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The outdoor operation of electrochemical solar fuels devices must contend with
challenges presented by the cycles of solar irradiance, temperature, and other
meteorological factors. Herein, we discuss challenges associated with these
fluctuations presented over three timescales, including the effects of diurnal
cycling over the course of many days, a single diurnal cycle over the course of
hours, and meteorological phenomena that cause fluctuations on the order of
seconds to minutes. We also highlight both reaction-independent and reaction-
specific effects of variable conditions for the hydrogen evolution reaction and
CO2 reduction reaction. We identify key areas of research for advancing the
outdoor operation of solar fuels technology and highlight the need for metrics
and benchmarks to enable the comparison of diurnal studies across systems and
geographical locations.
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Introduction

Solar-driven, electrified synthesis of chemical commodities, including H2, carbon-, and
nitrogen-based chemicals from abundant feedstocks (e.g., H2O, CO2, N2), is an area of
substantial research interest (Agyekum et al., 2022; Ardo et al., 2018; Basic Energy Sciences
Roundtable, 2019; Hisatomi et al., 2014; Kibria et al., 2019; Pareek et al., 2020; Wang et al.,
2019; Xu et al., 2024). Integrated electrochemical solar fuels reactors offer a pathway for
decarbonized chemicals production and modular, off-grid deployment (Grimm et al., 2020;
Mishra et al., 2007). These reactors are defined by the integration of photo- and
electrocatalytically active components through careful coupling and/or co-design of
active interfaces. However, there are significant research challenges associated with the
translation of these solar-driven reactors from operation under “static” laboratory operating
conditions to the variable conditions that these devices must tolerate once deployed
outdoors (Nandjou and Haussener, 2017). While this transition has been successful for
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the photovoltaic (PV) industry, there remains a need to characterize
the consequences of fluctuations inherent to outdoor, diurnal
(i.e., the daily cycle of irradiation over a 24 h period) cycles to
enable long-term, durable operation of integrated solar
fuels systems.

The output of an electrochemical solar fuels reactor is a function
of both photoactivity and electrocatalytic activity. While this
concept is applicable to all types of electrochemical solar fuels
reactors, it can be readily demonstrated in a photovoltaic-
electrochemical (PV-EC) type reactor where the photovoltaic
(PV) and electrochemical (EC) components can be characterized
independently (Figure 1) (King et al., 2022; Wei et al., 2023; Yap
et al., 2024b). The PV current-voltage curve is a function of multiple
factors that dictate light-to-electricity conversion, including photon
absorption, charge separation, and carrier transport (Moliton and
Nunzi, 2006). The EC current-voltage curve captures the factors that
dictate charge transfer across the electrode/electrolyte interface to
produce fuels and chemicals, including the effects of catalytic
activity, mass transport limitations, and ohmic losses (Gerhardt
et al., 2021; Giordano et al., 2016). Under variable irradiation
intensity and meteorological conditions (e.g., ambient
temperature, wind, cloud coverage, irradiation spectra), both PV
and EC polarization curves will vary (Figure 1A) (Faiman, 2008;
Marion, 2002; van Dyk et al., 2005; Yap et al., 2024b). As a result,
multiple operating points—up to and including a continuum of
operating points—will arise for a solar fuels reactor throughout a
diurnal cycle. Characterizing a representative subset of these
operating points, especially those in which substantial changes to
the structure and/or stability of photoactive or electrocatalytically
active components occur, will be critical to the developing of solar
fuels devices capable of matching the decades-long operating
lifetimes already demonstrated for photovoltaics operating
outdoors. The performance of other solar fuels devices, such as

photoelectrochemical (PEC) devices that include direct
semiconductor/electrolyte interfaces or photocatalytic (PC)
systems in which the light absorber is nanoparticulate or
molecular, will also be strongly affected by variable conditions.
These present additional, important research challenges to
disentangle the effects of diurnal cycling on photo- and
electrocatalytic performance.

