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ABSTRACT As conventional direct connections of synchronous generators are being phased out, inverter-
based resources (IBRs) with grid support functions are increasingly being integrated into power systems.
This transition requires the development of accurate dynamic models for IBRs to predict how power systems
will adapt to varying levels of IBRs penetration, establish grid code requirements, and ensure compliance.
This study introduces an active probing signal-based data-driven modeling technique to accurately
derive the dynamics model of a smart photovoltaic inverter operating in Volt-Watt and Freq-Watt modes,
in compliance with the IEEE 1547-2018 standard. The paper focuses on investigating how the dynamics
of the PV inverter model respond to fluctuations in solar irradiance, utilizing real-time digital simulator
experimentation. The experimental analysis demonstrates that the amplitude of dynamics fluctuates with
changes in irradiance across both operational modes and confirms the active power’s dependence on
irradiance levels. Furthermore, the nature of inverter dynamics varies distinctly between the different
modes of activation. Critically, our findings indicate that dynamic models require DC-gain adjustments to
accommodate contrasting irradiance levels, highlighting a negative gradient linear relationship between the
DC-gain of each model and the irradiance.

INDEX TERMS Data-driven modeling, IEEE 1547-2018, PV inverter dynamics, real-time digital simulator,
solar irradiance.

NOMENCLATURE
COTS Commercial-Off-the-Shelf.
GOF Goodness of Fit.
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GSFs Grid Support Functions.
IBRs Inverter Based Resources.
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PV Photovoltaic.
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PECs Power Electronic Converters.
RTDS Real-Time Digital Simulator.
SysId System Identification.
TF Transfer Function.

I. INTRODUCTION
Inverter-based systems are becoming increasingly popular,
with solar photovoltaic (PV) and wind being the most com-
monly used resources. However, as synchronous generators
are phased out to maximize generation from these systems,
the grid’s stability is weakened, leading to voltage/frequency
stability issues [1], [2]. To address this problem, grid support
functions (GSFs) are added to inverter-based resources
(IBRs) at transmission and distribution levels. Inverters
equipped with GSFs such as Volt-Watt, Volt-VAr, Freq-
Watt, and voltage/frequency ride-through capabilities are
designed to offer voltage and frequency ancillary services
under the IEEE 1547-2018 standard for IBRs [3]. Precise
dynamic models of inverters are essential for grid operators,
researchers, system planners, and other stakeholders to
understand how the power systemwill function with different
levels of inverter-based resource penetration and to determine
grid code requirements and additional integration of inverter-
based resources [4]. In addition, well-tested inverter models
are required for advanced inverter-based resource controller
design, optimization, supervision, fault detection, and diag-
nosis techniques [5]. Therefore, accurate, repeatable, and
comparable experiments require precise inverter models to
reduce risks in modern power systems.

Vendor-specific inverter dynamic models vary from manu-
facturer tomanufacturer and are proprietary. This includes the
physical architecture of the inverters, voltage/current control
loop models, phase-locked loop (PLL) models, and GSFs
standards. In power system modeling and simulation studies,
employing vendor-specific models can offer advantages,
particularly when aiming to incorporate equipment from a
specific vendor. Yet, in broader studies where proprietary
models might be inaccessible, data-driven alternatives can
serve as valuable options. These models have the potential to
mitigate errors and enhance the accuracy of results and anal-
yses [6]. Inaccurate modeling, results, and analysis caused
power outages in Great Britain, Australia, and Europe [7], [8].
Moreover, the intermittency of DERs and the complexity of
power systems require regular updates of the dynamic models
of inverters, which are not always feasible with physics-based
models provided by the vendor [9]. This highlights the need
for regularly updated electromagnetic transient models of
grid-supportive power electronics converters (PECs).

PECs can be modeled using various techniques (e.g.,
switching models, linear regression models, neural networks
models, wavelets models, classical models, fuzzy models,
averaged linear models, dynamic phasor models, artificial
neural network (ANN) [10], [11], [12], [13], [14], [15], [16],
[17], [18]). The definitions, advantages, and disadvantages
of each modeling technique is described in the Table 1.

An alternative is using a data-driven approach via active
probing signal-based system identification (SysId) to extract
the inverter’s dynamics model [19]. Data-driven approaches
have demonstrated remarkable abilities and have been uti-
lized in synchronous generator parameter identification [20],
aggregated load model identification [21], control design
– reduced order model identification for power system
stabilizer design [22], sub-synchronous resonance screening
or stability analysis [23], Phasor measurement unit (PMU)
based oscillation mode analysis [24], [25], etc. Few studies
use data-driven approaches to inverter modeling and validate
these models with power hardware-in-the-loop experiments
as they provide flexibility in testing analog test beds or real
systems. Our previous study [26], [27], [28], [29] extracted
the dynamics model of PEC in Volt-VAr mode using active
probing signal-based data-driven model parametrization. The
research examines how using four different probing signals
affects model parametrization and goodness-of-fit (GOF)
when extracting models. However, it does not consider
the PEC dynamics in Volt-Watt and Freq-Watt modes nor
experimentally verify if the inverter’s dynamics change
with activation mode. Observations, measurements, and
simulations can provide insights into the system’s dynamics.
In a data-driven approach, perturbing PECs with properly
designed probing signals is important as it is the only method
to influence the process and learn more about the behavior
of the system [5], [30], [31]. However, the literature does not
discuss the limitations of designing probing signals for PEC
perturbation.

