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CHUWD-H v1.0: a comprehensive 
historical hourly weather database 
for U.S. urban energy system 
modeling
Chenghao Wang  1,2 ✉, Chengbin Deng2,3, Henry Horsey4, Janet L. Reyna4, Di Liu2,3, 
Sarah Feron5,6, Raúl R. Cordero5, Jiyun Song7 & Robert B. Jackson  8,9,10

Reliable and continuous meteorological data are crucial for modeling the responses of energy systems 
and their components to weather and climate conditions, particularly in densely populated urban areas. 
However, existing long-term datasets often suffer from spatial and temporal gaps and inconsistencies, 
posing great challenges for detailed urban energy system modeling and cross-city comparison under 
realistic weather conditions. Here we introduce the Historical Comprehensive Hourly Urban Weather 
Database (CHUWD-H) v1.0, a 23-year (1998–2020) gap-free and quality-controlled hourly weather 
dataset covering 550 weather station locations across all urban areas in the contiguous United States. 
CHUWD-H v1.0 synthesizes hourly weather observations from stations with outputs from a physics-
based solar radiation model and a reanalysis dataset through a multi-step gap filling approach. A 10-
fold Monte Carlo cross-validation suggests that the accuracy of this gap filling approach surpasses that 
of conventional gap filling methods. Designed primarily for urban energy system modeling, CHUWD-H 
v1.0 should also support historical urban meteorological and climate studies, including the validation 
and evaluation of urban climate modeling.

Background & Summary
Energy systems are essential in the global effort to reduce energy use and greenhouse gas emissions for climate 
change mitigation1,2. Achieving the ambitious regional and national emission reduction targets relies on the 
rapid transformation and decarbonization of current energy systems, particularly in densely populated urban 
areas3. As home to more than half of the global population, urban areas are responsible for around 75% of global 
primary energy consumption and 70% of anthropogenic greenhouse gas emissions4,5. With ongoing urbaniza-
tion amid climate change, cities are expected to face evolving challenges brought by changes in energy demand, 
energy supply, and their interactions3. Addressing these challenges requires robust and reliable urban energy 
system modeling. Such modeling also plays a crucial role in supporting the planning and development of new 
energy infrastructures, guiding energy policy decisions, and enhancing the resilience of urban energy systems 
to extreme weather events and climate change.

Reliable urban energy system modeling should be able to integrate energy demand and supply sectors with 
weather and climate conditions6–8. This integration is particularly important for components of the energy sys-
tem that are susceptible to weather fluctuations. For example, the outputs of variable renewable energy sys-
tems (e.g., solar and wind power), as well as the cooling and space heating demands of buildings, are heavily 
influenced by weather conditions9–12. To assess the performance of energy system components under typical 
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weather conditions, typical meteorological year (TMY) data have been widely used in existing modeling efforts, 
especially for the building sector13–18. TMY data comprise yearlong, hourly meteorological and solar radiation 
data that represent typical weather conditions over a long period of time for a specific location. They essentially 
consist of 12 typical months of data selected from different calendar years. As one of the standard input weather 
datasets for energy system modeling, TMY data have also been modified with climate projection data using 
methods such as morphing for simulations under future scenarios19,20.

However, TMY data are insufficient for capturing interannual variability and the frequency and intensity 
of peak loads and demands under extreme meteorological conditions, as suggested in previous studies7,21,22. 
Moreover, TMY data are becoming increasingly outdated; for example, the latest official TMY collection, TMY3, 
was developed based on data only up to 200523. Relying on TMY data for current urban energy system mode-
ling can potentially lead to large uncertainties, particularly during peak periods. Alternatives aiming to capture 
extreme conditions, such as the extreme meteorological year, typical hot year, and typical cold year datasets, have 
been proposed using similar concepts of selecting representative months or years24–26. Although these datasets 
provide improved insight into extreme weather conditions, they still fall short of capturing the full spectrum of 
variability. In comparison, actual meteorological year (AMY) data, which include actual hourly weather data for 
specific locations and years, are indispensable for assessing the long-term trends, interannual variability, and 
historical extremes of energy systems22,27. Unfortunately, largely due to spatial and temporal data gaps in weather 
observations, long-term AMY data available for energy system modeling are still very rare.

Recent studies have attempted to address this data scarcity with gap-free, gridded AMY data derived from 
the results of numerical weather and climate simulations25,28. Nevertheless, this approach cannot fully substitute 
for observation-based AMY data for urban energy system modeling due to the potential biases and uncertainties 
inherent in these simulations. One of the notable limitations is the inadequate representation of urban climates 
(e.g., the urban heat island effect) in most regional and global climate models and reanalysis datasets29,30. To 
comprehensively understand the dynamics of urban energy systems and their dependence on local meteoro-
logical conditions and broader background climate, there is a pressing need for a long-term, gap-free, hourly 
weather dataset that covers a diverse array of urban areas.

