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A B S T R A C T

The escalating energy demand and the adverse environmental impacts of fossil-fuel use necessitate a shift
towards cleaner and renewable alternatives. Concentrated Solar Power (CSP) technology emerges as a
promising solution, offering a carbon-free alternative for power generation. The efficiency and profitability
of CSP depend on the Direct Normal Irradiance (DNI) component of solar radiation; hence, accurate DNI
forecasting can help optimize CSP plants’ operations and performance. The unpredictable nature of weather
phenomena, particularly cloud cover, introduces uncertainty into DNI projections. Existing DNI forecasting
models use meteorological factors, which are both challenging to estimate numerically over short prediction
windows and expensive to model through data at a sufficiently high spatial and temporal resolution. This
research addresses the challenge by presenting a novel approach that formulates DNI prediction as a multi-class
classification problem, departing from conventional regression-based methods. The primary objective of this
classification framework is to identify optimal periods aligning with specific operational thresholds for CSP
plants, contributing to enhanced dispatch optimization strategies. We model the DNI classification problem
using four advanced deep neural networks – rectified linear unit (ReLU) networks, 1D residual networks
(ResNets), bidirectional long short-term memory (BiLSTM) networks, and transformers – achieving accuracies
up to 93.5% without requiring meteorological parameters.
1. Introduction

Global demand for energy has been increasing rapidly, and as a
result, the rate of fossil fuel depletion is increasing [1]. Moreover,
dependence on fossil fuels has caused significant harm to the environ-
ment [2], with the global temperature now increasing at an alarming
rate of 0.2 ◦C per decade [3]. These factors, coupled with reduced
costs have led the energy market to embrace renewable and cleaner
energy alternatives. Among the various choices available, concentrated
solar power (CSP) technology is seeing rapid adoption [4] due to its
dependable, secure, efficient, and environmentally-friendly approach
to power generation [5]. Compared to other conventional renewable
technologies, such as photovoltaic and wind energy, CSP allows for
hybridization as well as storage of solar energy as heat [6]. The
integration of thermal storage makes CSP dispatchable, and rectifies
production fluctuations resulting from the inherently variable nature of
solar radiation [7], thus helping to stabilize and control power output
from the plant [5].

Solar radiation, known as global horizontal irradiance, is comprised
of two main components: direct normal irradiance (DNI) and diffused
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irradiance. DNI represents the solar irradiance received directly from
the sun on a surface normal to its path. CSP plants utilize DNI to
generate electricity [8], as diffused irradiance cannot be efficiently
concentrated [9]. Consequently, the operations, thermal performance,
and economics of a CSP power plant depend on DNI and are affected by
the resource variation. However, the unpredictable nature of weather
phenomena, particularly cloud cover, makes it challenging to forecast
DNI accurately. This introduces uncertainty into the projected output of
CSP projects, creating issues for the integration, safety, and profitability
of CSP initiatives [9].

Conventional methods and tools used for the design, simulation,
and optimization of CSP power plants utilize historical DNI data in
typical meteorological year (TMY) format to estimate the power output
and system performance [10–13]. Additionally, DNI affects the excess
flux distribution on the receiver, and hence its design and material
safety of the receiver [14]. As a result, accurate forecasting of DNI
is crucial to reliably estimate the productivity of CSP plants and for
enhancing performance by coupling with other operational strategies
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such as dispatch optimization [15]. Integration of dispatch optimization
with DNI forecasting has been shown to result in a significant increase
in the annual revenue of a CSP power plant [16].

Previously, the DNI forecasting problem has only been formulated
as a regression task. In this work, for the first time, we formulate
DNI forecasting as a classification problem with target application in
CSP plants. We discretize DNI values into classes corresponding to
ifferent potential operational modes of a CSP plant. For instance, a
inary classifier can allow one to forecast whether there is enough DNI
or a CSP plant to be operated safely or not. For more granularity, a
ernary classifier can be deployed to forecast whether a plant can be
fficiently and profitably operated on partial load, full capacity, or if
t cannot be operated at all. Our multi-class classification framework
ends to DNI forecasting models supporting operational schedules of
rbitrary granularity. Furthermore, these classification models provide
 probability distribution over the different operational modes of a CSP
lant, which is a feature that regression-based models lack. Addition-
lly, our classification-based treatment allows prior knowledge of DNI
utoffs for the different potential operational modes of a CSP plant to
e injected into the forecasting model. This helps against the noise in
he DNI data, which regression-based models are susceptible to. It is
orth noting that this approach of formulating a regression problem as

classification has been effective in other domains as well. For example,
t is particularly popular in neural network models for predicting multi-
odal distributions, such as vehicle orientation [17]. Moreover, studies

over various datasets have demonstrated that classification algorithms
an be superior to regression algorithms both in terms of accuracy and
PU time [18], inspiring machine learning algorithms for regression

that are based on classification, such as the rule-based regression
ethod presented by Weiss and Indurkhya [19]. While the primary
ovelty of our work is introducing the classification approach for DNI
orecasting, our work also distinguishes itself from prior literature by
ot requiring meteorological parameters as input, which are extensively
tudied in existing research [20–22]. Since meteorological data is often

difficult to acquire or expensive to model, we propose a direct mapping
from time to DNI classes. This is effectively enabled by our multi-class
classification approach for DNI forecasting, as regression-based models
tend to be more sensitive to the loss of predictors.