While the fluctuating conditions encountered in outdoor
operation are complex and interrelated, we highlight three
timescales on which to evaluate them: days, hours, and minutes/
seconds. Over days, a solar fuels reactor must be able to maintain its
performance (i.e., the activity, selectivity, and durability of the device
over time) throughout many repetitions of cycling between
operation during the day and “off” conditions at night (Datta
et al., 2023). The “off” condition is defined as the state of
operation for the solar-driven reactor where no, or nearly no,
photo-driven response occurs. On the scale of hours, the
operation of the solar fuels reactor will vary with incident solar
irradiance as well as changes in meteorological conditions (e.g.,
changes in ambient temperature, humidity)— the hours of greatest
solar irradiance will generally result in operation at points with
greater power and total product output (Yap et al., 2024b). Finally,
on the order of minutes/seconds, additional meteorological effects,
such as dynamic cloud coverage and shading from surroundings,
will cause fluctuations in the operation of the solar fuels reactor (Aly
et al., 2019; Yap et al., 2024b; Ye et al., 2013). The fluctuations on
these different timescales have distinct effects on solar fuels reactors
and require the design of systems capable of maintaining selectivity,
activity, and durability under variable conditions.

Efforts have been made to understand diurnal-driven effects for
both the solar-driven electrochemical H2 evolution reaction (HER)
and the CO2 reduction (CO2R) reaction. For example, GaInP2|
GaAs|MoS2 photoelectrodes designed to drive HER were tested

FIGURE 1
(A) Variable operating point of a solar-driven electrochemical device throughout the day via “load-line” type analysis. Two representative solar fuels
reactors are illustrated, a PV-EC reactor and an integrated PV-EC reactor. The integrated PV-EC reactor schematic highlights the opportunity tomeasure
potential differences across the PV component as well as current across the entire device, with red arrows indicating how connections can be made
between the anode and cathode to measure the EC polarization curve and blue arrows indicating how the PV polarization curve can be measured.
The current-voltage curve of the EC components also vary throughout the day due to changes in temperature, electrolyte composition, etc. — these
variations are represented by the shaded region of the current-voltage curve. The changes underlying EC performance are expected to be small
compared to the changes in PV behavior. (B) Representative schematic for outdoor and diurnal cycling effects over three timescales - days, hours, and
minutes/seconds.
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outdoors in Golden, Colorado over single daylight periods
(i.e., <12 h) and exhibited gradual loss of H2 production
throughout the day (Ben-Naim et al., 2022). These conditions,
where the reactor is illuminated by the sun, are often referred to
as “on-sun” conditions (in contrast to simulated conditions in a
laboratory). SrTiO3:Al photocatalyst sheets were scaled to 100 m2

and operated outdoors for several months, achieving a maximum
solar-to-hydrogen efficiency of 0.76% (Nandy et al., 2023;
Nishiyama et al., 2021). Other efforts have assessed extended
cycling stability (12 h/12 h) for HER systems for metal|oxide|
semiconductor Si and tandem III-V photoelectrode architectures
(Bae et al., 2019; Walczak et al., 2017). For CO2R systems, durability
studies have been conducted operating at a single illumination
intensity (e.g., 1000 W m−2) for over 10 hours with on/off
cycling (Cheng et al., 2020; Gurudayal et al., 2019; Kamata et al.,
2021; Kato et al., 2021a; Kato et al., 2021b; Kistler et al., 2021).
Additionally, existing solar-driven CO2R studies probing diurnal
performance have investigated operation under idealized conditions
(e.g., assuming no loss of performance) via computational methods,
with a focus on selectivity (King et al., 2022; Yap et al., 2023; Yap
et al., 2024b). However, substantial advancements in durability as
well as overall performance under outdoor operation (e.g., solar-to-
fuel conversion efficiency > 10%) are still needed for electrochemical
solar fuels to become a competitive technical solution
(Haussener, 2022).

Herein, we consider the effects of fluctuating, diurnal conditions
expected during outdoor operation of electrochemical solar fuels
reactors across three timescales (days, hours, minutes/seconds) and
with respect to both reaction-independent and reaction-specific
effects. Reaction-independent effects refer to those which must be
considered for any electrochemical solar fuels reaction, in contrast to
reaction-specific effects associated with unique challenges which
arise for individual reactions of interest (e.g., HER, CO2R, etc.). We
also consider the role of reactor design engineering to optimize solar
fuels performance with respect to diurnal conditions and highlight
areas of research which can advance solar fuels technology. This
work seeks to address the challenge of stable, selective
electrochemical solar fuels systems under fluctuating conditions
by providing a roadmap of potential focus areas for future solar
fuels research.

