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ABSTRACT The timely restoration of electricity services following extreme weather events is crucial to
meet customer energy resilience as well as for the economic and national security of the United States.
Electricity restoration plans are needed to monitor multi-state power restoration operations, undertake
resource planning, and analyze system vulnerabilities. However, these plans are proprietary to utility
companies and not readily available to first responders and decision-makers. The purpose of the Restoration
of Power Outage from Wide-area Severe Weather Disruptions (RePOWERD) project was to (i) determine
which type of model – empirical, statistical, or probabilistic-most accurately predicts restoration times for
distribution-level power outages caused by Category 2 or higher hurricanes, and (ii) identify the impact on
restoration times of various predictor variables, such as power outage impact (i.e., customers impacted),
storm characteristics, land-use patterns, and baseline customer density at county-service-area resolution.
Sevenmodels were developed for hurricanes that made landfalls from 2017 - 2022 along the Southeast region
of the United States (Irma, Michael, Harvey, Laura, and Zeta). Comparing methods for predicting the time
to restore power to 95 % of impacted customers for these hurricanes revealed that: 1) outage magnitude (i.e.,
initial number of customers experiencing outages and their spatial distributions) is the strongest predictor
of recovery time; 2) the performance of the log-linear regression model was similar to more complex, less
interpretable models (e.g., accelerated failure time); and 3) the final log-linear regression model achieved
strong overall performance, but it struggled with certain hurricanes (overall adjusted R2 of 0.6730, with a
minimum of 0.4006 for Harvey and maximum of 0.8636 for Zeta). Using the log-linear regression model to
forecast restoration time is viable, as all input data are publicly available prior to or at storm onset; however,
the model reliability would benefit from expanding the scope of predictors and training data.

INDEX TERMS Electricity restoration, energy resilience, probabilistic modeling, tropical storms, wide-area
power outage.

I. INTRODUCTION
Access to reliable electricity is crucial for the oper-
ation of basic energy services needed for survival
(e.g., heating, cooling, ventilation, critical plug loads) as
well as energy resilience (i.e., the functioning of diverse and
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interdependent systems, such as fuel and energy systems,
telecommunications networks, emergency response systems,
and other critical assets). The energy infrastructure of the
mainland United States are aging and struggling to handle
changing demands due to electrification needs [1], [2].
The infrastructure are highly vulnerable to extreme weather
events which could lead to reduced energy efficiency and
more power outages [3]. Although physical improvements
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to the energy infrastructure and the expansion of renewables
may reduce power outage duration and size, the push to
electrify the building sector and the disproportionate impacts
of power outages on communities [22], [23], [24] make
rapid restoration of electric services following extreme events
(e.g., hurricanes) vital.

Large-scale and long-term power outages are becoming
more common in the U. An analysis of national power outage
data since 2000 revealed that the average annual number
of weather-related power outages increased by roughly 78%
during 2011 through 2021, compared to 2000 through 2010
[4]. During 2000 to 2021, 83% of major U.S. power outages
(impacting at least 50,000 customers) were caused by tropical
storms (which include hurricanes), winter storms, wildfires,
etc. [4], [5], [6], [7], [8]. Tropical storms and hurricanes are
among the most common system-disrupting events the bulk
electric system (BES) faces [19]. According to the Energy
Information Administration (EIA), in 2020, the average U.S.
customer experienced over eight hours of power outage due
to extreme weather events [11].
Considering that extreme weather events are forecasted to

be more frequent and intense [9], [10], major outages may
occur both due to increased electricity demand and damaged
infrastructure compromising electricity supply. During a
tropical storm event, power outages occur due to damages
to overhead power lines from high wind and flying debris
as well as flooding, lightning, and heavy precipitation that
cause secondary damages. Although transmission outages
can have a significant impact on large numbers of customers,
most of the power outages during storm events occur on
the distribution systems rather than on the transmission
system [20]. Frequent and long-duration power outages cost
the U.S. economy billions of dollars and, in some cases, loss
of life [12], [13], [14], [15], [16]. To reduce the impact and
likelihood of power outages and improve restoration time, it is
imperative to analyze the vulnerabilities of the bulk electric
system (BES).