The paper’s outline is as follows: Section 2 reviews the previously
roposed DNI forecasting methods, all of which require accurate es-
imates of cloud cover and other meteorological factors. Section 3

introduces our neural network models for DNI forecasting which do
away with the need for meteorological data. These networks leverage
our multi-class classification formulation of the DNI estimation prob-
lem, built on the fact that, in many applications of DNI forecasting
to CSP plants, it suffices to assert whether DNI falls within specific
bounds, rather than requiring an exact numerical value [15,16]. A
horough examination of our neural networks’ performance on DNI
rediction is provided in Section 4, where we demonstrate that they

significantly outperform classical methods such as kernel machines.
Finally, concluding remarks and future directions are presented in
Section 5.

2. Literature review

The literature in this field discusses various numerical and data-
ased models for forecasting DNI over different time frames. Prior re-
earch has consistently emphasized the significant influence of cloudi-

ness on the amount of solar radiation reaching the Earth’s surface [23],
and as a result, both numerical and data-based models aimed at DNI
forecasting take into account a range of meteorological factors related
o cloudiness to provide well-informed estimations of DNI.

Numerical methods employ numerical weather prediction (NWP)
odels [24–26] to estimate cloud cover position and extent [27]. These
odels can be global, such as the NOAA/NCEP Global Forecast System

(GFS) [28], or a combination of global and local methods, like forecasts
2 
derived from the National Digital Forecast Database (NDFD) [29].
NWP models are typically used for prediction horizons of one or more
days ahead [30], while data-based models demonstrate higher accu-
acy for short-term forecast horizons that typically ranging from 3 to
 h [27,30]. These models derive cloud cover estimates from historical

data obtained through satellite-based remote sensing or ground-based
instrumentation, or a combination of the two [20,31–36].

Satellite-based DNI forecasts currently suffer from low temporal
nd spatial resolution. To address this limitation, models using digital
rocessing of ground-based sky imagery are gaining popularity [37–

42]. However, implementing these ground-based sensors at scale can
be costly. While efforts have been made to develop cost-effective sensor
networks [39,43–47], the collection of high-quality meteorological data
still remains a challenge, especially in the developing world. This is
articularly concerning as many developing countries are located near

the equator and could greatly benefit from concentrated solar power
technology to address their energy challenges.

Data-driven approaches using machine learning and advanced deep
eural networks have also been explored in the literature. These studies
ypically formulate the DNI forecasting problem as a time-series re-
ression task [20–22]. While these approaches have shown that higher

accuracies can be achieved using data-driven methods, they rely on
eteorological parameters as features for the models. As mentioned

arlier, acquiring high-quality meteorological data is a challenge in it-
elf. We formulate DNI forecasting as a classification problem, which to

the best of our knowledge, has never been previously undertaken. This
study aims to develop DNI forecast models that capture the implicit
dependence of DNI on time, thus requiring no meteorological data. This
task represents a substantially greater challenge compared to modeling
the explicit dependence based on meteorological factors. Furthermore,
this work offers an exceptional opportunity to demonstrate the im-
mense potential of modern deep learning methods, such as Residual
Networks [48], Bidirectional LSTMs [49,50], and Transformers [51], in
the field of DNI modeling. Despite the remarkable performance demon-
strated by these methods in complex sequence modeling tasks [52–58]
their application in the domain of DNI forecasting has received limited
attention.

3. Methodology

In this section, we introduce our classification-based formulation
of the problem of DNI forecasting in the absence of meteorological
ata. We present four modern neural classifiers specifically designed
o address this problem, which include a Deep ReLU Multilayer Per-
eptron, a 1-dimensional Residual Neural Network, a Multilayer Bidi-
ectional LSTM, and a Transformer.1 These neural network models

are inherently adaptable. Therefore, if meteorological data is available
or a region, extending these models to incorporate and leverage this
ata, either through pre-training [61] on such data or though knowl-

edge distillation [62] from another network trained on it, could be a
straightforward endeavor.