Reaction-independent considerations
for outdoor testing and diurnal cycling

Variations in light intensity/spectrum and temperature, which
are a function of the local meteorological climate and geographical
location, will exert influence on any solar-driven process.

During outdoor operation, variable irradiation drives changes in
the operating point of the solar fuels reactor, causing variations in
current flows and electrochemical potential differences across key
interfaces (e.g., catalyst/electrolyte, electrolyte/membrane, catalyst/
membrane, etc.) (Figure 1). For multiday, diurnal operation, cycling
between illuminated (termed “on” for simulated illumination, or
“on-sun” for outdoor illumination) and dark conditions at night
(termed “off”) will affect the performance of all solar-driven devices.
These on/off changes can substantially impact the stability of the
electrochemical components. For example, in membrane electrode

assembly (MEA) reactors, on/off cycling can affect ion transport
properties across the membrane and separation efficiency of product
species, resulting in loss of performance over the course of many
cycles (Jao et al., 2011; Péron et al., 2008). At the (photo) electrode
interface, periods under “off” conditions can result in corrosion of
the electrocatalyst due to the formation and instability of surface
oxide species — this is also relevant for the semiconductor in PEC/
PC systems with semiconductor/electrolyte interfaces. The
thermodynamics of such changes in stability should be evaluated
and can often be understood in the context of an appropriately
constructed Pourbaix diagram. Importantly, the nature of the
device’s “off” condition should also be carefully considered. For
example, a reactor at night may tend toward an “open-circuit” type
condition, where no net current flows through the system, or a
“reversed-current” condition depending on reactor design,
electrolyte composition (e.g., concentration of dissolved redox-
active species like H2 and O2) and electrode structure (Collins
et al., 2024; Fu et al., 2020; Weiß et al., 2019). Studying the
consequences of extended “off” periods on performance, such as
at open-circuit, will be essential to designing solar-driven systems
that are stable over the course of many diurnal cycles. To mirror the
standard outdoor measurement protocols for PVs (Khenkin et al.,
2020), experiments to isolate and evaluate device day/night
durability over multiple cycles will be valuable and may involve
cycling between different electrochemical potentials (e.g., expected
peak current and open-circuit) over many cycles on timescales
similar to those expected during diurnal operation (e.g., 12 h on/
12 h off, 16 h on/8 h off). Shorter experiments, conducted using a
potentiostat or solar simulator equipped with a light shutter, could
be employed to evaluate stability during day/night cycling, but
developing mechanistic connections between any accelerated
diurnal cycling methodology and the full 24 h timescale of a true
diurnal cycle will be critical.