On the one hand, PV power generation is affected by
fluctuations in solar radiation and cloud cover. The amount
of power and current a PV system produces depends
on various factors such as irradiance, temperature, and
DC voltage [32], [33]. To control the active and reactive
power of a PV system, the instantaneous capability curves
of the PV generator must be taken into account, which
changes with the level of irradiance, temperature, and
other environmental variables [34], [35]. In addition, the
control strategy and power output of a PV system can be
influenced by external factors. Different modeling techniques
exist, such as dynamic PV models [36], irradiance-based
performancemodels [37], bifacial PV irradiancemodels [38],
machine learning-based models [39], and concentrated solar
power models [40]. These modeling approaches demonstrate
how the level of irradiance can affect the output of
individual models. However, there is a gap in the literature
regarding the study of inverter dynamics and how inverter
dynamic models are affected by varying levels of solar
irradiance.

The main objective of this paper is to explain the process
of extracting dynamic models of a COTS inverter using an
experimental setup while activating the Volt-Watt and Freq-
Watt modes. It also examines how the dynamics change
when different GSFs are activated. Additionally, the paper
discusses the design criteria for generating probing signals
to perturb the COTS inverter. Finally, the paper also explores
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TABLE 1. Summary of power electronic converter model type definitions, advantages, and disadvantages.

the relation between dynamic models of the PV inverter and
varying irradiance levels through real-time digital simulator
(RTDS) experimentation.

The rest of the paper is organized as follows: Section II
presents the modeling of the COTS inverter dynamics

with GSFs. Section III presents the experimental setup for
identifying the reduced order dynamic models of a two-
wire single-phase inverter (SMA inverter) operating in the
Volt-Watt and Freq-Watt modes. The results are shown in
Section IV, and Section V concludes the study.
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II. MODELING COTS INVERTER DYNAMICS WITH GSFS
This section provides an overview of GSFs from the IEEE
1547-2018 standard. It highlights the concept of partitioned
modeling for extracting the non-linear dynamics of the PV
inverter operating in the Volt-Watt and Freq-Watt modes.
In addition, this section also explains the design criteria of the
probing signal used in SysId and its algorithm. Furthermore,
the process of employing SysId to develop a detailed COTS
inverter dynamics model will be explained along with a
flowchart to determine the transfer function (TF) of inverter
dynamics.

A. OVERVIEW OF GSFs FROM IEEE 1547-2018 STANDARD
Several GSFs for IBRs are being added for supplementary
voltage and frequency services [43]. This paper focuses on
two different modes of operation of an inverter, namely the
Volt-Watt and the Freq-Watt modes. However, the proposed
method presented in this research analysis can also be
extended to other GSFs of an inverter.

1) VOLTAGE-ACTIVE POWER (VOLT-WATT) FUNCTION
According to the updated IEEE 1547-2018 standard, when
the Volt-Watt [4] function of an inverter becomes activated,
the inverter must actively limit the maximum active power
of IBRs (Prated ) as a function of voltage by using the linear
characteristics curve of voltage-active power in parts as
represented in Fig. 1. The inverter responds appropriately
to the Volt-Watt characteristics curve by curtailing its active
power feed-in when the grid voltage fluctuates and operates
above a predetermined threshold value (V1). However, when
the grid voltage exceeds the upper limit voltage (V2), the
inverter ceases to inject active power into the grid.

FIGURE 1. The Volt-Watt characteristics curve depicts several regions and
ranges.

2) FREQUENCY-ACTIVE POWER (FREQ-WATT) FUNCTION
Like as in Volt-Watt mode, when the Freq-Watt function [4]
of an inverter is activated, an inverter shall actively limit the
Prated of an IBRs as a function of frequency using the linear
characteristics curve of frequency-active power in pieces as
represented in Fig. 2. The inverter responds appropriately to
the frequency-active power characteristics curve by altering
its active power feed-in when the grid frequency fluctuates

and goes above a predetermined threshold (F1) by a defined
gradient. However, when the grid frequency equals the upper
bound frequency (F2), the inverter ceases to inject active
power into the grid.

FIGURE 2. The Freq-Watt characteristics curve depicts several regions and
ranges.