Assessing system vulnerabilities and potential risks to the
BES from future extreme events is pivotal to supporting
critical infrastructure protection programs and ensuring
adequate resource allocation prior to extreme events. Such
information is essential to expedite restoration, thus reducing
adverse societal and financial impacts of power outages.
Considering the multi-billion-dollar annual cost to the U.S.
economy caused by extreme weather event-induced outages
and the dependency of critical assets (e.g., hospitals) and
human survival (as illustrated by the increasing heat stress
mortality risk and other events) on electric service, the U.S.
Department of Energy (DOE) launched the Building a Better
Grid Initiative in early 2022 to upgrade and modernize the
transmission systems to achieve grid resilience [21]. With
∼80% of the U.S. energy infrastructure being privately
owned [17], utility companies tend to have proprietary
models of their service areas to determine system damage
pertaining to extreme events as well as estimate and expedite
outage restoration. However, these disparate models and their

outcomes are unavailable to policymakers (e.g., DOE), first
responders, or emergency management agencies to support
resource allocation and large-scale response efforts following
outages. The Restoration of Power Outage from Wide-area
Severe Weather Disruptions (RePOWERD) project fills this
gap [18] by developing models to forecast restoration times
for distribution-level power outages caused by Category 2 or
higher hurricanes to assist policymakers and first responders
with system vulnerability assessment and resource planning.

This paper discusses and compares seven empirical, statis-
tical, and probabilistic models. These models were developed
for Hurricanes Irma,Michael, Harvey, Laura, and Zeta, which
made landfall from 2017 - 2022 along the Southeast region
of the United States. Power outage data (outage magnitude),
storm characteristics, land-use distribution, and customer
density were all included. The paper also identifies (i) which
type of model - empirical, statistical, or probabilistic-most
accurately predicts restoration times for distribution-level
power outages caused by Category 2 or higher hurricanes
and (ii) the impact on restoration times of various predictor
variables, such as wind speed and land use at a county-
service-area resolution.

The remainder of the manuscript is organized into five
sections. Section II provides an overview of the restoration
models that are either discussed in the literature or used in
practice. Section III introduces the case study tropical storm
events and associated data sets that were used to develop
the models. A discussion of the seven models - an empirical
model (exponential decay function), five statistical models
(regression tree, random forest, log-linear regression, and
two accelerated failure time models), and a spatial regression
model - is presented in Section III. The model results and
a comparison of their performance based on accuracy in
estimating restoration time are presented in Section IV. The
significance of the results from a practitioner perspective,
concluding remarks, and future directions for expanding this
process-oriented model are presented in Section V.

II. BRIEF OVERVIEW OF RESTORATION MODELS
A multitude of studies have modeled restoration times for
critical infrastructure systems – including electric power grids
and water distribution systems – following extreme events
such as hurricanes and ice storms. These models can be
grouped into the following categories:

Markov Models use discrete-state and discrete-transition
Markov processes to model the restoration process. Zhang
modeled post-earthquake recovery of multiple lifelines as a
discrete-state and discrete-transition Markov process [29].
The model assumed that the lifelines compete with each
other for restoration resources, which is not typically true for
real-world processes. Zhang illustrated the difficulty of using
Markov modeling for restoration time estimation [29]. This
method requires state vectors and transition probabilities,
which are often difficult to obtain.

Deterministic Resource Constraint Models are used to
model the actual restoration process based on assumptions
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regarding the number of repairs that can be made within an
hour given a certain number of repair crews and/or materials.
Compared to Markov modeling techniques, these models
are based closely on real-world processes. Wanik et al.
estimated power recovery times using information provided
by a utility on the number of electrical faults repaired and
number of repair crews working per day after three major
outage events (Tropical Storm Irene, the 2011 nor’easter,
and Hurricane Sandy) in Connecticut [28]. The restoration
time was determined as a function of the total outages on
the system, the average daily number of active repair crews,
and the estimated number of daily restorations for each crew.
These models require extensive proprietary data describing
utility repair crew activities.