Throughout a single diurnal cycle (i.e., 1 day), solar irradiation
changes over the course of hours and is dependent on seasonal,
locational, and other environmental factors. Since it is difficult to
directly compare the “on-sun” performance of solar fuels devices at
different locations, most solar fuels reactors have been evaluated
under illumination at 1000Wm−2 (i.e., 1-sun) with a fixed AM 1.5G
spectrum. This translates to operation of the solar fuels device at a
single operating point (Cheng et al., 2020; Kuang et al., 2019; Pan
et al., 2023; Yap et al., 2024a). However, estimating a diurnal output
from constant illumination conditions can result in overestimations
of performance and can fail to capture the consequences of diurnal
variation in incident solar spectrum on effects such as carrier
collection, solvent absorption, and PV heat absorption (Ishii
et al., 2013; Kistler et al., 2020; Nofuentes et al., 2014). Ambient
temperature, which can vary significantly over a day, as well as
across locations and seasons, will also dictate changes in
performance and durability. At low operating temperatures (e.g.,
at night or during the winter), ion transport rates decrease. This can
decrease conductivity, slow ion transport, and cause deformation of
membranes, resulting in expedited degradation of performance in
the electrochemical device (Guo and Qi, 2006; Kim and Mench,
2007). Designs and studies that consider these temperature-driven
phenomena, and the effects of cycling between freezing and thawing,
will be key to building temperature-robust solar fuels devices
(Mensharapov et al., 2022; Shengsheng, 2006).
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Where enabled by device design, testing varying potential
conditions that mimic those expected under the hourly diurnal
irradiation profile can be used to experimentally probe the hours-
scale stability of solar fuels devices. These potential profiles will be
unique to each solar fuels setup and are dependent on the operating
points described in Figure 1. To accurately simulate these profiles, it
is valuable to measure both current across the device as well as
voltage across the photoactive component (where possible)
(Figure 1A) for the device in question from outdoor testing
— this data is useful in assigning performance drops to specific
components of the solar fuels reactor (Kistler and Agbo, 2020). It is
useful to recognize that there may be multiple mechanisms of
degradation in solar fuels devices, including some that may occur
under illuminated conditions without requiring “on/off” cycling.
Probing these degradation mechanisms over multiple cycles,
without a simulated “off” state can elucidate the stability of the
solar fuels device with respect to hourly changes, and the
reversibility of any changes which may occur in the
electrocatalyst (e.g., oxidation or electronic state changes,
morphology changes) (Hochfilzer et al., 2023; Minguzzi et al.,
2012). Recent work to investigate the durability of GaInP-based
photocathodes for HER has emphasized the importance of operating
conditions and photoelectrode design, highlighting the competition
between charge transfer towards product formation versus
degradation, and the need to control the movement of electrons
and holes to dictate long-term durability, even when the
photoelectrode is maintained under reducing and/or oxidizing
conditions (Yu et al., 2021). Additionally, diurnal spectral
variation and changes in temperature of the PV or EC
components (due to ambient temperate and/or irradiation-driven
heating) can be monitored and studied separately in a controlled lab
environment — these efforts combined with varying applied
potential could be used to simulate “on-sun” experiments.

The U.S. Department of Energy’s (DOE) protocol (Bloom et al.,
2013; Yuan et al., 2011) for polymer-electrolyte membrane fuel cells
(PEMFC) provides inspiration for durability testing of solar fuel
devices under variable conditions, including steady-state durability
tests, potential cycling durability tests, and start-up/shutdown
cycling durability tests. Of particular applicability to solar fuels
devices are load cycling tests with conditions spanning from
minimum to maximum operating current/potential for the solar
fuels device. When coupled with in-situ characterization techniques,
such as online inductively-coupled plasma mass spectroscopy (ICP-
MS) (Ji et al., 2020; Ledendecker et al., 2017), these tests can provide
insight into the stability of the electrochemical components under
conditions representative of those expected during on-
sun operation.

Variations caused by meteorological and environmental
fluctuations, such as cloud coverage, rain, shade, and wind, result
in changes in the operating conditions of solar fuels devices on the
second-to-minutes scale (Figure 1).30 Potential step methods with
various step frequencies and applied potentials, or illuminated
experiments with light chopping at various frequencies, can be
employed to probe the consequences of meteorological
fluctuations. Degradation studies in battery science provide
insight into possible failure modes under these conditions
— degradation mechanisms of Li-ion batteries under accelerated
stress test conditions include electrode structural change and

decomposition, particle fracture, solid-electrolyte interface growth
and Li plating (Edge et al., 2021; Liu et al., 2022; Pender et al., 2020;
Xiong et al., 2020; Zhu et al., 2020). Mirroring these battery
degradation mechanisms, one significant challenge that may be
associated with short-term fluctuation in conditions is catalyst
degradation due to volume change or phase change, resulting in
catalyst leaching (Bae et al., 2019). If the catalyst has multiple
chemical states, or a small potential window in which it is stable,
meteorological fluctuations may be a critical driver of degradation.
Solar fuels systems will require the development of electrode
structures, including the support, catalyst, and any protective
overlayers, which are able to maintain their performance within a
wide operating window.

Reaction-specific considerations for
outdoor testing and diurnal cycling

Reaction-specific considerations pertaining to solar-driven HER
and CO2R under variable conditions and diurnal cycles are also
important to consider. These include selectivity variations for single
product vs. multi-product electrochemical reactions as well as
temperature changes throughout the diurnal cycle.

