

Annual Technology Baseline (ATB) and Cost Outlook for Offshore Wind in the Philippines

Prateek Joshi

December 2024

National Renewable Energy Laboratory (NREL)

Introduction to the Annual Technology Baseline (ATB)

Cost Outlook for Offshore Wind Globally

Cost Assumptions for Offshore Wind in the Philippines

Q&A and Discussion

Introduction to the Annual Technology Baseline (ATB)

Annual Technology Baseline (ATB): https://atb.nrel.gov/ **Electricity** and Transportation Default Technology Detail

Provides consistent, freely available, technologyspecific cost and performance parameters across a range of R&D advancement scenarios, resource characteristics, and sites for electricity-generating technologies (both at present and with projections through 2050, updated annually).

Why the ATB?

- Ever-changing technologies result in conflicting reports of technology progress based on inconsistent assumptions.
- A single dataset is needed to credibly and transparently assess the evolving state of energy technologies

Figure. LCOE (\$/MWh) Values for Different **Technologies in 2022** Click button to return to Summary

ATR data for technologie on the website. https://atb.nrel.gov/

Nuclear technology for ATB starts in 2030. Select Year >= 2030 in the Year filter to view in the table

Source: NREL (2024)

Electricity ATB Suite of Products

Spreadsheet

- Provides details on calculations
- Can be viewed as Excel or Tableau workbooks

Web Portal

- Provides interactive charts and user guidance (including presentation slides)
- Details methodology and provides comparisons to previous versions and other studies

Raw Data

- Data published in Open Energy
 Data Initiative
- Data can be accessed programmatically through Amazon Web Service (AWS) S3 (Simple Storage Service)
- Data also available as a Jupyter Notebook and through a GitHub ATB-calc repository

ATB Technologies

Renewable Energy Technologies

Wind

Land-based

Fixed-bottom Offshore

- Floating Offshore
- Distributed

Solar

- Utility photovoltaics (PV)
- Commercial and industrial PV
- Residential PV
- Utility PV-plus-battery
- Concentrating solar power (CSP)

Hydropower

- Nonpowered dams (NPD)
- New stream-reach development (NSD)
- Pumped storage hydropower
- NEW: Pumped storage hydropower using existing reservoirs

Geothermal (Flash and Binary)

- Hydrothermal
- Near-field enhanced geothermal systems (EGS)
- Deep EGS

Storage

- Utility-scale
- Commercial-scale
- Residential

Fossil Energy Technologies

Natural Gas

- Natural gas combined cycle (NGCC)
- NGCC-carbon capture and storage (95%, 97% CCS)
- NEW: NGCC with one steam turbine and one heat recovery generator
- Combustion turbine (CT)
- Natural gas fuel cell (no CCS, 98% CCS)
- Retrofits (90%, 95% CCS)

Coal

New in 2024

- Integrated gasification combined cycle (IGCC)
- Pulverized coal
- Pulverized coal with 95%, 99% CCS
- IGCC with 99% CCS
- Retrofits (90%, 95% CCS)

Nuclear

- NEW: Large (1,000 kilowatt [kW])
- NEW: Small modular reactor (300 kW)

Other Technologies

(Energy Information Administration, Annual Energy Outlook [AEO] 2023)

Biopower

· Dedicated (woody biomass)

ATB Cost and Performance Metrics

Figure. High-Level Schematic of ATB Methodology and Outputs

Cost and performance data are provided for each:

- Year
- Resource Class
- Technology
- Technology Cost Scenario

Source: Mirletz et al. (2024)

Base Year (2022): Informed by market reports, market data, and bottom-up modeling

Projections: Generally rely on bottom-up modeling and published studies, qualitatively harmonized to three scenarios of future technology innovation:

Conservative	Moderate	Advanced
Technology Innovation	Technology Innovation	Technology Innovation
 Today's technology with little innovation Continued industrial learning Decreased public and private research and development (R&D) 	 Widespread adoption of today's cutting-edge technology Expected level of innovation Current levels of public and private R&D 	 Market success of currently unproven innovation New technology architectures Increased public and private R&D

Figure. Technology Innovation Scenarios in the ATB

Cost Outlook for Offshore Wind Globally

Eivad Battam Turbinas

i ized-bottoiii Turbines							
Wind Resource Class	Min. Site Mean Wind Speed (m/s)	Max. Site Mean Wind Speed (m/s)	Average Site Mean Wind Speed (m/s)				
1	8.77	10.43	9.74				
2	8.74	10.42	9.33				
3	8.79	10.45	9.47				
4	8.79	10.78	9.59				
5	8.03	10.87	9.51				
6	6.73	10.77	7.92				
7	3.35	10.50	6.78				

Figure. Offshore Wind Resource Classes for Fixed-Bottom Turbines

Floating Turbines

Wind Resource Class	Min. Site Mean Wind Speed (m/s)	Max. Site Mean Wind Speed (m/s)	Average Site Mean Wind Speed (m/s)
8	8.84	10.16	9.41
9	8.69	10.87	9.64
10	8.51	10.90	9.93
11	8.59	10.96	9.91
12	7.92	11.29	9.85
13	6.67	12.21	8.15
14	2.28	11.05	6.97