B. PARTITIONED MODELING OF VOLT-WATT/FREQ-WATT
The complicated dynamics of an entire operating region of a
Volt-Watt/Freq-Watt mode cannot be adequately captured by
a single linearized model as there are non-linearities in the
PECs, leading to intricate dynamic models when modeling
PECs with GSFs [42], [44]. Therefore, the complicated
operating regions are split into numerous small linear areas.
Based on the voltage and frequency magnitude availability,
each region (represented by R) is divided into several small
ranges (represented by r). Ranges are selected based on
the resolution of the measurement devices. The regions
and ranges of the Volt-Watt and Freq-Watt characteristics
curves are shown in Fig. 1 and Fig. 2, respectively. The
term r1k represents the range in which the first index
shows the region and the second represents voltage/frequency
amplitude change, respectively.

C. DATA-DRIVEN MODEL PARAMETRIZATION USING
SYSTEM IDENTIFICATION
The SysId technique determines a linear TF for each small
range. SysId is obtaining a mathematical model of an
unknown system based on the input and the corresponding
output dataset. The input and output datasets obtained from
simulation or experimentation are subdivided into training
and testing datasets. The poles and zeros are varied from
a second-order to a fifth-order model to create distinct
linearized models that are both accurate and computationally
efficient [26]. These models, characterized by their respec-
tive poles and zeros, are compared using Akaike’s Final
Prediction Error (AFPE), and the model with the lowest
AFPE which is second order is selected as the final TF
model for each range [43]. A SysId toolbox available in
MATLAB [45] or a user-defined SysId algorithm can be
utilized to approximate the model of an unknown system.
The training datasets are used to estimate the parameters
(i.e., the coefficient of a TF) of an unknown dynamic
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system by minimizing a defined cost function (e.g., Least
square error) [46]. The testing datasets are used to validate
the obtained TF. The quantification of the performance of
an unknown dynamic model is accomplished through the
computation of GOF. The fit of the model can be calculated
using a metric such as the normalized root-mean-square-error
(NRMSE) defined as [47]:

NRMSE =

 ∥∥ŷ(t)− y(t)∥∥2
√
N

(
max(ŷ(t))−min(ŷ(t))

)
 (1)

GOF = (1− NRMSE)× 100% (2)

where, ∥.∥2 represents Euclidean norm, y(t) is the actual value
of data considered, ŷ(t) is the estimated value of data and N
is the number of data point considered. The Flowchart for
data-driven model parametrization using SysId to determine
the TF of a COTS inverter operating in Volt-Watt and Freq-
Watt mode is shown in Fig. 3.

FIGURE 3. Flowchart to carry out data-driven model parametrization
using SysId.

D. PROBING SIGNALS
Perturbing PECs with properly designed probing signals is
essential in a data-driven model parametrization. It is the only
method to influence the process and learn more about the
behaviors of systems [5]. However, the design constraints
imposed by the power system and the concept of positioning
the content of the probing signal in the frequency band of
interest need to be strictly followed while utilizing it as a
perturbation signal [48].

In our previous work on deriving the dynamics model
of a COTS inverter, we designed a probing signal using
a console PC. This signal was then inputted into a power

amplifier simulating a grid, perturbing the PCC voltage.
The inverter’s response was recorded while the Volt-VAr
function was active. The performance of four different
probing signals, namely logarithmic square chirp, square,
sine, and logarithmic sine chirp, were compared [26] and the
logarithmic square chirp signal outperformed other signals
when extracting dynamic models. Therefore, a logarithmic
square chirp signal is used as a probing signal to perturb the
system. The signal has the following fundamental notion:

x(t) = A square(wt) (3)

Here, x(t) is the logarithmic square chirp signal, A is the
square wave’s peak amplitude, and wt is the phase, which
gets updated according to the trapezoidal method indicated
in the following Eqn. 4.

(wt)k = (wt)k−1 +
tk − tk−1

2
× 2× π × (f(tk ) + f(tk−1))

(4)

where (wt)k−1 and (wt)k represent previous and current time
instant phase angle, tk−1 and tk are the time at discrete instant
k − 1 and k , f(tk ) and f(tk−1) are the frequency at tk and tk−1
respectively. Similarly, the frequency f(tk ) is defined as in:

f (tk ) = f0 ×
f0
f1

( 1T )
tk

(5)

where f0, f1, and T represent the chirp signal’s starting
frequency, final frequency, and time length, respectively.

Algorithm 1 Probing Signal Generation
Input: Peak amplitude (A) of the signal based on
signal-to-noise ratio
Calculate dominant system time constant (τsystem)
Calculate final frequency (f1) ≈ 1

2×Th
≈

1
2×τsystem

Initialization:
Starting frequency (f0)←

f1
10

Percentage rate of exponential change of frequency
← D%
if τmodel ̸= τsystem then

1) Update f0
2) Calculate T ← 1

D%×f0×log(
f1
f0
)

3) Design input signal and perturb the system
4) Collect input and output datasets
5) Apply data-driven model parametrization

using SysId algorithm
6) Calculate time constant of derived model (τmodel)

else
Accept the designed probing signal and the
identified model.

