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Mastery depends on understanding of complex

synthesis pathways...
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...and degrad’tlon behavior in real-world
e-xtréme emlronments
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...and degradation behavior in real-world extreme
environments.

Collision cascade in borosilicate glass

D.A. Kilymis et al. ] Non-Cryst Solids. 432, 354-360 (2016). NREL | 6



My research aim is
an ontology of the
materials lifecycle:

“A systematic mapping of
data to meaningful semantic
concepts...” across spatial
and temporal scales

Quote adapted from:
https://blog.palantir.com/ontology-finding-meaning-

in-data-palantir-rfx-blog-series-1-399bd1a5971b Kalidindi et al. Ann. Rev. Mater. Res. 45: 171-193. (2015). NREL | 7




In Situ HRTEM During Irradiation Time-Resolved Fourier Filtering

What are the fundamental principles relating interfaces and radiation-induced defects?
* Can we derive an order parameter that describes the disordering process enabling
more robust design of oxide-based devices?
Image Credit: SSA / ESA | Matthews et al. Nano Letters, 21(12), 5353-5359. (2021).



Multi-modal models provide a potentially powerful

window into the materials lifecycle.

Fused Multi-Modal STEM

Schwartz et al. npj Comp. Mater. 8, 16 (2022).

= Mode Optimization in PFM

Amplitude

Analyze structure-property relationship

select channel
Liu et al. npj Comput. Mater. 9, 34 (2023).

Multi-Modal Autoencoders for Materials

Fingerprinting of material state based on a physics-informed multi ial aut
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Can these models inform an order parameter for

the evolution of crystalline materials?
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We examine the effect of initial microstructure and vacancy
content on disordering pathways in La, ,Sr,FeO,.

Pristine Defective

STO

Irradiated with 2.8 MeV Au?* ions
Ter-Petrosyan, A. et al. arXiv (2024). 10.48550/arXiv.2411.09896 NREL | 11




Our goal is to design a
multimodal model
that can incorporate

both imaging and
spectroscopy data.

Ter-Petrosyan, A. et al. arXiv (2024).
10.48550/arXiv.2411.09896
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STEM-HAADF Images

Pristine Defective

Cr Cap

Unirradiated LFO

Each STEM pixel is sto (8
registered to an EDS

spectrum that PCap gy
Irradiated

together encode o1dem L

structure and sto [

composition.

Per-pixel EDS spectra
Incredibly sparse signal!

Counts

Ter-Petrosyan, A. et al. arXiv (2024).

10.48550/arXiv.2411.09896 NREL | 13
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Here we will focus on a few-shot based

approach to classification.
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For the “pristine” sample, the ensemble model outperforms,

especially in more complex microstructures.
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The “defective” sample, which consists of more

complex domains, shows this even more clearly.
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The resulting EDS segmentation mask can be

guantified using a custom analysis routine.

(9, 4) EDS Signal Benchmarked to known substrate stoichiometry

Intensity

Open source Python framework for exploring, visualizing
and lyzing multi-di jonal data

HyperSpy™

Ter-Petrosyan, A. et al. arXiv (2024). 10.48550/arXiv.2411.09896 | https://hyperspy.org/index.html NREL | 18



From the predicted
masks, we can
determine local
lattice parameters
and composition
changes.

Ter-Petrosyan, A. et al. arXiv (2024).
10.48550/arXiv.2411.09896

LFO - Order

EDS Prediction Plot

Disorder

LFO -
Disorder

LFO -
Order

NREL | 19




We observe distinct trends in alloying element

behavior in the disordered regions.
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Some key takeaways and topics for future study.

* Multimodal models can generate powerful i e o e i st e
descriptors of systems undergoing structural e

and chemical evolution. I

e A lack of suitable encoders for various data
modalities limits the adaptation of models
from other domains.

* Understanding the sparsity and character of
individual datasets is crucial for appropriate
weighting within the model.

* Extracting mechanistic insights will require
physics-based approaches to quantification
and represents a critical area for future
work.

Download the preprint at:
doi.org/10.48550/arXiv.2411.09896
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