Figure. Offshore Wind Resource Classes for Floating Turbines

website: https://atb.nrel.gov/

Capital Cost Components

Fixed-Bottom and Floating Turbine Assumptions:

- Hub height: 137m
- Rotor diameter: 216m
- Specific power: 327 W/m²
- Turbine rating: 12 MW

Figure. Capital Cost Components for Offshore Wind in the ATB

Balance of System Category	Balance of System			
Electrical Infrastructure (electronic, onsite electrical	Internal and control connections			
infrastructure, electrical)	Onsite electrical equipment			
2002233 9000 C28 C2020 C238	Power electronics			
	Switchgear			
Generation Equipment & Infrastructure (civil works,	Plant construction			
generation equipment, other equipment, support struc	Power plant equipment			
	Wind turbine supply			
Grid Connection Costs	Distance-based spur line cost			
	Transmission substation upgrades			
	Network upgrades			
	Cable landfall connection			
	Offshore spur line connecting system to	transmission network		
	Turbine interconnection			
Installation & Indirect	Distributable labor and materials			
	Engineering			
	Start up and commissioning			
	Project management			
Owner's Costs	Development costs			
	Environmental studies and permitting			
	Insurance costs			
	Legal fees			
	Preliminary feasibility and engineering studies			
	Property taxes during construction			
Site	Access roads			
	Buildings for operations and maintenance			
	Fencing			
	Land acquisition			
	Site preparation			
	Transformers			
	Underground utilities			
	Port and staging area support for deliver	ry, storage, and handling		
All Technologies		STAND FL		
OffshoroWind	Inclusions in CAPEX	SINKEL		
included for all te	ecific items are shown in orange, and items echnologies projected in the ATB are shown in	ATB data for technologies on the		

blue.

Capital Cost Projections

Fixed-Bottom: **Resource Class 3** Parameter

Financials

🔵 R&D

30 years

ATB data for technologies on the

website: https://atb.nrel.gov/

All

)Market

CAPEX

Floating: Resource Class 12

Values in 2020 USD.

Select the parameter (LCOE, CAPEX, Fixed O&M, Capacity Factor, and FCR [fixed charge rate]), OCC, CFC, GCC, scenario, financial case, cost recovery period, and technological detail. The year represents the Advanced 🛉 commercial online date. The default technology detail best aligns with recent or anticipated near-term installations.

Operations and Maintenance (O&M) Cost Components

Fixed-Bottom and Floating Turbine Assumptions:

- Hub height: 137m
- Rotor diameter: 216m
- Specific power: 327 W/m²
- Turbine rating: 12 MW

Figure. O&M Cost Components for Offshore Wind in the ATB
--

Fixed Costs	Administrative fees	
	Administrative labor	
	Insurance	
	Land lease payments	
	Legal fees	
	Operating labor	
	Other	
	Property taxes	
	Site security	
	Taxes	
Fixed Costs Component	Project management	
	Condition monitoring	
	Weather forecasting	
Large Component	Blades	
	Gearboxes	
	Generators	
Maintenance	General maintenance	
	Scheduled maintenance over technical life	
	Unscheduled maintenance over technical life	
Maintenance Component	Transformers	

Inclusions in O&M

MNREL

Technology-specific items are shown in orange, and items included for all technologies projected in the ATB are shown in blue.

ATB data for technologies on the website: https://atb.nrel.gov/

Operations and Maintenance (O&M) **Cost Projections**

Fixed-Bottom: **Resource Class 3**

Floating: Resource Class 12

Values in 2020 USD.

	Figu	re. O&M Cos	t Projec	tions f	for Offs	hore Win	d in the ATB			
Parameter	Scenario					0	ffshore Wi	nd		
Fixed O&M	All				Fixed	-Bottom		Floating		
					M	ature		Nas	scent	
Financials					F	R&D		R	&D	
◯ Market					No	Credits		No C	redits	
R&D										
			00		-	*******				
			80			-		and the second	-	
Cost Recovery P	Period									*****
30 years			60							

		Fixed O&M								
All	turity	(\$/kW-yr)	40							
			20							
Technology Det	ail									
Multiple values	5		0							
				2020	2030	2040	2050 2020	2030	2040	2050
hotebou ctch	1. 07/19/2024 v4 20				2000	_0.0	2000 2020			2000
uata upuateu	1. 07/19/2024 04.20		-	Paramet	er value p	projections b	y scenario, finan	cial case, co	st recovery	period,
ΩN	IREL	Conservative Select the parameter (LCOE, CAPEX, Fixed O&M, Capacity Factor, and FCR [fixed charge rate]), OCC, CFC,								

ATB data for technologies on the website: https://atb.nrel.gov/

Advanced 🛨

Select the parameter (LCOE, CAPEX, Fixed O&M, Capacity Factor, and FCR [fixed charge rate]), OCC, CFC, GCC, scenario, financial case, cost recovery period, and technological detail. The year represents the commercial online date. The default technology detail best aligns with recent or anticipated near-term installations.