For reactions expected to produce a single product, such as HER,
the product formation rate is expected to scale proportionally with
the irradiance profile. In these cases, the challenge is to maximize
product output per day (i.e., charge passed per day) and to maintain
performance over the course of many days. For electrocatalysts that
can be tested in isolation from photoactive components, these
conditions could be simulated by well-designed potential profiles
to sweep from “off” condition potentials to those that mimic the
irradiation profile, followed by an extended hold at ‘open-circuit’ or
under relevant “reversed-current” conditions to simulate the “off”
period. Developing electrochemical systems able to maintain this
performance over repeated on/off cycles would be a valuable step
toward solar fuels systems capable of operating under outdoor and
diurnal conditions for lifetimes similar to those of the PV
component. Such advances would also benefit electrochemical
systems, improving energy efficiency and tolerance to changes
caused by fluctuations in local microenvironment conditions.

Multi-product electrochemical reactions, such as CO2R using a
Cu-based catalyst, have product distributions (e.g., C2H4, EtOH,
CH4, CO, H2, etc.) which are highly dependent on applied potential
and features of the catalyst/electrolyte interface (Garza et al., 2018;
Huang et al., 2019; Lv et al., 2018; Nitopi et al., 2019; Todorova et al.,
2020). The CO2R product distribution is affected by the properties of
the local microenvironment, including the structure of the electric
double layer, pH, temperature, and catalyst morphology/active sites
(Bui et al., 2022; Pan and Yang, 2020; Simon et al., 2021; Sun et al.,
2020; Zhang et al., 2020). In solar fuels systems, the additional
variability expected during outdoor operation introduces distinct
performance considerations. The nature of the irradiation profile
(Figures 2A, B) will result in the formation of variable
electrochemical potential differences — in a PV-EC-type device
this is readily represented by changes in operating point (i.e., full cell
voltage and total current) throughout the day. For multi-product
CO2R systems, this translates to varying product distributions and
periods when different CO2R products will dominate (e.g., CO,
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C2H4) (Figures 2C, D). The extent to which product output ratios
(e.g., CO:H2, C2H4:CH4) differ between low and high irradiation
windows is dependent on the potential range in which the
electrocatalyst can maintain similar product selectivity. For
example, using a Cu electrocatalyst, modeling has suggested that
CO and H2 will be favored at times of lower irradiation and products
such as C2H4 will be favored during higher irradiation periods
(Figure 2C) (Garza et al., 2018; Todorova et al., 2020; Yap et al.,
2024b) Electrocatalysts capable of demonstrating the desired
selectivity in wide potential windows are important for
improving tolerance to fluctuating irradiation conditions and can
minimize the extent to which downstream processes (e.g., separation
or further reaction) will have to adapt to variations in the product
stream. Fluctuating conditions are also important in CO2R systems
designed to produce CO (e.g., those using Au, Ag-based cathodes),
and recent work has highlighted the opportunity for stable Ag-based
CO2R MEA systems over many cycles (Samu et al., 2022).

The diurnal irradiation cycle is accompanied by a variable
ambient temperature profile (Figure 3). Ambient temperature,
combined with irradiation-derived heat adsorption, defines the
operating temperature of both PV and EC components when left
unregulated. While these temperature effects are well-studied for
commercial-grade PVs (Faiman, 2008), the consequences of these
phenomena on integrated solar-driven electrochemical systems

remain an important question. For example, current, state-of-the-
art water electrolyzers utilize proton exchange membranes (PEM) or
anion exchange membranes (AEM) and operate at 80°C (Aili et al.,
2023; Corti, 2022; Ion-Ebrasu et al., 2020; Ion-Ebrasu et al., 2020; Lee
et al., 2023). If a solar fuels system uses a similar membrane-
containing architecture, fluctuations in temperature are likely to
have consequences on activation, ohmic, and diffusion
overpotentials, and have potential consequences on the stability
of even the most durable membranes commonly used in these
electrolyzers (Chandesris et al., 2015; Guo and Qi, 2006; Kim and
Mench, 2007; Okonkwo et al., 2021; Olivier et al., 2017; Yigit and
Selamet, 2016).

Temperature changes can influence selectivity, activity, and
durability of the reactor. For conventional CO2R systems,
temperature changes can affect the solubility of CO2 in the
electrolyte, resulting in changes of the interfacial pH, selectivity,
and activity (Vos et al., 2023; Vos and Koper, 2022). Additionally, in
multi-product mechanisms, different products may have different
temperature dependence, resulting in selectively profiles that are a
complex function of temperature (Vos et al., 2023; Vos and Koper,
2022; Yap et al., 2024b). This temperature dependence can also vary
as a function of the characteristics of the catalyst/electrolyte
interface, adding to the complexity of temperature cycling in
multi-product systems (Corpus et al., 2023; Weng et al., 2018).