Restoration Simulation Models estimate power system
equipment failure rates during storms and average repair
times. Balijepalli et al. modeled reliability of power systems
to lightning storm events by relating empirically defined
rates of lightning strike failures on overhead distribution
equipment to a probability density function for intensity
and duration of lightning storm events obtained via the
bootstrap method [30]. The authors quantified reliability
of the system using average system interruption duration
and frequency, momentary average interruption duration
and frequency reliability indices. The models, however,
required detailed information about the system topology
and construction (i.e., power line height and shielding).
Even relative to deterministic resource constraint models,
restoration simulation models tend to be data-intensive, time
consuming, and may only be applied to specific systems.

Empirical Curve Fitting fits an empirical model, such as
an exponential decay function, to historic data to estimate
the restoration time. There have been several variations of
this model. Reed used a gamma distribution to relate the
number of outages remaining with a duration less than
the corresponding duration on the x-axis [25]. To estimate
restoration time, Duffey and Ha [26], Duffey [27] imple-
mented exponential regression to estimate a decay coefficient
for power outage restorations following a variety of historic
events including hurricanes, wildfires, and ice storms. This
technique is generally effective at fitting historic power
outage restoration data with covariates (e.g., wind speed)
[26], [27]. While these models depend less heavily on
proprietary data, the variables used in this technique are
generally not available before or during power restoration
operations. Being purely backward-looking limits these
specific models’ utility for pre-storm resource planning and
situational awareness.

Statistical Models tend to describe the relationships
between outage duration and covariates to predict restoration
time across space [31]. They can be seen as a generalization
of the model proposed by Duffey [26], [27], which expands
the scope of predictive variables. These models are generally
used for restoration planning in case of weather-induced
disasters [26], [27], [33], [34]. Liu et al. [35] used customer
outage data from three major East Coast power companies

to predict the number of power outages likely to occur from
hurricanes and ice storms in a 3-kilometer square grid cell
using a spatial, negative-binomial generalized linear mixed
model. The authors also used wind speed and duration, land
cover data, and soil drainage levels as well as utility-specific
information including equipment inventories, number of
protective devices, and company indicator covariates to
develop an outage prediction model for a specific utility
service area. Guikema et al. implemented a spatially gener-
alized hurricane outage prediction model to determine the
cumulative proportion of customers without power due to a
hurricane at the census tract level [36]. This model also used
topography, land use, soil moisture levels, hurricane wind
characteristics, customer density, and land use/cover type in
a multivariate model to demonstrate the impact of several
variables on widespread power outages due to hurricanes.
Davidson et al. [31] implemented a failure time model that
incorporated utility-specific data sets, a wind field simulation
model, and rainfall data to estimate county-level restoration
times for hurricane and ice storm events. This multivariate
model effectively predicted the shape of the restoration curves
with an average overestimation of 7.2 hours (35 percent) [31].
Several restoration models have been developed to esti-

mate restoration time for different extreme weather events.
Considering that energy restoration is a complicated process,
each model has its advantages and limitations depending
upon the assumptions and input variables. In this study, seven
models were developed using data for five historic hurricanes.
The objective was to compare and contrast the performance
of the models, identify the significant variables influencing
restoration time, and produce a reliable model with high
accuracy that could be used by non-utility decision-makers.

III. METHODOLOGY
Because of the high vulnerability of energy infrastructure to
tropical storm events (which include hurricanes), it is crucial
to develop a process-oriented restoration model to provide
situational awareness information for resource planning and
recovery. The characteristics of hurricanes, including their
eye size, wind speed, amount of rainfall, pressure, and the
area affected, can differ greatly. As a result, some hurricanes
can lead to widespread power outages, whereas others may
remain stationary over a particular area, leading to more
concentrated severe flooding and extended power outages.
To account for this variability, the power outage data for the
five hurricanes (Irma, Michael, Harvey, Laura, and Zeta) that
significantly affected the Southeast region from 2017 through
2022 (Figure 1) were analyzed and used to build the seven
models discussed below. These storms led to power outages
affecting hundreds of thousands to millions of customers and
required substantial mobilization of repair crews.