end

1) DESIGN CRITERIA OF CHIRP SIGNAL
Based on the fundamental explanation of the signal, the
design criteria of the chirp signal presented in this paper are
f0, f1, T , and A.
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FIGURE 4. Graphical representation of logarithmic square chirp signal.

a: FINAL FREQUENCY (F1)
The parameter f1 is the final frequency of the chirp signal.
In other words, it is the frequency at which the designed
signal will have minimum hold time (Th) (i.e., the shortest
period for which the signal stays constant). However, Th of
the signal should neither be chosen too small nor too large.
If it is selected too small, the process will have no time to
settle, and themodel identified from such data will not be able
to describe the static behavior well. Similarly, if selected too
large, it would overemphasize low frequencies, and the model
obtained might not properly capture the process behavior
as the data contains no information on them. Hence, it is
reasonable to choose the minimum Th approximately equal
to the time constant (τsystem) of the system [5]. Hence, the
final frequency of the signal can be obtained as follows:

f1 ≈
1

2× Th
≈

1
2× τsystem

The multiplication of 2 in the f1 equation is carried out to
consider the signal’s total ON and OFF time.

Furthermore, to determine τsystem, the system is given a
step input and the system’s settling time (ts) is calculated.
Depending on the tolerance band considered, τsystem can be
calculated as [49], [50]:

τsystem =
ts
3

(for 5% tolerance band)

τsystem =
ts
4

(for 2% tolerance band)

b: STARTING FREQUENCY (F0)
The minimum frequency of a chirp signal, f0, is selected
iteratively until the time constant of the predicted model
(τmodel) matches τsystem as indicated in Algorithm 1.

c: TIME LENGTH OF SIGNAL (T )
The time length of the chirp signal, T , is expressed as the
time between two particular instantaneous frequencies f0 and
f1 and is expressed as [51]:

T =
1

D%× f0 × log(
f1
f0
)

where D is the percentage rate of exponential change in the
signal frequency.

d: PEAK AMPLITUDE OF SIGNAL (A)
The peak amplitude of the logarithmic square chirp signal,
A, should be chosen considering the signal-to-noise ratio [9],

which varies depending on the system. It should be carefully
chosen so that the output signal incorporates the least amount
of noise possible after perturbing the system with designed
signals. Poor selection may necessitate using other filters to
remove noise, which will be covered in more detail in the
results and analysis section. The algorithm for designing the
probing signal for data-driven model parametrization is given
in Algorithm 1.

E. DC-GAIN OF A TRANSFER FUNCTION
DC-gain of the system is defined as the gain of the system
when the frequency is zero. The DC-gain of the transfer
function can be determined by comparing the given transfer
function with the standard time constant form, which is
represented below:

G(s) =
K × (1+ sτ1)(1+ sτ2)(1+ sτ3) . . . . . . (1+ sτn)
sn(1+ sτ ′1)(1+ sτ

′

2)(1+ sτ
′

3) . . . . . . (1+ sτ
′
n)

Here, K is the DC-gain of the system, τ and τ ′ are the
time constants of the system, and n is the order of the system.
In another way, K can be obtained as [52]:

K = lim
s→0

snG(s). (6)

III. EXPERIMENTAL SETUP
An RTDS experimentation setup can be used to test
COTS inverters under IEEE 1547-2018 standard voltage
and frequency settings. The test equipment used in this
experiment is a commercial single-phase 5 kWSMA inverter,
whose dynamic model will be determined when operating in
Volt-Watt and Freq-Watt modes. The experimental setup to
determine the dynamics of an SMA with GSFs is depicted in
Fig. 5.

FIGURE 5. Experimental setup to determine TF of SMA operated in
Volt-Watt and Freq-Watt mode. The SMA is probed through a power
amplifier unit controlled through an Opal-RT RTDS.

The experimental setup consists of a rooftop PV system
(23 kW), a single-phase 5 kW SMA inverter, a Puissance
Plus Power Amplifier (acting as a grid), an OP5707 RTDS,
a Cannon Resistive Load Bank, and a console PC. The RTDS
and power amplifier, combined with a console PC, were
used to perturb the voltage and frequency at the point of
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common coupling (PCC). A Cannon Resistive Load Bank
was connected at the PCC to utilize the PV power while
protecting against reverse power flow to the power amplifier.
A console PC was used to design the probing signal to
perturb the voltage and frequency amplitudes at the PCC.
The MATLAB/Simulink model of the probing signal was
built, compiled, and loaded into the OP5707 RTDS, which
was interfaced with the console PC to generate variable
voltage and frequency amplitudes at the power amplifier
input terminals. The console PC and RTDS communicated
using the transmission control protocol/internet protocol.
A power amplifier that received a small analog probing signal
from the RTDS at its input terminals produced an amplified
probing signal at its output terminals. The perturbed voltage
and frequency amplitude in the PCC of the power amplifier,
along with the current injected into the grid by the SMA, were
recorded to capture the dynamics of the inverter.