3.1. Problem formulation

We frame the problem of DNI modeling as a time-series classifica-
ion task, in which the objective is to predict whether the DNI of the
un would fall within pre-defined limits at a given time. Our approach
s motivated by the fact that in most DNI forecasting applications, it
s sufficient to know whether the DNI is within certain bounds rather
han the exact value. For example, in a CSP plant with thermal energy
torage, there is a DNI threshold for which the plant’s collection system
an either start up the receiver to collect heat for recirculation back to

1 We refer the reader to Goodfellow et al. [59] and Zhang et al. [60] for
an introduction to these deep neural network architectures.
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Table 1
Tabular visualization of the dataset  [63]. Each row 𝑖 in the table corresponds to a
pair (𝑡𝑖 , 𝑦𝑖) ∈ , where 𝑡𝑖 = (Year,Month,Day,Hour,Minute)𝑖 ∈ R𝐷

+ is a 𝐷-dimensional
vector, with 𝐷 = 5, defining the time at which the corresponding measurement of direct
ormal irradiance 𝑦𝑖 = DNI𝑖 ∈ R+ was made.

Year Month Day Hour Minute DNI

1 1998 01 01 00 30 0
2 1998 01 01 01 30 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
9 1998 01 01 08 30 46
10 1998 01 01 09 30 0
11 1998 01 01 10 30 355
12 1998 01 01 11 30 248
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
201478 2020 12 31 21 30 0
201479 2020 12 30 22 30 0
201480 2020 12 31 23 30 0

the cold salt tank, and a second threshold at which there is sufficient
DNI to pump salt through the receiver to the hot salt tank for electricity
generation [15], leading to three classes for operation; a fourth class
might be used to determine when to defocus some heliostats in the solar
field to prevent damage to the receiver due to excessive flux [12].

The classification framework is also particularly suitable consider-
ing the complexity of DNI modeling in the absence of meteorological
data, where treating the problem as a regression task would yield less
informative results. Furthermore, a regression treatment would yield
inaccurate models due to the noise in DNI measurements. Hence, we
formulate the DNI modeling task as to approximate the function 𝑔 ∶
R𝐷
+ → {0, 1,… , 𝐶 − 1} defined as:

𝑔(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if 𝛿0 ≤ 𝑓 (𝑡) < 𝛿1,
1 if 𝛿1 ≤ 𝑓 (𝑡) < 𝛿2,
⋮

𝐶 − 1 if 𝛿𝐶−1 ≤ 𝑓 (𝑡) < 𝛿𝐶 ,
where 𝑓 ∶ R𝐷

+ → R+ represents the implicit dependence of DNI on time,
nd the thresholds 0 ≤ 𝛿0 < 𝛿1 < ⋯ < 𝛿𝐶 discretize the range of 𝑓 into 𝐶
lasses. Since 𝑓 is unknown, the aim is to construct the approximation
o 𝑔 from noisy snapshots of 𝑓 in the form of a coarse dataset:

 =
⟨

(𝑡1, 𝑦1),… , (𝑡𝑁 , 𝑦𝑁 ) s.t. 𝑡𝑖 ∈ R𝐷
+ , 𝑦𝑖 ∈ R+

⟩

,

consisting of DNI observations made at 1 hour intervals, such that each
bservation

(

𝑡𝑖, 𝑦𝑖
)

∈  is a sampling of 𝑓 under additive noise 𝜖𝑖,
i.e., 𝑦𝑖 = 𝑓 (𝑡𝑖) + 𝜖𝑖. Note that due to the noise 𝜖𝑖, the true class of a

NI value 𝑦𝑖 cannot be known. Instead, we assign a DNI value 𝑦𝑖 to a
lass (𝑦𝑖) if 𝛿(𝑦𝑖) ≤ 𝑦𝑖 < 𝛿(𝑦𝑖)+1.2

3.2. Data processing

Table 1 provides an excerpt of the dataset  of 201,480 observations
sed in this paper. The data has been obtained from the National
olar Radiation Database (NSRDB) [63] for the location of Tonopah,
V, USA. Tonopah was chosen due to its consistent solar resource
vailability throughout the year and its existing CSP project.

Following the recommended practice in data science [64], we ran-
domly split the dataset  into three subsets: train, val, and test,
where |train| = 141,036 and |val| = |test| = 30,222. The proposed
models are trained using train, and their performance on val is used
as a criterion for saving the models during training epochs. While both
train and val are utilized in training the models, test is kept separate
to provide an unbiased assessment of performance once training has
been completed.