Hurricane Irma, a Category 4 storm, was roughly the size
of Texas and impacted southern Florida in August 2017.
Its slow movement meant that some areas were affected
for over 24 hours, leading to power outages for nearly
60 percent of Florida’s approximately 10 million electric
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FIGURE 1. Comparison of storm path and data coverage. N is the number of
county-service-areas with matching outage data. Dark polygons are the intersection of a
county and utility service area for which matching outage data are available.

customers [37], [38]. Hurricane Michael, a Category 5
storm, struck the Florida Panhandle in October 2018 with
record-setting sustained winds of 151 miles per hour. The
hurricane caused devastating damage over a narrow 100-
mile band, and left about 400,000 customers without power,
mainly in the Florida Panhandle; power restoration took
around 23 days [39], [40]. Hurricane Harvey hit a narrow
band in Texas in August 2017 as a Category 4 storm, causing
significant rainfall and flooding [41]. This led to over 300,000
customers without power due to damage to power plants
and transmission and distribution infrastructure in Texas
and Louisiana [42]. In August 2020, Hurricane Laura, one
of the strongest hurricanes to make landfall as a Category
4 storm in Louisiana in 164 years, not only disrupted crude
oil production along the Gulf Coast for 15 days but also
caused significant damage to transmission and distribution
systems [43], [44]. As a result, more than 900,000 customers
in Louisiana and Texas were left without power [45]. Lastly,
Hurricane Zeta, a Category 2 storm, made landfall in southern
Louisiana and Mississippi in October 2020 [46]. Despite
being a Category 2 hurricane, it caused significant power
outage, leaving more than 2.5 million customers in the
Southeast region without power [47].

A. DATA ACQUISITION AND PROCESSING
Several datasets capturing impacted area characteristics,
hurricane characteristics, and outages were acquired to
inform the models (Table 1). Two considerations drove the

selection of data sets and their sources. First, the predictors
should be generally available preceding or at the onset
of a storm event. Although other models (discussed in
Section II) have achieved strong predictive accuracy, they
rely on ex-post analyses, which are not useful for pre-event
resource planning and decision-making activities. Second,
data should not be proprietary as it can be expensive
to acquire and can lead to licensing restrictions. Though
historical outage data for the five hurricanes were purchased
from PowerOutage.us, real-time outage data can be accessed
for free online from this source. Another alternative is to use
outage data from Environment for Analysis of Geo-located
Energy Information (EAGLE-I). The combined spatial and
outage datasets provide restoration time (etr95, time for the
outage peak to reduce by 95 percent) alongside various
predictors, resolved at a county-service-area resolution.

1) SPATIAL DATA
The utility service area boundary layer is publicly available
from the Homeland Infrastructure Foundation-Level Data
(HIFLD) dataset. Each boundary polygon represents electric
power retail service territories for residential, industrial, and
commercial customers. However, this data layer includes
significant overlap of service areas between utilities. For
instance, in Florida, Duke Energy (responsible for energy
generation and transmission) covers more than half of
the state, with multiple distribution utilities functioning
within its service area boundary. Because hurricane outages
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TABLE 1. Data sources and vintages. *No energy justice variables were
identified as significant in the analysis that follows.

primarily result from distribution system failures, this dataset
was processed in an attempt to better represent the most-
local utility, presumed to be responsible for addressing the
distribution system outage restoration. Specifically, spatial
differences between service areas were computed, starting
with the smallest service area and subtracting it from all
larger areas; this process was repeated for each state across
all service areas.While distribution-level outage restoration is
within the purview of utilities, emergency response activities
and resource planning efforts are generally undertaken by
counties and cities. To minimize the issue stemming from
redundant counting due to overlapped service boundary
areas and assist first responders with resource planning, the
2020 county boundary layer from the U.S. Census Bureau
was intersected with the processed service areas to generate
the functional spatial unit for analysis, which is the county-
service-area.