To capture the dynamics of an inverter operating in either
Volt-Watt or Freq-Watt mode, the corresponding modes were
activated by selecting Volt-Watt or Freq-Watt settings based
on the IEEE standard in the inverter. The procedure for
turning on any mode in the SMA inverter is described in [53].
The logged corresponding output voltage at the PCC, the
current injected from the inverter to the grid, and irradiance
were passed through the RTDS system. The SysId toolbox
available in MATLAB/Simulink was used to implement the
SysId technique described in the previous section. The TF to
be identified from the given data set is described below:

G(s) =
1Output
1Input

=
bmsm + bm−1sm−1 + . . .+ b0
ansm + an−1sn−1 + . . .+ a0

(7)

The terms bm..b0, an..a0 are the respective coefficients of
the TF to be estimated from the recorded dataset.

FIGURE 6. Step input given to actual system (SMA inverter). Several
ranges of step input signals were provided, and the data were recorded.
Focus only on the red rectangular box.

A. PARAMETERS SELECTION FOR DESIGNING PROBING
SIGNAL
To determine the optimal parameters for a probing signal,
the τsystem was evaluated by applying a step input to an
inverter and observing the resulting output response. For this
purpose, the Volt-Watt/Freq-Watt characteristic curves of the
SMA inverter were set according to the IEEE 1547-2018
standard specified in Table 2. Initially, we will delve into the

TABLE 2. Load and SMA Inverter Parameters.

parameters needed to design the probing signal in Volt-Watt
mode. The step input was given to the system to lay within
the desired region (either R1 or R2), as indicated by the red
rectangular box in Fig 6. For instance, the voltage input was
changed from 1.0 to 1.04 p.u. in the case of R1. The voltages
within these ranges do not activate the voltage-active power
function or the Volt-Watt mode as V1 was set at 1.045 p.u.
Similarly, the voltage input was changed from 1.1 to 1.05 p.u.
in the case of R2, as the voltage within these ranges activates
the Volt-Watt mode of an SMA inverter.

FIGURE 7. Corresponding response from SMA inverter after giving step
input in the form of (Fig. 6).

When the Volt-Watt mode of an inverter is activated, the
direct-axis current (id (A)) injected by the inverter is recorded
and is depicted in Fig. 7. The voltage was changed from 1.0 to
1.04 p.u., where id (A) requires (188.6 s−188.2 s = 0.4 s) to
settle to its steady-state value. This time was considered as a
ts, and τ of R1 was calculated as 0.1 s. Similarly, the voltage
was changed from 1.1 p.u. to 1.05 p.u., where the inverter
id (A) response requires (272 s− 265 s = 7 s) to settle to its
steady-state value. This time was considered a ts, and the τ of
R2 was calculated as 1.75 s.

To ensure coverage of the entire operational range with a
single designed probing signal, the maximum and minimum
frequency of the chirp signal were determined based on the
smallest and largest τ between R1 and R2, respectively.

Hence, the logarithmic square chirp signal, f0 and f1, were
taken as 0.5 Hz and 5 Hz, respectively. Due to the buffer
size constraints imposed on the OP5707 RTDS, D of a chirp
was taken as 5%, and T of the logarithmic square chirp
signal was calculated as 15 s. The same approach was used to
calculate the f0 and f1 of the chirp signal required to perturb
an inverter while activating Freq-Watt mode. However, the
frequencies designed for the Volt-Watt mode probing signal

VOLUME 12, 2024 164143



B. Poudel et al.: Experimentation in Exploring Photovoltaic Inverter Dynamics

TABLE 3. Parameters of sq-chirp signal for Volt-Watt and Freq-Watt
modes of operation under IEEE 1547-2018 standards.

can be applied in the context of Freq-Watt mode, as the
probing signal frequencies for Freq-Watt mode fall within the
range of 0.5 to 5 Hz.

The voltage amplitude of the logarithmic square chirp
probing signal was increased from 1 p.u. to 1.01 p.u. for
15 seconds, then was further increased by 0.005 p.u. until it
reached 1.095 p.u. while the Volt-Watt mode was activated.
A step-change of 0.01 p.u. was used based on the available
voltage range in the Volt-Watt mode. Lowering the amplitude
below 0.01 introduced noise, which can be removed by using
a bandpass filter. It is important to note that the frequency
was kept constant at 1 p.u. while the Volt-Watt mode was
activated.

Moreover, the frequency amplitude of the logarithmic
square chirp probing signal was changed from 1 p.u.
to 1.001 p.u. for 15 s. The frequency amplitude was then
increased by 0.0015 p.u. for the following range until it
reached 1.0370 p.u. while activating Freq-Watt mode. Based
on the availability of the frequency range (60 - 62 Hz) in the
Freq-Watt mode, a 0.001 p.u. step-change was used. While
analyzing the Freq-Watt mode, lowering the amplitude below
0.01 results in noisy output measurement; thus, a bandstop
filter was used to eliminate the noise. Similarly, the voltage
amplitude remains constant at 1 p. u. while activating
the Freq-Watt mode. Table 3 shows the probing signals
parameters used to perturb the voltage and frequency at
PCC while activating the Volt-Watt and Freq-Watt modes,
respectively.