2 An alternative approach might be to assign 𝑦𝑖 to (𝑦𝑖) if 𝛿(𝑦𝑖) ≤ 𝑦𝑖 − 𝜖𝑖 <
𝛿(𝑦𝑖)+1, where 𝜖𝑖∼ (𝜇𝜖 , 𝜎2

𝜖 ), for some 𝜇𝜖 and 𝜎𝜖 . However, this is left for future
research.
3 
3.2.1. Feature selection
We used the Python library Pandas [65,66] to identify redundant

features in the dataset. By eliminating these redundant features, we
effectively reduced the dimensionality of the feature space to 𝑑 = 4 <
𝐷.

To gain deeper insights into the influence of various features on
the generalizability of machine learning models, we employed the
Matplotlib library [67] to plot and analyze the average variation in DNI
over different timescales, as shown in Figs. 1(a) –1(b). The plots reveal
that DNI exhibits regular variations on monthly and daily timescales,
which correspond to the seasonal and diurnal nature of the resource,
respectively. Additionally, the plots show a subtle variation in DNI from
year to year, which encodes larger-scale weather phenomena, such as
global warming/cooling trends and their effect on the variability of the
weather.

3.2.2. Z-score normalization and min–max scaling
As the final preprocessing step, we normalized the feature space to

zero-center the input distribution and make its spread uniform across
all feature dimensions [64]:

𝑡 (𝑗)𝑖 =
𝑡(𝑗)𝑖 − 𝜇(𝑗)

𝜎(𝑗)
, ∀ (𝑡𝑖, 𝑦𝑖) ∈ ,

where 𝑡(𝑗)𝑖 represents the 𝑗-the component of the 𝑖th input feature, and

𝜇(𝑗) = 1
|

|

train
|

|

∑

(𝑡,𝑦)∈train

𝑡(𝑗) , 𝜎(𝑗) =
√

1
|

|

train
|

|

∑

(𝑡,𝑦)∈train

(

𝑡(𝑗) − 𝜇(𝑗)
)2 .

Furthermore, we applied min–max normalization to the outputs to
map them onto the interval [0, 1]:

𝑦̃𝑖 =
𝑦𝑖 − min(𝑡,𝑦)∈train 𝑦

max(𝑡,𝑦)∈train 𝑦 − min(𝑡,𝑦)∈train 𝑦
,

for all (𝑡𝑖, 𝑦𝑖) ∈ .

3.3. Deep learning models

We developed multiple deep neural networks for approximating
the DNI function 𝑔 from train. Each neural network produces a 𝐶-
imensional vector, representing a probability distribution over the 𝐶
NI classes. Hence, for a given neural network 𝛤 , we can construct a

model of 𝑔 as 𝑔̂ = argmax ◦𝛤 .
To train the proposed deep neural networks so that 𝑔̂ approximates

𝑔 accurately, we use a computationally efficient variant of stochastic
radient descent called Adam [68], and we design a novel schedule

that causes the rate of descent of the algorithm, 𝛼, to incur attenuated
exponential decay after 𝑘0 epochs:

𝛼𝑘 =

{

𝛼𝑘−1, if 𝑘 < 𝑘0,
𝛼𝑘−1 (1 − 𝜏∕𝜉(𝑘)) otherwise,

in which 𝜏 is the decay rate, and 𝜉(𝑘) = 𝑒𝜈(𝑘−𝑘0) attenuates the decay
according to some given attenuation factor 𝜈. Fig. 2 shows our novel
learning rate decay schedule (un-marked solid line) attenuates the rate
of decay towards the later epochs. In comparison, previous exponential
decay schedules (marked line and dashed line) nearly zero out the
learning rate towards the later epochs, thus hampering learning. The
optimizer’s objective is to find a parameterization of 𝛤 that minimizes
the in-sample stochastic cross-entropy loss:

(𝛤 ) = − 1
||

∑

(𝑡𝑖 ,𝑦𝑖)∈

𝐶−1
∑

𝑐=0
1
[

𝑐 = (𝑦𝑖)
]

log 𝑝̂(𝑐)𝑖 (𝛤 ) +(𝛤 ).

Here, 𝑝̂𝑖(𝛤 ) = 𝛤 (𝑡𝑖) if 𝛤 is the Multilayer Perceptron proposed in
Section 3.3.1, and

(

̃ 𝐾
)

𝑝̂𝑖(𝛤 ) = 𝛤 ⟨𝑡𝑖−𝑘, 𝑦̃𝑖−𝑘⟩𝑘=1
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Fig. 1. (a) Average DNI variation over the days of a year. From left to right, the top row corresponds to Jan–Apr, the middle row to May–Aug, and the bottom row to Sep–Dec.
(b). The left plot shows the average DNI each passing hour of the day, and the right plot shows the average DNI over the years 1998–2020.
Fig. 2. Learning rate decay schedule.

if 𝛤 is one of the sequence-processing architectures presented in Sec-
tions 3.3.2–3.3.4. Furthermore, the set  ⊂ train represents a batch of
training samples, and the term (𝛤 ), called regularization, incentivizes
lower-order parameterization of 𝛤 to limit overfitting. For the proposed
neural networks, we regularize only the affine parameters.