Storm data, specifically, the wind swath files, were
acquired from the National Hurricane Center’s (NHC) ‘‘best
track’’ projections. The NHC also produces both forecast and
retrospective hurricane tracks. For each storm, the wind swath
data records the positions of a storm at 6-hour intervals and
at three wind speed thresholds (greater than 34 knots, greater
than 50 knots, and greater than 64 knots). For eachwind speed
threshold, the wind-swath was intersected with the county
boundary and utility service area boundary to determine the
fraction of a polygon (a county or utility service area) being
subjected to each wind speed (Figure 1). By relating wind
speed with outage numbers for each county over a duration,
predictions can be generated for future storms using the NHC
storm track predictions as inputs.

2) OUTAGE DATA
For each hurricane, the outage data were procured from
PowerOutage.us for the state(s) that was directly in the
storm’s path (Figure 1). These data provide a baseline of total
customers and number of customers experiencing an outage
(i.e., outage counts from here onward) for cities, counties, and
utility service areas at varying temporal resolutions, which
settles around 20-minute intervals during high outage times.

For each storm and county/utility service area, the maximum
outage number magnitude and time were calculated. In many
cases, the outage does not decay monotonically to zero,
whether due to real phenomena or noise in the data.
To account for this, the outage was considered to be resolved
only when consecutive observations spanning at least 1 hour
showed that the outage size had been reduced by 95 percent.
This effectively filters out cases where outages are reported
as resolved at one instant, only to rebound in subsequent
observations.

B. RESTORATION MODELS
Two of the most prominent models of restoration time are
empirical curve fitting and statistical models. While the
former is based on observations of restoration patterns,
statistical models tend to be regression models that include
features beyond the outage profile to forecast restoration
time. To inform decision-making, the first iteration of the
restoration model was built using only outage data and
profile (Figure 2, top). Progressively, additional features
were added, increasing model complexity and utility in
identifying underlying variables that influence restoration
time (Figure 2). A comparison of the model performance
across all storms is presented in Table 2); a discussion of the
model performance and the best-performing model structure
is presented in Section IV.

TABLE 2. Comparison of performance between model formulations
including root mean squared error (RMSE) and adjusted R2. *Estimated
using the number of variables alone (not including spatial variation).

1) MODEL BUILDING BLOCKS
One of the simplest models of outage restoration time is based
on empirical observation. Duffey et al. suggested that the
number of customers experiencing an outage (N (t)) decays
exponentially over time from its initial peak (N0) toward a
background or irreducible outage (Ni) [27].

N (t) = Ni + (N0 + Ni)e−αt (1)

Assuming the irreducible outage rate is zero, this implies
that the 95 percent restoration time (etr95) can be expressed
as:

etr95 =
1
α
ln

N0

0.05 · # Customers
(2)

A model with this form (with only log-max-outages
and log-number-of-customers as predictors) achieves an
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FIGURE 2. Flow diagram illustrating the addition of model building
blocks. New model structure (hexagons) and data (cylinders) are added
from top to bottom, increasing model complexity.

adjusted R2 of 0.3296. The data quality and scope (different
areas experiencing different storm conditions) are possible
reasons why this model performed poorly with these data.
Although slightly more difficult to interpret, it makes
mathematical sense to log-transform the response variable
(restoration time) to ensure that it is strictly greater than
zero. Using ln(etr95) as the response variable in equation 2
increases the adjusted R2 to 0.5052.
Building on this foundation, a more complex model could

include other predictors, such as geographic location or storm
characteristics that influence restoration time. Given that
storm outages occur mainly because of distribution-level
failures [31], it was hypothesized that the outage severity and
restoration time will be driven by utility characteristics (i.e.,
restoration crew size and availability), storm strength, and
distribution system vulnerability (Table 3).1

1Unlike Davidson et al. [31], a single-stage model was formulated that
predicts recovery time given the peak outage.

TABLE 3. Hypothesized drivers and proxies for outages stemming from
the distribution system during tropical storms.

TABLE 4. Model parameters and significant terms across data subsets.
P-values are reported for the full dataset. Xs denote terms that are still
significant when fitting the model to a single storm.