FIGURE 2
Schematic representation of (A) diurnal irradiance profile and (B) associated operating points for the electrochemical solar fuels device at four
different times throughout the day. The EC curve is highlighted with a hypothetical major CO2R product produced at each respective I-V point. (C)
Representative Faradaic efficiency vs. time plots which result from the irradiance profile in (A) and resultant operating points in (B). (D) Representative
partial current density vs. time plots which correspond to the conditions from (A, B). Only gaseous CO2R products are illustrated in (C) for ease of
illustration. The figure was adapted from results reported in Yap et al. (2024b) with permission from the Royal Society of Chemistry. Irradiance data
sourced from the NREL National Solar Radiation Database (NSRDB, 2024).
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The temperature dependence of CO2R product output remains an
important question and should be answered in controlled
electrochemical environments to inform diurnal operation.
Finally, in CO2R systems, AEM are commonly used to favor
CO2R over the competing HER (Salvatore et al., 2021). The
development of AEMs is an active field and the choice of AEM
directly influences the selectivity of CO2R systems through changes
in OH− conductivity, pH stability, and temperature tolerance (Luo
et al., 2020; Salvatore et al., 2021; Yin et al., 2019). The chemical and
mechanical stability of AEMs in CO2R-specific environments is a
key concern, and a solar-fuels compatible AEM must exhibit a wide
temperature stability range and be able to withstand short-term
variations in ionic current, electric field, and pH under diurnal
conditions (Krivina et al., 2022; Lindquist et al., 2021; Salvatore
et al., 2021).

Reactor design configuration and
engineering

Reactor design will also be key toward optimizing outdoor,
diurnal operation. Optimizing this design at the lab-scale will
enable smoother transition to larger-scale systems and can
provide resilience against changes in operating temperature,

irradiation, or other environmental factors. Utilizing heat
available from “on-sun” operation presents an opportunity to
integrate heating/cooling in innovative and distinct ways to
improve overall energy efficiency (Kemppainen et al., 2023;
Kistler et al., 2022; Kölbach et al., 2022; Tembhurne et al., 2019;
Tembhurne and Haussener, 2019). Additionally, a more complete
utilization of the solar spectrum (e.g., low energy photons) can allow
for thermal coupling of irradiation and electrocatalytic activity,
improving the efficiency of the solar fuels reactor (Johnson and
Haussener, 2024). Integrated solar fuels reactors also offer the
unique opportunity to utilize generated heat for potentially
beneficial hybrid technology, including thermally-driven
conversion of H2 into higher value products, such as green
ammonia (Tembhurne and Haussener, 2016). Designing and
modeling heat integration systems under simulated diurnal
conditions will improve energy efficiency when scaling
electrochemical solar fuels reactors beyond the lab scale and
identify ways to reduce capital (CapEx) and operating (OpEx) costs.

Another important consideration in scaling of solar fuels
systems is the operating configuration. In a PV-EC architecture,
for example, there is an opportunity to control product output and
efficiency through plant design, as illustrated in Figure 4. In one
configuration, an electrolyzer operates without any additional power
regulation (Figure 4A). This results in a variable product generation

FIGURE 3
Irradiance vs. time and ambient temperature vs. time profiles for Barstow, CA for 4 days in 2020. A representative day for each season was chosen.
Data is sourced from NREL’s National Solar Radiation Database (NSRDB, 2024). (A) Spring equinox. (B) Summer solstice. (C) Fall equinox. (D)
Winter solstice.
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rate (represented by current output) throughout the diurnal cycle
that may add complexity in downstream separation processes. In the
other, multiple electrolyzers are employed, where additional
electrolyzers, connected in parallel, are turned on only after a
particular power threshold (as defined by the current-voltage
profile and associated selectivity) is reached (Figure 4B). This
configuration will result in lower power efficiency and individual
electrolyzer capacity factor, but may reduce the complexity and cost
of the downstream separation processes. For a single product
reaction, the first configuration may be advantageous to
maximize total product output. Conversely, the second
configuration may be more compatible with multi-product
reactions where consistent product streams will lower separations
costs. Designing the appropriate reactor for solar-driven fuel
formation will require further technoeconomic studies to balance
electrolyzer cost versus the cost of downstream separation.