3.3.1. Deep multilayer perceptron (MLP)
The first neural architecture we propose is a multilayer percep-

tron, as shown in Fig. 3A, where each blue block represents a fully-
connected layer. The properties of the layer include (in order) (1) the
number of neurons (𝑛𝓁), (2) activation type (Ψ), (3) presence of batch-
normalization, and (4) dropout percentage (𝑝𝓁). MLP 𝛤 ∶ R𝑑 → [0, 1]𝐶

of the form:

𝛤
(

𝑡
)

= 𝜎
(

𝐴𝐿Φ
(

…
(

𝐴2Φ
(

𝐴1𝑡 + 𝑏1
)

+ 𝑏2
)

…
)

+ 𝑏𝐿
)

.

Here,

𝜎(𝑗)(𝑢𝐿) = 1
∑𝐶

𝑐=1 exp 𝑢
(𝑐)
𝐿

exp 𝑢(𝑗)𝐿

is the softmax function, 𝐿 ∈ N is the number of layers in the network,
and the parameters 𝐴𝓁 ∈ R𝑛𝓁×𝑛𝓁−1 , 𝑏𝓁 ∈ R𝑛𝓁 , for 𝓁 ∈ {1,… , 𝐿}, define
the size of each layer, where 𝑛0 = 𝑑 and 𝑛𝐿 = 𝐶. We set 𝐿 = 7, and
we define the mapping 𝛷 as the composition of batch normalization,
followed by a ReLU activation 𝛹 , and dropout:

Φ(𝑢𝓁) = 𝜂𝓁 ⊙ 𝛹
(

BN𝛾𝓁 ,𝛽𝓁

(

𝑢𝓁
)

)

,

in which 𝛾𝓁 , 𝛽𝓁 ∈ R𝑛𝓁 are learnable parameters of the batch nor-
malization layer, and R𝑛𝓁 ∋ 𝜂𝓁∼Bern

(

𝑝𝓁
)

is a vector of independent
Bernoulli random variables. Batch normalization (BN) stabilizes the
4 
training of the deep network by re-centering and re-scaling the affine
output 𝑢𝓁 = 𝐴𝓁𝛷 𝑢𝓁−1 + 𝑏𝓁 (where Φ(𝑢0) = 𝑡) of each layer [69]. The
ReLU activation, Ψ(𝑗)(𝑥) = (𝑥(𝑗))+ = max(𝑥(𝑗), 0), adds computationally
efficient nonlinear transformations to the network [70], and dropout
zeros out these activations with some probability 𝑝𝓁 to ‘‘motivate’’
the network to learn distributed activation patterns, thus alleviating
overfitting [71].

3.3.2. 1D-ResNet
We introduce a modified version of the widely adopted ResNet

architecture [48] which we tailor specifically to classify DNI. The base
unit of our ResNet variant is a 1D Residual Block, defined as:

Res (𝑥) = Conv2𝓁
(

Conv1𝓁(𝑥)
)

+ Conv3𝓁(𝑥).

Here, Conv𝓁 represents a 1-dimensional convolutional operation with
a given set of filters, optionally followed by batch normalization and
ReLU. The complete 1D-ResNet architecture, shown in Fig. 3B, com-
prises eight such residual blocks. The yellow blocks are 1D convolution
operations, and their properties include (in order): (1) number of filters,
filter size, and stride length; (2) activation type, (3) presence of batch-
normalization, and (4) dropout percentage. The input to the network
is a sequence of 𝐾 pairs, ⟨(𝑡𝑖−𝑘, 𝑦̃𝑖−𝑘)⟩𝐾𝑘=1, which represent the history
of DNI up to time 𝑡𝑖−1, and the network predicts the class to which the
DNI at time 𝑡𝑖 belongs. By leveraging DNI history and incorporating
efficient architectural features such as skip-connections for effective
training, and weight-sharing for translation invariance, our 1D-ResNet
is able to generally output more accurate predictions than the MLP
model proposed in Section 3.3.1.