2) LOG-LINEAR
While forecasted restoration time is crucial for resource
planning, it is also critical to determine the underlying factors
that influence restoration time. For instance, if crew size
and crew availability delay restoration, then both the city
and the utility whose service area is experiencing outages
would have to coordinatewith other utilities for personnel and
resource sharing. Hence, to identify which variables are most
predictive of restoration time given a log-linear form, the
following modeling techniques were deployed: correlation
matrices, least absolute shrinkage and selection operator
(LASSO) regression, regression trees, and random forest.
From the union of variables identified across techniques, only
the variables with significant p-values (<0.01) were selected.
The variables selected could be grouped together based on the
categories originally assumed (Tables 3 and 4).

3) ACCELERATED FAILURE TIME
Davidson et al. [31] used an accelerated failure time (AFT)
model with utility and storm characteristics as predictors.
AnAFTmodel is statistical model that uses a log-transformed
response variable and can assume a non-normal distribution
of residuals. The AFT structuremakes physical sense because
the restoration time is strictly greater than zero [31]. For
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FIGURE 3. Comparison of storm and outage characteristics between events. The width of each element is proportional to the number of
observations at the corresponding y-value.

comparison purposes, two AFT models with the same set of
predictors as the log-linear model were used. The distribution
of residuals that produced the lowest Akaike Information
Criterion (a comparative measure of model performance
given the same dataset) scorewere log-linear and exponential.
The AFT performs slightly better but is less interpretable
compared to the log-linear model (Table 2).

4) GEOGRAPHICALLY WEIGHTED REGRESSION
Geographically weighted regression (GWR) is an emergent
technique that allows regression coefficients to vary in
space. It has been used for exploratory purposes but is
less accepted as a predictive tool [32]. For comparison, the
R package ‘spgwr‘ was used to produce a spatially-weighted
regression model, which performs slightly better than the
standard log-linear regression model. Like the AFT models,
the geographically weighted model includes the same set of
predictors as the log-linear model.

IV. RESULTS AND DISCUSSION
The results of the variable selection process point to system
characteristics important to restoration time. Surprisingly,
few variables associated with storm strength were selected.
Storm strength is likely a strong predictor of outage
size, but that contribution is erased by the inclusion of
variables related directly to the maximum number of
outages. Land use categories 1-6 (Table 4) each denote

the coverage of different kinds of trees. Interestingly,
whereas the coverage of mixed forest (lu_fra_6) was
the most important land-use characteristic, differences in
tropical or sub-tropical broadleaf evergreen forest coverage
were identified as the most important land-use changes
(luc_frac_603, luc_frac_1403). Different tree types may
have opposite effects on restoration time, or this may be a
regional phenomenon (i.e., the changes are only significant
in areas where one type of tree cover exists). Perhaps
counter intuitively, shrinking of wetland areas was negatively
associated with recovery time (luc_frac_1403 is the amount
of wetland (code 14) converted to broadleaf evergreen forest
(code 3)), possibly because of improved access to infras-
tructure. Demographic and income variables did not increase
predictive power. Filtering by outage size had little impact on
accuracy. Adding a dummy variable representing the county,
however, caused the largest improvement in predictive
performance (adjusted R2 increased to 0.83 for the log-linear
regression model). This indicates that other county-specific
features might be relevant to predicting restoration
times.

Performance of the log-linear regression model was
found to vary significantly across storms (Figure 3), with
especially poor performance for Hurricane Harvey in Texas.
The model struggles more with fast restoration time areas
(Figure 4), which are less common in the data. Although
the underlying cause for performance degradation is unclear,
storm characteristics might be one explanation for model
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FIGURE 4. Comparison of predicted and observed values of ln etr95 using
the log-linear regression model.

performance. For instance, Hurricane Harvey was notable
for a significant amount of rainfall and flooding while its
wind speed dropped from a Category 4 to a Category 1
hurricane. The outage data quality may also be a factor
in model performance. Both Hurricanes Harvey and Laura
have relatively sparse data coverage and a smaller proportion
of regions within the high wind speed path of the storm
(Figure 1). It is also notable that the two storms for which
the log-linear regression model performed worst caused
significant damage to transmission infrastructure rather than
distribution infrastructure, which was the focus of this
work.