IV. RESULTS AND ANALYSIS
The impact of varying irradiance in the dynamics model
was analyzed with an experiment carried out over three
contrasting irradiance level conditions: morning (around
10 a.m.), mid-day (around 2 p.m.), and evening (around
5 p.m.). The input, output, and irradiance datasets were
logged for further analysis. The second-order TF was utilized
to represent the overall dynamics of the SMA inverter
using the logged input and output data set as it satisfies
both accuracy and computing complexity requirements [54].
Due to the sporadic irradiance, the mean value of the
irradiance data was considered. When the Volt-Watt mode of
an inverter was activated, the mean value of the irradiance
collected over 400 s during morning, mid-day, and evening
were approximately 600, 980, and 520 W/m2, respectively.
Similarly, another day was considered while activating Freq-
Watt mode, where the mean value of the irradiance level
collected over 500 s in the morning, mid-day, and evening
were approximately 310, 460, and 260 W/m2, respectively.

FIGURE 8. Logarithmic square chirp signal used to perturb the voltage at
PCC.

The NRMSE technique was utilized to validate the obtained
TF.

A. CASE-I: VOLT-WATT MODE
During three contrasting irradiance level conditions, the
voltage amplitude at PCC was perturbed using the logarith-
mic square chirp signal (Fig. 8), which varies the voltage
amplitude of PCC from 1 - 1.095 p.u., respectively. The actual
response of the inverter (iinvd ) after perturbation was noted
and is depicted in Fig. 9 (a-c).

FIGURE 9. iinvd from (a)-(c) is the actual response of an inverter when
perturbed by a logarithmic square chirp signal while activating Volt-Watt
mode during three irradiance level conditions (i.e., morning, mid-day, and
evening) and iinvd − TF from (a)-(c) is the response of an SMA inverter
when adjusted morning TF, mid-day TF, and adjusted evening TF are
perturbed by logarithmic square signal respectively.
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Partitionedmodelingwas employed to obtain the TFmodel
of inverter dynamics, as explained in Section II-B. Based on
the time length of the logarithmic square chirp signal, regions
R1,R2, andR3 datasets were divided into eight, nine, and three
smaller ranges, respectively. The optimal separations of the
range of region are based on the time length of the probing
signal (15 s), the amplitude of the probing signal (0.01), and
the step change (0.005). The mid-range data (r13, r24, and
r31) were used to obtain the TF of the respective regions. The
analysis of region R3 is not considered because the Volt-Watt
mode of the SMA inverter was turned off, preventing the
SMA from absorbing/injecting any active power in that
region. The SysId algorithm was then developed, utilizing
70% of (Vabc_ref and its corresponding mid-day iinvd ) as the
input and output data, respectively, and the TF model of the
inverter dynamics was obtained.

FIGURE 10. Pole-Zero Plot for Morning, Mid-day, and Evening TF of R1.

The coefficient of the TF model of R1 and R2 during three
contrasting irradiance level conditions is tabulated in Table 4.
The estimated TF GOF was calculated and found within the
acceptable limit (≥ 90%) for each dynamic model.
The poles and zeros of the given transfer functions offer

valuable insights into the system’s behavior at different times
of the day and their relationship with irradiance levels. For
interpretation, the poles and zeros of R1 are considered
and are plotted in Fig. 10. Zeros at ≈ −2.35, −2.49, and
−2.33 for the three irradiance levels indicate a consistent
frequency at which the system output is zero throughout the
day. Similarly, the fast and oscillatory response (poles at
−19.7± 2.12j) suggests the system quickly reacts to changes
in irradiance, reflecting the dynamic nature of moderately
high irradiance in the morning. The combination of fast and
slower responses (poles at −29 and −13) indicates a more
complex response, meaning the system manages high and
relatively stable irradiance with a balanced response to both
rapid and gradual changes during mid-day. Likewise, the
fast and oscillatory response (poles at −19.3 ± 4.96j) in
the evening is similar to the morning but slightly slower.
This slower response could reflect the diminishing light and

FIGURE 11. Bode response of TF model of R2 obtained during three
different periods of the day while activating Volt-Watt mode before
adjusting the DC-gain in TF model of morning and evening.

TABLE 4. Summary of transfer function models of three time periods of
the day while activating the Volt-Watt mode of the inverter.

energy levels as evening approaches, necessitating a steadier
system response. Similarly, the model coefficient of R2 can
be interpreted.