Key areas of research for outdoor solar
fuels device operation

Understanding the performance of electrochemical solar fuels
reactors under fluctuating, outdoor, diurnal conditions will be
important in advancing the field. To tackle the reaction-specific
challenge of selectivity during diurnal cycling, catalysts for multi-
product reactions with high selectivity for a desired product over a
wide range of potentials are needed (Chen et al., 2021; Lim et al.,
2023). Coupled with the careful design of photoactive components,
this can mitigate variations in the composition of the outlet product
stream during daytime operation and reduce the downstream costs
of product separation. To promote long-term cycling stability,
reports on durability of existing and novel electrocatalysts under
outdoor-like and cycling conditions are encouraged. Potential
methods for evaluating this stability include coupling in-situ
characterization techniques, such as online ICP-MS, to longer

electrochemical measurements which more accurately represent a
full 24 h diurnal cycle (Pishgar et al., 2021; Popović et al., 2020).
Identifying electrocatalytic changes which occur as potential is
cycled is a crucial first step to designing durable catalysts and
informing the design of appropriate “off” conditions for solar
fuels devices. To enable comparison of various electrocatalysts
under simulated outdoor conditions, there is a need to develop
standardized durability testing methods representative of these
conditions, focusing both on voltage changes and temperature
changes driven by meteorological effects — these methods should
address all three diurnal timescales (days, hours, and minutes/
seconds). Similar experiments should also be conducted with
temperature cycling to gain insight into the role of temperature
on performance stability and to identify failure mechanisms under
isolated conditions of potential and temperature cycling (Garbe
et al., 2021; Tomić et al., 2023). Electrochemical systems designed for
stability under these isolated potential and temperature conditions
can then be advanced to outdoor performance tests.

Another critical aspect for the future outdoor, diurnal operation
of solar fuels devices is the need to define standardized metrics and
benchmarks to enable comparison across studies. Of particular
importance are the parameters for evaluating electrocatalysts and
membranes under the experimental regimes detailed above. For
example, stability could be reported in relative values of loss (e.g., %
activity loss over n cycles, % catalyst loss over n cycles) to remove
differences derived from variable initial electrochemical systems
[e.g., different catalyst loading, electrochemical active surface area
(ECSA)] (Edgington and Seitz, 2023; Lopes, 2023). Another metric
that must be considered for diurnal operation is diurnal solar-to-fuel
conversion efficiency. Under outdoor, diurnal conditions, this
calculation is complicated by changes in temperature,
illumination, selectivity, and activity. Thus, there is a need to
develop standardized methods for analyzing and comparing solar
fuels performance across studies, as exists for PV systems
(Kratochvil et al., 2004).

FIGURE 4
Possible configurations for operation of electrochemical solar fuels reactors over one diurnal cycle. (A) One electrolyzer operates constantly
throughout the diurnal cycle. (B) Multiple electrolyzers, connected in parallel, are powered up or powered down to drive operation in narrow
current regimes.
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Conclusion

The design and performance of electrochemical solar fuels
systems must necessarily reflect the outdoor, diurnal conditions
in which they will operate. We have identified three timescales of
relevance for to outdoor operation and diurnal cycling (days, hours,
and minutes/seconds) and discussed the challenges which arise with
each of these timescales from the perspective of reaction-
independent and reaction-specific challenges. To design solar
fuels systems capable of maintaining performance outdoors over
diurnal cycles, it is crucial to understand the operation constraints
imposed by this variability and to design electrochemical and
photovoltaic components, as well as reactors, which are capable
of withstanding fluctuating conditions. A well-engineered solar fuels
systemmust be designed to manage its own circadian rhythm, much
like a biological organism, to properly respond to changes in external
conditions and to maintain performance dynamically over long
timescales. The challenge of stable outdoor operation must be
addressed for deployable solar fuels technologies to become
reality, and the advances driven by this research should be
mutually beneficial to a range of electrochemical systems.
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