stock Segmentation for Retrofit Planning

Table 10. HVAC Emissions by HVAC System Type and Building Type (emissions is in million metric tons CO_2e) (Figure 6)

HVAC System Type	Education	Food Service	Healthcare	Lodging	Mercantile	Office	Warehouse and Storage
Multizone Systems	0.216	0.00179	0.107	0	0.0572	0.0806	0.0381
Residential Central Units	0	0.000954	0	0	0.0208	0.0104	0.0241
Rooftop Units	0.0741	0.0776	0.00916	0.00226	0.145	0.06	0.0462
Zone-by- Zone Units	0.0572	0.000119	0.00347	0.0174	0.00984	0.0131	0.000719

Table 11. Equipment Site Energy Consumption by Fuel Type and Building Type (site energy is in TBtu) (Figure 7)

Fuel Type	Education	Food Service	Healthcare	Lodging	Mercantile	Office	Warehouse and Storage
District Heat- ing	0	0	0	0	0	0	0
Electricity	0.399	0.395	0.615	0.134	0.345	0.673	0.733
Natural Gas	0.082	0.557	0.0768	0.095	0.127	0	0
Other Fuel	0	0	0	0	0	0	0

Table 12. Equipment Emissions by Fuel Type and Building Type (emissions is in million metric tons CO₂e) (Figure 8)

Fuel Type	Education	Food Service	Healthcare	Lodging	Mercantile	Office	Warehouse and Storage
Electricity	0.0467	0.0489	0.0755	0.0182	0.0437	0.0835	0.0952
Natural Gas	0.00548	0.0372	0.00513	0.00635	0.00847	0	0
Other Fuel	0	0	0	0	0	0	0

Table 13. Interior and Exterior Lighting Site Energy Consumption by Interior Lighting Type and Building Type (site energy is in TBtu) (Figure 9)

Interior Lighting Type	Education	Food Service	Healthcare	Lodging	Mercantile	Office	Warehouse and Storage
LED	0.121	0.0225	0.0837	0.0302	0.24	0.107	0.0895
T12	0.201	0.028	0.0118	0.0143	0.306	0.118	0.0497
T5	0.0219	0.00934	0.0288	0.0012	0.0244	0.00547	0.005
T8	0.186	0.072	0.12	0.00965	0.19	0.134	0.41

Table 14. Interior and Exterior Lighting Emissions by Interior Lighting Type and Building Type (emissions is in million metric tons CO₂e) (Figure 10)

Interior Lighting Type	Education	Food Service	Healthcare	Lodging	Mercantile	Office	Warehouse and Storage
LED	0.0124	0.00223	0.00612	0.00344	0.028	0.0123	0.0108
T12	0.0219	0.00273	0.0013	0.00161	0.0364	0.0146	0.00635
T5	0.00221	0.000952	0.00339	0.000153	0.00318	0.000594	0.000597
T8	0.0197	0.00696	0.0108	0.00105	0.0224	0.0153	0.0499

Understanding Commercial Building Energy Use in Amarillo-Lubbock-Abilene-Midland-San Angelo: Building Stock Segmentation for Retrofit Planning

Table 15. Water Heating Site Energy Consumption by Fuel Type and Building Type (site energy is in TBtu) (Figure 11)

Fuel Type	Education	Food Service	Healthcare	Lodging	Mercantile	Office	Warehouse and Storage
District Heat- ing	0	0.016	0.0529	0	0	0	0
Electricity	0.0661	0.0839	0.00756	0.0141	0.057	0.021	0
Fuel Oil	0.000603	0	0	0	0	0	0
Natural Gas	0.126	0.262	0.0462	0.107	0.116	0.0175	0
Propane	0	0.0167	0	0	0	0	0

Table 16. Water Heating Emissions by Fuel Type and Building Type (emissions is in million metric tons CO_2e) (Figure 12)

Fuel Type	Education	Food Service	Healthcare	Lodging	Mercantile	Office	Warehouse and Storage
District Heat- ing	0	0.000675	0.00305	0	0	0	0
Electricity	0.00728	0.00891	0.000946	0.0017	0.00648	0.00247	0
Fuel Oil	6.15e-05	0	0	0	0	0	0
Natural Gas	0.0131	0.025	0.00384	0.0118	0.0123	0.00202	0
Propane	0	0.00167	0	0	0	0	0

0.3 Results by Building Type for Your Top Four Segments

Table 17. Hydronically Heated Multizone Systems (Figure 13)

Building Type Group	Percentage of Number of Buildings	Percentage of Floor Area	Percentage of Site Energy	Percentage of Emissions
Education	0.321	0.468	0.41	0.452
Food Service	0.0238	0.00295	0.0138	0.00666
Healthcare	0.111	0.246	0.35	0.259
Mercantile	0.0732	0.0318	0.0468	0.0554
Office	0.282	0.153	0.139	0.175
Warehouse and Storage	0.189	0.0979	0.0407	0.0524