3.3.3. Multilayer bidirectional LSTM
Long short-term memory (LSTM) neural networks are a type of

recurrent neural networks (RNNs) designed to capture long-term depen-
dencies in sequences more effectively [50]. Similar to vanilla recurrent
networks, LSTMs employ a recursive unit 𝜁 to maintain a hidden state
ℎ𝑗 ∈ R𝑤 as they sequentially process the elements (𝑡𝑗 , 𝑦̃𝑗 ) of the
sequence ⟨(𝑡𝑖−𝑘, 𝑦̃𝑖−𝑘)⟩𝐾𝑘=1. However, unlike vanilla recurrent networks,
LSTM cells incorporate a sophisticated gating mechanism to control the
updates to their hidden state:

ℎ𝑗 = 𝜁
(

𝑡𝑗 , ℎ𝑗−1
)

= t anh 𝑐𝑗 ⊙ 𝜎 (

𝐴𝑜𝑡𝑡𝑗 + 𝐴𝑜ℎℎ𝑗−1 + 𝑏𝑜
)

,

where 𝑐𝑗 = 𝑔𝑗 ⊙ 𝑖𝑗 + 𝑐𝑗−1 ⊙ 𝑓𝑗 , called the cell state, is defined in terms of
the gates

𝑔 = t anh (𝐴 𝑡 + 𝐴 ℎ + 𝑏
)

𝐶 𝑒𝑙 𝑙 𝐺 𝑎𝑡𝑒
𝑗 𝑔 𝑡 𝑗 𝑔 ℎ 𝑗−1 𝑔
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Fig. 3. (A) Deep Multilayer Perceptron architecture proposed in Section 3.3.1. (B) Architecture of the 1D-ResNet from Section 3.3.2. Note that the final layer of each network is
a fully-connected layer with softmax activation, yielding a probability distribution 𝑝̂𝑖 over the 𝐶 DNI categories.
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Fig. 4. A 2-layer bidirectional LSTM for DNI classification shown in its unrolled form.
Each green circle represents a Bidirectional LSTM unit with recurrent dropout and input
dropout percentages of 5%.

𝑖𝑗 = 𝜎
(

𝐴𝑖𝑡𝑡𝑗 + 𝐴𝑖ℎℎ𝑗−1 + 𝑏𝑖
)

𝐼 𝑛𝑝𝑢𝑡 𝐺 𝑎𝑡𝑒
𝑓𝑗 = 𝜎

(

𝐴𝑓 𝑡𝑡𝑗 + 𝐴𝑓 ℎℎ𝑗−1 + 𝑏𝑓
)

𝐹 𝑜𝑟𝑔 𝑒𝑡 𝐺 𝑎𝑡𝑒
Here, 𝐴𝑜𝑡, 𝐴𝑔 𝑡, 𝐴𝑖𝑡, 𝐴𝑓 𝑡 ∈ R𝑤×𝑑 , 𝐴𝑜ℎ, 𝐴𝑔 ℎ, 𝐴𝑖ℎ, 𝐴𝑓 ℎ ∈ R𝑤×𝑤 and

𝑏𝑜, 𝑏𝑔 , 𝑏𝑖, 𝑏𝑓 ∈ R𝑤 are trainable parameters of 𝜁 .
For DNI estimation, we propose a recurrent architecture based on

bidirectional LSTMs (BiLSTMs). Unlike traditional LSTMs, BiLSTMs
maintain two hidden states: ⃖⃗ℎ𝑗 ∈ R𝑤, encoding the historical context
at each step 𝑗, and ⃖⃖ℎ𝑗 ∈ R𝑤, encoding future context. Moreover, in
our architecture, we stack two BiLSTM layers, as depicted in Fig. 4,
where the lower layer has a width (𝑤) of 256 neurons and the upper
layer has a width of 128 neurons. The stacking enables the network to
achieve spatial depth, which allows for both low-order and high-order
representations of the forward and backward context to be encoded at
each step 𝑗.

3.3.4. Transformer
Similar to recurrent networks, transformers are neural networks

designed to process sequential data. However, instead of processing
a sequence one element at a time, transformers encode the whole
sequence as a matrix 𝑋 and employ a mechanism called attention [51]
to attend to the entirety of 𝑋 at once.
 i

5 
To forecast DNI, we develop a transformer model that utilizes
an embedding layer to encode the positions 1,… , 𝐾 of the sequence
elements (𝑡𝑖−𝐾 , 𝑦̃𝑖−𝐾 ),… , (𝑡𝑖−1, 𝑦̃𝑖−1) as dense vectors 𝑝1,… , 𝑝𝐾 ∈ R5.
Each positional encoding 𝑝𝑗 is then added to its corresponding sequence
element (𝑡𝑗 , 𝑦̃𝑗 ), and the resulting vectors 𝑥𝑗 ∈ R5 are concatenated to
form the matrix 𝑋 ∈ R𝐾×5:

𝑥𝑗 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣
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⋮
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This new representation of the input sequence, 𝑋, is subsequently
rocessed by two back-to-back transformer blocks. Having two trans-
ormer blocks facilitates the encoding of both low-order and high-order
epresentations of 𝑋. Moreover, to enable the network to attend to
ifferent parts of these representations differently, we equip each trans-
ormer block with multi-headed attention units. The complete model,
epicted in Fig. 5, achieves prediction accuracy comparable to that
f the 2-layer BiLSTM model at a significantly reduced prediction
ime. This makes the transformer architecture particularly suitable for
eal-time or near-real-time use cases of DNI estimation.