Cost Assumptions for Offshore Wind in the Philippines

Philippines Offshore Wind Analysis

Figure. Methodology for Offshore Wind Analysis in the Philippines

Offshore Wind Zones and Resource Data

Advanced Energy Partnership for Asia

Figure. Potential Offshore Wind Development Zones in the Philippines

Source: World Bank (2024)

Figure. Southeast Asia Wind Resource Data

OTO TAK

Source: NREL (2023)

Table. Offshore Wind Technology F	Performance Assumptions
-----------------------------------	-------------------------

Technology Type	Turbine Rating (MW)	Turbine Rotor Diameter (m)	Turbine Hub Height (m)	Losses (%)	Water Depth	Distance to Shore
Fixed Foundation	20	252	168	15	≤ 50m	< 200km
Floating Foundation	20	252	168	15	> 50m, < 1000m	< 200km

The turbine rating (MW), water depth, and distance to shore values are based on World Bank assumptions. The turbine diameter (m) and turbine hub height (m) values are based on NREL assumptions using standard reV configurations for offshore wind. The losses (%) are based on assumptions from Beiter et al. (2020).

Table. Offshore Wind Cost Assumptions

Technology Type	Capital Cost (USD/MW)	Fixed O&M Cost (USD/MW-year)	Grid Connection Cost: Offshore Cables (USD/km- MW)	Grid Connection Cost: Onshore Cables (USD/km- MW)
Fixed Foundation	\$2,463,870	\$64,430	\$1,619.05	\$1,580.50
Floating Foundation	\$3,871,980	\$76,657	\$1,619.05	\$1,580.50

The capital cost (USD/MW) includes the following: project development, turbine, foundation, array cables, installation of generating assets, offshore substation, and installation of transmission assets. The fixed operation and maintenance (O&M) cost includes the following: operation, planned maintenance, and unplanned service.

Preliminary Capacity Factor Results

Figure. Average Offshore Wind Capacity Factors (%) for Each Offshore Wind Zone (2009-2021)

Preliminary LCOE Results

Table. Details of Offshore Wind Zon	es
-------------------------------------	----

Offshore Wind Zone	Name	Turbine Type	Area (km²)	Capacity Density (MW/km ²)	Source
Α	Northwest Luzon (NL)	Floating	1,571	2.25	World Bank
В	Manila Area (MA)	Fixed & Floating	2,281	0.65	World Bank
С	Northern Mindoro (NM)	Floating	3,606	1.80	World Bank
D	Southern Mindoro (SM)	Floating	11,669	2.40	World Bank
E	Guimaras Strait (GS)	Fixed	689	0.75	World Bank
F	Negros/Panay West (NPW)	Floating	1,534	1.65	World Bank
G	Tayabas Bay (TB)	Fixed and Floating	1,335	1.58	RMI

Source: World Bank (2024), Buescher et al. (2024)

Q&A and **Discussion**

Thank You!

prateek.joshi@nrel.gov

NREL/PR-7A40-92111

Advanced Energy Partnership for Asia

This work was authored, in part, by the National Renewable Energy Laboratory (NREL), operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the United States Agency for International Development (USAID) under Contract No. IAG-19-2115. The views expressed in this report do not necessarily represent the views of the DOE or the U.S. Government, or any agency thereof, including USAID. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Beiter, Philipp, Walt Musial, Patrick Duffy, Aubryn Cooperman, Matt Shields, Donna Heimiller, and Mike Optis. "The Cost of Floating Offshore Wind Energy in California Between 2019 and 2032." Technical Report. Golden, CO: National Renewable Energy Laboratory (NREL), November 2020. https://www.nrel.gov/docs/fy21osti/77384.pdf.

Buescher, Nathaniel, Justin Locke, and Paula Valencia. "Philippine Market Movers: An Analysis of Three High Potential Areas to Accelerate the Offshore Wind Market in the Philippines." RMI, April 2024. <u>https://rmi.org/insight/analysis-to-accelerate-offshore-wind-market-in-the-philippines/</u>.

Mirletz, Brian, Laura Vimmerstedt, Greg Avery, Ashok Sekar, Dana Stright, Dayo Akindipe, Stuart Cohen, Wesley Cole, Patrick Duffy, Annika Eberle, et al. "Annual Technology Baseline: The 2024 Electricity Update." Presentation. Golden, CO: National Renewable Energy Laboratory (NREL), July 2024. https://www.nrel.gov/docs/fy24osti/89960.pdf.

NREL (National Renewable Energy Laboratory). "2024 Annual Technology Baseline." Golden, CO: National Renewable Energy Laboratory. 2024. https://atb.nrel.gov/.

National Renewable Energy Laboratory (NREL). "High-Resolution Southeast Asia Wind Resource Data Set." National Renewable Energy Laboratory (NREL) and United States Agency for International Development, March 2023. <u>https://www.nrel.gov/docs/fy23osti/85089.pdf</u>.

"Offshore Wind Roadmap for the Philippines." Washington, DC: World Bank, April 2022. https://documents1.worldbank.org/curated/en/099225004192234223/pdf/P1750040b777da0c30935a0e2aa346f4e26.pdf.