Table 18. Rooftop Units, non-Food Service (Figure 14)

Building Type Group	Percentage of Number of Buildings	Percentage of Floor Area	Percentage of Site Energy	Percentage of Emissions
Education	0.0463	0.195	0.229	0.209
Healthcare	0.0193	0.0225	0.0352	0.0374
Lodging	0.00208	0.00893	0.0148	0.0147
Mercantile	0.168	0.231	0.315	0.322
Office	0.477	0.16	0.193	0.196
Warehouse and Storage	0.287	0.382	0.213	0.221

Table 19. Rooftop Units, Food Service (Figure 15)

Building Type Group	Percentage of Number of Buildings	Percentage of Floor Area	Percentage of Site Energy	Percentage of Emissions
Food Service	1	1	1	1

Table 20. Electric Resistance Multizone Systems (Figure 16)

Building Type Group	Percentage of Number of Buildings	Percentage of Floor Area	Percentage of Site Energy	Percentage of Emissions
Education	0.0116	0.00587	0.0096	0.00841
Healthcare	0.112	0.162	0.26	0.269
Mercantile	0.118	0.128	0.161	0.169
Office	0.372	0.295	0.344	0.313
Warehouse and Storage	0.387	0.41	0.226	0.24

References

"ComStock End Use Savings Shape 2023 Release 2 Baseline Dataset - 2018 Weather". 2023. National Renewable Energy Laboratory. https://data.openei.org/s3_viewer? bucket=oedi-data-lake&prefix=nrel-pds-building-stock%2Fend-use-load-profiles-for-us-building-stock%2F2023%2Fcomstock_amy2018_release_2%2F.

RESNET/ANSI/ICC Standard 301. Standard for the Calculation and Labeling of the Energy Performance of Dwelling and Sleeping Units using an Energy Rating Index. 2018.

Advanced Energy Design Guides. 2022. ASHRAE. https://www.ashrae.org/technical-resources/aedgs.

CBECS (EIA). 2018. 2018 Commercial Buildings Energy Consumption Survey. Technical report. U.S. Energy Information Administration 1000 Independence Ave., SW Washington, DC 20585: U.S. Energy Information Administration. https://www.eia.gov/consumption/commercial/data/2018/.

Building Stock Characteristic and Segmentation Analysis. *Building Stock Characteristic and Segmentation Analysis*. 2023. National Renewable Energy Laboratory. https://oedidata-lake.s3.amazonaws.com/nrel-pds-building-stock/end-use-load-profiles-for-us-building-stock/2023/comstock_amy2018_release_1/Basic%20Building%20Stock%20Characteristic%20Analysis%20Template%201.0.xlsx.

Introduction to ComStock (Parker, Andrew, Horsey, Henry, Dahlhausen, Matthew, Praprost, Marlena, CaraDonna, Christopher, LeBar, Amy, Klun, Lauren, and Adams, Lauren). 2023. *Introduction to ComStock*. NREL/NREL/TP-5500-86634. Golden, CO: National Renewable Energy Laboratory. https://www.nrel.gov/docs/fy23osti/86634.pdf.

eGRID. "EPA's Emissions and Generation Resource Integrated Database." 2021. U.S. Environmental Protection Agency. https://www.epa.gov/egrid.

EIA. 2022. *Table C5: Consumption and gross energy intensity by census region for sum of major fuels*. Technical report. U.S. Energy Information Administration 1000 Independence Ave., SW Washington, DC 20585: U.S. Energy Information Administration. https://www.eia.gov/consumption/commercial/data/2018/index.php?view=consumption.

Gagnon, Pieter, Cowiestoll, Brady, and Schwarz, Marty. 2023. "Cambium 2022 Scenario Descriptions and Documentation," https://doi.org/10.2172/1915250. https://www.osti.gov/biblio/1915250.

Horsey, Henry R., Rozenfeld, Hernan, and Bergmann, Harry. 2023. *Stock Segmentation Cluster Development: Technical Reference Document*. NREL/NREL/TP-5500-84648. Golden, CO: National Renewable Energy Laboratory. https://www.nrel.gov/docs/fy23osti/84648.pdf.

Understanding Commercial Building Energy Use in Amarillo-Lubbock-Abilene-Midland-San Angelo: Building Stock Segmentation for Retrofit Planning

Parker, Andrew, Horsey, Henry, Dahlhausen, Matthew, Praprost, Marlena, CaraDonna, Christopher, LeBar, Amy, and Klun, Lauren. 2023. *ComStock Reference Documentation: Version 1.* NREL/NREL/TP-5500-83819. Golden, CO: National Renewable Energy Laboratory. https://www.nrel.gov/docs/fy23osti/83819.pdf.

RECS (EIA). 2020. *Residential Buildings Energy Consumption Survey 2020.* Technical report. U.S. Energy Information Administration 1000 Independence Ave., SW Washington, DC 20585: U.S. Energy Information Administration. https://www.eia.gov/consumption/residential/data/2020/.