To assist with the selection of a forecasting model
that could be used by first responders and emergency
managers, a methodological survey of forecasting methods
was conducted with the objective of motivating continued
research. The log-linear regression model does well for
several scenarios (adjusted R2>0.75 for three of five storms:
Irma, Michael, and Zeta), but performance is significantly
lacking for others (Harvey and Laura). While including
rainfall totals may improve model performance for Hurricane
Harvey, this is unlikely to improve performance across the
board as rainfall and precipitation were not significant for
the second worst performing hurricane (Laura). Another
approach would be to filter transmission outages from the
outage data. The restoration characteristics for these types of
outages are likely to be different from diffuse, distribution-
level outages.

V. CONCLUSION AND FUTURE DIRECTIONS
Power restoration times were modeled for a range of
geographies and storm events. Every storm event exhibited
a wide range of observed restoration times: from less
than 1 hour to over 100 hours (Figure 3). The outage size
(i.e., spatial distribution of outages) was not clearly related to
the distribution of restoration times. The number of customers
experiencing outages and outage sizewere themost important
predictors across all storm events (Table 4). A larger outage

size was associated with an increase in restoration time, but
a larger number of customers was associated with a decrease
in restoration time. Other predictors were significant in the
multi-storm model but not when modeling individual events.
This may be a result of the data subset (e.g., land use is more
similar within a state and therefore not a good predictor of
restoration time) or dependent on the storm itself; although
Irma and Michael both impacted Florida, land use change
variables were only significant in Irma.

The decay function was able to estimate restoration time
and rate of restoration, the two parameters essential for
resource planning at both the county and utility service
area levels. The log-linear regression model identified the
variables contributing to the restoration time; however, the
performance of both of these models is influenced by
the event characteristics, the total number of customers
experiencing outages, the impacted area, and the baseline
number of customers. For instance, the decay function
performed well in terms of computing the estimated time
of restoration and rate of restoration (with high accuracy
>90 percent based on R2) in the case of wide-area large-
scale outages, but the model performed poorly in the
case of events with fluctuating outages due to continuous
disruptions to the system over a period (e.g., the conditions
during Hurricanes Harvey and Laura). A similar trend
was observed in the log-linear regression model, and the
model did not identify counties and utility service areas
where restoration would take longer depending on the
underlying impacts, base customer, county type, and extent of
damage.

Overall, the models succeeded in forecasting restoration
time based on the underlying variables and processes that are
essential for restoration. Among all the models, GWR, log-
linear, and random forest performed best. Because restora-
tion time is generally influenced by county characteristics
(urban versus rural, vegetative versus non-vegetative), from
a planning perspective, the log-linear regression model
outputs could be used to geotarget counties where utilities
should undertake pruning and vegetation growthmanagement
efforts to minimize power line damages due to hurricane
winds and expedite restoration. With increased focus on
deploying energy storage systems (e.g., battery, thermal)
and renewables (e.g., photovoltaics), both on the grid and
behind-the-meter, the model outputs could be used by utilities
and residents alike in identifying counties where energy
storage and renewables could be used to meet demand
flexibility, increase reliability, maintain energy resilience,
and increase passive survivability. Moving forward, the
following steps will be taken to expand and enhance the
models.

1) Differentiate between transmission and distribution
outages.

2) Include Category 1 and 2 storm events, as well as events
with fluctuating outages.

3) Incorporate utility characteristics (i.e., crew size, crew
members, and resource availability for staging).
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4) Incorporate behind-the-meter (e.g., battery and ther-
mal storage), grid-edge, and community-scale energy
solutions.

5) Replicate and expand the models to forecast restoration
time considering the increase in number of outages due
to climate extremes such as extreme heat, cold snaps,
and wildfires.

6) Design and deploy an Agent BasedModel (ABM) built
on the variables used in these models to simulate the
processes/agents involved in the restoration process
(e.g., changing crew size, staging, accessibility, outage
size, impact areas, etc.). This model will be based
on the first version of ABM that was developed by
Chen et al. [48] to assist with resource planning and
expedite restoration time.
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