. Results

Table 2 presents the performance of the proposed models on various
nstances of the DNI classification problem. These instances have been
onstructed by varying the number of classes 𝐶 from 2 to 10, such that
e allocate class 0 to represent DNI values of 0, while classes 1 to 𝐶− 1
re assigned in a manner that aims for approximately equal distribution
f DNI values among these classes. For example, a three-class scenario
an be used for CSP plants, in which the three classes (DNI bounds)
dentify whether the thermal flux is (i) not sufficient to operate the
lant, (ii) sufficient to recirculate salt to the cold tank after collection,
r (iii) sufficient to collect heat for transfer to the hot salt tank. We
rovide a visual representation of Table 2 in Fig. 6, where a prediction
s considered accurate if the predicted DNI class matches the actual
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Fig. 5. A powerful but minimal transformer model for highly accurate and near real-time DNI estimation. The model incorporates each input’s position into its embedding and
processes it through two adjacent transformer blocks.
Table 2
Quantitative performance of the proposed models. The ‘‘Train‘‘, ‘‘Val’’, and ‘‘Test‘‘ columns give each model’s percentage of correct classifications on
train, val, and test, respectively. The ‘‘Run’’ column identifies the experiments we ran for each model and number of classes.

𝐶
ReLU-MLP 1D-ResNet BiLSTM Transformer

Train Val Test Train Val Test Train Val Test Train Val Test

2 87.82 88.03 87.75 93.77 92.57 92.88 94.29 94.28 93.42 94.33 93.88 93.07
3 85.57 85.93 85.39 92.25 85.26 88.32 92.74 92.04 92.01 93.27 91.60 92.19
4 81.00 81.28 80.89 86.99 79.29 83.46 90.27 87.33 89.19 89.47 87.32 87.92
5 77.63 77.93 77.57 83.34 76.90 79.09 87.78 84.70 86.29 87.27 84.23 85.06
6 74.47 74.63 74.44 80.06 72.18 76.41 86.41 82.55 84.55 85.66 81.65 82.98
7 72.92 72.53 72.43 79.48 71.33 76.10 84.48 79.42 82.60 83.32 77.07 80.56
8 70.59 70.49 70.35 79.71 91.50 74.58 83.98 78.17 81.52 82.10 76.23 79.06
9 69.27 69.39 69.27 75.75 66.17 69.95 83.24 76.83 80.29 81.32 75.61 78.53
10 67.50 67.45 67.72 75.49 65.67 69.99 81.65 75.32 78.91 81.55 74.71 78.17
Fig. 6. From left to right: accuracy of the proposed deep neural network models on train, val and test, respectively, in terms of 𝐶, the number of classes. For comparison,
results for a support vector machine with radial basis function kernel (SVM-RBF) have also been provided.
DNI class. Additionally, for the purpose of comparison with traditional
machine learning techniques, the figure includes the performance of a
Support Vector Machine with Radial Basis Function kernel (SVM-RBF).
The hyperparameters for all the models were selected using an auto-
matic routine called Grid Search [72]. Grid Search involves specifying
a range of possible values for each hyperparameter and then systemati-
cally evaluating the model performance for every possible combination
of these values. Grid Search is widely used in machine learning and
is supported by many machine learning libraries, including Keras and
Scipy, used in this study.

The information conveyed by Fig. 6 clearly illustrates that our
proposed deep learning models consistently outperform SVM-RBF. Our
BiLSTM model demonstrates the highest accuracy among all deep
learning models, with the transformer model exhibiting slightly lower
accuracy. However, the additional insights in the results in Fig. 7
and Table 3 show that the transformer model is significantly more
efficient in computation and memory when compared to the BiLSTM
model. Following the usual practice in machine learning, we measure
computational complexity in terms of the total number of floating point
operations evaluated in one forward pass of a network. In addition,
6 
we also measure the inference time of the models in seconds, which
provides a more practical criterion for evaluating time-efficiency. Re-
garding memory-efficiency, we simply take the number of trainable
parameters composing the model as our criterion, since all the pa-
rameters are stored as floating point values of the same precision. As
evident from 7 and Table 3, the transformer model’s efficiency positions
it as the more appropriate choice for deployment in scenarios with
limited computational resources, such as real-time control applications
running on resource-constrained platforms like microcontrollers. It is
also evident from a comparison of the accuracy and efficiency numbers
that the BiLSTM model, though most accurate, is the least efficient, with
long computation times and a large memory footprint.