To avoid redundancy and focus primarily on the slope area
illustrated in Fig. 1, the model of R2 will be considered for
further analysis. The Bode responses of the obtained TF of
R2 for themorning,mid-day, and evening scenarios are shown
in Fig. 11. The Bode response indicates that dynamic models
rely on different irradiance-level conditions as the gain of
each model’s Bode response does not coincide. Variations in
irradiance can alter system behavior, affecting performance,
model accuracy, control, and optimization. Accounting for
these variations is crucial for accurate system understanding
and control under different conditions. This paper excludes
the Bode response of R1. However, it follows a trend similar
to that of R2.

1) VALIDATION
The remaining 30% of the datasets were reserved for valida-
tion purposes. Initially, the data were inputted into individual
TF representing morning, mid-day, and evening periods, and
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the GOF was calculated, falling within acceptable bounds
(≥ 90% for each case). To validate the models further,
we employed a mid-day model as a baseline and applied
it to morning and evening irradiance conditions. However,
adjustments were made to the models using a parameter
denoted as K . The K value for each model was determined
using Equation 6 (i.e., 6 (i.e., b0/a0)), resulting in values
of -23.87, -38.71, and -20.65 for the morning, mid-day,
and evening dynamic models, respectively. This adjustment
involved scaling the morning and evening models relative
to the mid-day model, leading to adjusted models for each
period. The adjusted morning TF can be calculated as
DC-gain of morning TF
DC-gain of mid-day TF × mid-day TF, whereas the mid-day TF
will remain the same as we have taken mid-day TF as
reference for scaling ofmorning and evening TF, and adjusted
evening TF can be calculated as, adjusted evening TF =
DC-gain of evening TF
DC-gain of mid-day TF × mid-day TF. The adjusted morning
model will be (−23.87

−38.71 ) × mid-day TF and the adjusted
evening model will be (−20.65

−38.71 ) × mid-day TF. These
adjusted transfer functions were then used to analyze the
corresponding morning, mid-day, and evening datasets. The
resulting output responses are depicted in Fig. 9 (a-c) (iinvd −
TF). GOF was then calculated, yielding values of 93.71% in
the morning, 98.43% in the mid-day, and 94.53% in evening
scenarios. This analysis suggests that the dynamic behavior of
the inverter remains consistent throughout the day, although
adjustments to the parameter K are necessary to account for
variations in irradiance levels, indicating its dependence on
irradiance.

FIGURE 12. Logarithmic square chirp signal used to perturb the
frequency at PCC.

B. CASE-II: FREQ-WATT MODE
Similar to Case-I, the setting of the Freq-Watt mode of
the inverter was made accordingly to the Freq-Watt setting
indicated in Table 2, and then the frequency at the PCC
was perturbed using the logarithmic square chirp signal as
a probing signal (Fig. 12) at three contrasting irradiance level
condition.

The iinvd after perturbation was recorded and is shown in
Fig. 13 (a-c). The response included noise due to limitations
in the frequency range (60–62 Hz) and a low perturbation
signal amplitude of 0.001 p.u. (0.6 Hz), failing signal-to-noise
ratio criteria. A band-stop filter was designed to mitigate
the noise, whose frequency is between 119 Hz and 123 Hz.

FIGURE 13. iinvd from (a)-(c) is the actual response of the inverter when
perturbed by a logarithmic square chirp signal, iinvd − Filt from (a)-(c) is
the filtered response after incorporating band-stop filter and iinvd − TF
from (a)-(c) is the response of an SMA inverter when adjusted morning TF,
mid-day TF and, adjusted evening TF, is perturbed by logarithmic square
chirp signal respectively.

TABLE 5. Summary of transfer function models of three time periods of
the day while activating Freq-Watt mode of inverter.

The filtered response (iinvd − Filt) is shown in Fig. 13 (a-c)
respectively.

To model inverter dynamics based on the frequency
settings (listed in Table 2), regions R1, R2, and R3 were
divided into seven, ten, and two smaller ranges, respectively.
In the case of the Freq-Watt mode, the analysis of regions
R1 and R3 will be discarded, as the SMA inverter will prevent
absorbing/injecting any active power in those regions.

A similar procedure, as explained in the Volt-Watt mode,
was employed to obtain the TF model using mid-day,
morning, and evening datasets. The model coefficients for
each scenario are listed in Table 5. The Bode responses
of the obtained TF of R2 for the morning, mid-day, and
evening irradiance scenarios are shown in Fig. 14. Bode’s
response showed that to make one model a generic model for
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FIGURE 14. Bode response of TF model of R2 obtained during three
different periods of the day while activating Freq-Watt mode before
adjusting the DC-gain in TF model of morning and evening.

FIGURE 15. Variation of K of TF with irradiance while activating Volt-Watt
mode.

contrasting irradiance level conditions, it has to undergo K
adjustments.

After determining the K of each model, the mid-day
model undergoes K adjustment, and the adjusted morning
and evening TF was then determined, much like in Volt-
Watt mode. The adjusted morning, mid-day, and evening TF
feed the morning, mid-day, and evening data. The output
responses are shown in Fig. 13 (a-c) (iinvd − TF). The
GOF of R2 was then calculated, which was 93.14% in the
morning scenario, 95.34% in the mid-day scenario, and
91.32% in the evening scenario. This analysis also suggests
that the dynamic behavior of the inverter remains consistent
throughout the day, although adjustments to the parameter K
are necessary to account for variations in irradiance levels,
indicating its dependence on irradiance. Depending on the
mode of activation of GSFs, the nature of dynamics varies.
For instance, consider the Volt-Watt and Freq-Watt dynamics.

C. LINEAR DEPENDENCY OF DC-GAIN OF THE MODEL
WITH IRRADIANCE
Our next step aimed to establish a relationship between the
K of the model and irradiance, as irradiance can be easily
measured using devices like a pyranometer. We observed the
negative gradient linear relationship between the K of the
model and irradiance mean.

FIGURE 16. Variation of K of TF with irradiance while activating Freq-Watt
mode.

For further verification, the input, output, and irradiance
data at three periods of the day (these days considered are
different from those of result and analysis) were logged on
while activating the Volt-Watt and Freq-Watt modes. As the
experiment was carried out under relatively stable irradiance
conditions—with fluctuations limited to a narrow range
compared to the larger variations observed on cloudy days
and themean value of irradiance was computed and a box plot
of irradiance was plotted as depicted in Fig. 15 and Fig. 16
respectively. The data-driven model parametrization in new
input and output datasets obtains the model. The new K of
each of the models was computed for each mean irradiance
level and is shown in Fig. 15 and Fig. 16 respectively.
By analyzing the average irradiance and the corresponding
K value of the model at that time, it can be concluded that K
increases as irradiance increases and decreases as irradiance
decreases. This observation is consistent whether activating
the Volt-Watt or Freq-Watt mode.

We attempted to correlate the average irradiance level with
the K of the model obtained at that time while activating
the Freq-Watt or Volt-Watt mode. For each scenario-morning,
mid-day, and evening-theK of the model showed a consistent
negative gradient relationship with the mean irradiance level.
i.e.,

K = −
1
B
× Irradiance

Here, B is a gradient variable that links K to the mean
irradiance. B is calculated based on the computed K and
mean irradiance for mid-day, morning, and evening, and
remains consistent for each period despite varying irradiance
and K values. For example, in Fig. 15, the morning mean
irradiance is 471.0W/m2 and K is -18.57, yielding a ratio of
approximately -25. Similarly, during mid-day, the irradiance
is 543.0W/m2 and K is -21.96, with a ratio of approximately
-25. In the evening, the mean irradiance is 358.0 W/m2 and
K is -14.18, resulting in a ratio of about -25. For the inverter
under test, B is 25 when activating the Volt-Watt mode,
and 5 when activating the Freq-Watt mode. This analysis
concludes thatK for eachmodel has a negative gradient linear
relationship with irradiance, depending on the activation
mode. However, the gradient value may vary depending on
the manufacturer, which will be explored in future research.
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V. CONCLUSION
This paper outlines a method for developing a dynamicmodel
of COTS inverters through real-time digital experimentation,
focusing on Volt-Watt and Freq-Watt modes. It details the
creation of probing signals for perturbing the inverter and
examines dynamic variations across different GSFs at various
irradiance levels. The results indicate that while the dynamics
remain consistent throughout the day, activation of different
modes results in distinct dynamic adaptations, with the mag-
nitude of dynamics varying based on irradiance conditions.
Data-driven modeling was used to develop dynamic models
under three distinct irradiance conditions, with each model
achieving a GOF greater than 90%. The peak irradiance
model (mid-day model) for Volt-Watt mode was successfully
scaled to match morning and evening data, yielding GOF
values of 93.71% and 94.53%, respectively. Similarly, the
peak irradiance model for Freq-Watt mode was scaled to fit
morning and evening data, achieving GOF values of 93.14%
and 91.32%. This scaling was accomplished by adjusting
the DC gain of the mid-day model. As the experiment was
conducted under relatively stable irradiance conditions-with
fluctuations limited to a narrow range compared to the
larger variations observed on cloudy days—we analyzed the
relationship between the DC-gain of each model and the
average irradiance at the time of measurement. The findings
showed that the DC-gain has a negative gradient correlation
with mean irradiance, with different gradient values for
the Volt-Watt and Freq-Watt modes. In conclusion, while
a generic model can be developed, the DC-gain of this
model must be adjusted according to the irradiance level.
These models are valuable for simulation studies, stability
analysis, control design, optimization, parameter estimation,
and fault analysis. Future research may investigate variations
in these negative gradients across different inverter models
and manufacturers. This study initially used a purely resistive
load for its simplicity and predictability—avoiding the com-
plexities of inductance—future analysis will incorporate both
resistive and inductive load systems to better reflect practical
conditions and will concentrate on multi-input, multi-output
scenarios, which involve the simultaneous activation of
multiple GSFs and the perturbation of multiple variables.

VI. DATA AVAILABILITY
Data are available at [55], which is open source.
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