Our experiments further shed light on the performance of the ReLU-
based Multilayer Perception presented in Section 3.3.1, which fares the
worst among all the proposed deep learning models. The 1D-ResNet in-
troduced in Section 3.3.2, although superior to the ReLU-MLP in terms
of performance, underperforms relative to the other deep learning mod-
els. We believe that the input’s dimensionality may not be high enough
to effectively leverage the spatial depth of the 1D-ResNet. However, in a
transfer learning scenario where the models are pretrained with access
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Fig. 7. The time and space footprint of the proposed models, as a function of 𝐶, the number of classes. From left to right: the first plot provides the number of floating point
operations (FLOPs) in the models; the second is the number of trainable parameters; and the last two plots give the inference time (inf. Time) of the models. (The legend is in
Fig. 6).
Fig. 8. Comparison of predictions from the 10-class transformer model to the actual DNI classes over a period of 3 consecutive days randomly chosen from the test dataset.
Table 3
Average test accuracy, parameter count, floating-point operations (FLOPS), and infer-
ence time (in milliseconds) for the proposed deep neural networks, computed across
the number of classes (𝐶).

ReLU-
MLP

1D-
ResNet

BiLSTM Trans-
former

Test Accuracy 76.20% 78.98% 85.42% 84.17%
Parameters 995,855 4,872,147 1,196,563 8215
FLOPS 1,989,424 1,346,090 1,083,482 427,114
Inference Time 18.91 76.51 501.44 26.24

to meteorological data, the 1D-ResNet might extract more meaningful
features and potentially outperform the comparatively spatially shallow
BiLSTM.

An important behavior depicted in Fig. 7 is that the complexity of
our models shows minimal change as the problem complexity (i.e., 𝐶)
increases. Fig. 6 shows that the accuracy of the models decreases con-
siderably with increase in 𝐶. A promising avenue for future research is
to develop dynamic models that adapt (under a hand-coded or learned
policy) as 𝐶 grows, enabling more smoother performance scaling for
complex DNI estimation scenarios. An error analysis for the forecasted
DNI is shown in Fig. 8 where we compare the predicted and actual
DNI thresholds (classes) from the testing data. It can be seen that the
model performs well even on overcast days (1-12-1998 and 1-14-1998),
suggesting that the model has implicitly learned a weather model.
Furthermore, when the model’s prediction fails, it often falls short by
only one class margin, demonstrating the robustness of the model.

5. Conclusion

We present a framework for DNI forecasting using only time as
input instead of meteorological data. Specifically, we introduce a novel
multi-class classification formulation of the DNI estimation problem
that is based on the implicit dependence of DNI on time rather than
7 
meteorological parameters, and we propose four cutting-edge neural
networks to model it. Our experimental results reveal that the BiLSTM
achieves the highest accuracy among the proposed deep models, mak-
ing it ideal for offline DNI estimation scenarios. In contrast, for online
applications in which fast inference speed and low memory footprint
are important, our transformer model emerges as a compelling choice,
offering competitive accuracy at significantly lower computational ex-
pense. Additionally, we propose a ResNet variant for DNI estimation,
which we posit could be particularly effective for high-dimensional DNI
estimation problems.

By enabling DNI estimation without the need for meteorological
data, which can be difficult and expensive to obtain, we aim to pave the
way for innovative approaches to optimizing forecast-informed CSP op-
erations and contribute to global efforts in combating climate change.
Furthermore, we hope to inspire fellow researchers to explore the
integration of modern AI techniques into DNI estimation. Throughout
this paper, we identify several promising avenues for future research
in this direction, including the incorporation of noise prior, leveraging
transfer learning and knowledge distillation to integrate meteorological
data into the models, and adapting network sizes in proportion to the
number of classes.

The location selected for this study, Tonopah, NV, has been the sub-
ject of many CSP studies due to its high DNI resource and significance
as a CSP site. By focusing on this well-studied location, we are able
to set a baseline for evaluating our novel classification approach. Our
goal in this study was to establish the effectiveness of the classification
framework in a controlled environment with high-quality data before
exploring broader applications. Another intriguing direction for future
work could involve utilizing latitude and longitude values as inputs to
the network. This would include developing and testing multi-location
models that account for varying weather patterns and DNI resources,
and utilizing them to predict DNI values at intermediate locations. Ap-
plying the models to these additional locations would provide further
evidence of their generalizability. In this work, we use hourly data;
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future studies can consider higher temporal fidelity to provide fine-
grained DNI estimates. We postulate that the models proposed in this
paper can be used ad verbatim for fine-grained predictions through
training on higher fidelity data. The application of modern AI has
transformed numerous engineering fields, and we hope that our work
emonstrates that CSP technology may benefit significantly from such

advancements.
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