Here we introduce the Historical Comprehensive Hourly Urban Weather Database (CHUWD-H) v1.0, a 
long-term (1998–2020), gap-free, and quality-controlled hourly weather dataset designed for urban energy sys-
tem modeling in the United States (U.S.). CHUWD-H v1.0 includes data from 550 weather station locations, 
covering all 481 urban areas across the entire contiguous U.S. (CONUS). This database is primarily constructed 
from observations at ground-based weather stations, complemented by outputs from a physics-based solar radi-
ation model and reanalysis data. The current version (v1.0) features 14 gap-free meteorological variables at 
hourly intervals. The accuracy of the gap-filled hourly data in CHUWD-H v1.0 exceeds that of other commonly 
used gap filling methods, as evidenced by a 10-fold Monte Carlo cross-validation. CHUWD-H v1.0 is publicly 
accessible through an online data repository31 and an interactive platform32. This database is expected to facili-
tate a broad spectrum of applications that extend well beyond urban energy system modeling.

Methods
Selection of weather stations. To develop a historical hourly weather database based on station obser-
vations for urban energy system modeling, the first step is to select representative stations. We selected a subset 
of weather stations from the TMY3 dataset, a widely used dataset developed by the National Renewable Energy 
Laboratory (NREL)23. This selection can facilitate comparisons of energy system modeling efforts based on the 
official TMY3 dataset and CHUWD-H v1.0. As the latest version of the TMY datasets, the TMY3 dataset encom-
passes 925 weather stations across the CONUS, constructed using measured and modeled data spanning either 
30 years (1976–2005) or 15 years (1991–2005). Weather stations in the TMY3 dataset are categorized into three 
classes based on the quality of the source data: Class I stations have the lowest uncertainty, Class II stations have 
moderate uncertainty, and Class III stations have the most data gaps. Within the CONUS, there are 217 Class I, 
564 Class II, and 144 Class III stations. This classification also indicates the general reliability and completeness 
of the weather observations at each station. To create a continuous, gap-free dataset, we prioritized Classes I and 
II stations in the station selection process. However, in the absence of Class I or II stations within a target urban 
area, Class III stations were also considered.

We then used the U.S. Census Bureau’s 2010 Topologically Integrated Geographic Encoding and Referencing 
(TIGER)/Line Shapefiles data33 to identify representative stations for urban areas. The U.S. Census Bureau 
delineates the boundaries of 481 densely developed urban areas (or “urbanized areas”), each with a population 
of at least 50,000. The urban boundary shapefile can be retrieved from the Census Bureau’s official website: 
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.2010.html. We identified 392 
weather stations located directly within these urban boundaries, and an additional 162 stations in close prox-
imity to at least one urban area. We further inspected the operational status of individual stations using weather 
observations (see “Ground-based hourly weather observations” section), which is critical to the future updates 
of CHUWD-H. Four stations that discontinued weather observations after ~2010 were then excluded from the 
database. Consequently, CHUWD-H v1.0 covers 550 stations across the CONUS, including 181 Class I stations 
(141 within urban boundaries), 323 Class II stations (223 within urban boundaries), and 46 Class III stations 
(26 within urban boundaries).

When retrieving the observational records from the selected 550 weather stations, we found that several 
stations in the official TMY3 dataset23 have inaccurate latitude, longitude, and/or time zone. These inaccuracies 
could influence source data retrieval processes. To address this, we leveraged an updated version of the TMY3 
dataset developed by Climate.OneBuilding.Org (https://climate.onebuilding.org/WMO_Region_4_North_and_
Central_America/USA_United_States_of_America/index.html), which has undergone extensive verification34. 
Additionally, we cross-referenced station information from the Integrated Surface Database (ISD)35 and the 
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National Centers for Environmental Information (NCEI)’s Climate Data Online (CDO)36. This allowed us to 
identify discrepancies in station locations, time zones, and elevations. In total, we corrected geographical loca-
tions and/or time zones for 43 weather stations. Figure 1 shows the spatial distribution of all 550 stations in 
CHUWD-H v1.0.

Fig. 1 Spatial distribution of the 550 representative weather stations in CHUWD-H v1.0, color coded by 
classification according to the official TMY3 dataset. Class I stations have the lowest uncertainty, Class II 
stations have moderate uncertainty, and Class III stations have the most data gaps. Shaded areas in orange are 
urban areas with populations of at least 50,000. The basemap is World Terrain data from ArcGIS Pro.

Fig. 2 Percentage of missing hourly observations over the 23-year period (1998–2020) for (a) near-surface air 
temperature (Ta), (b) dew point temperature (Td), (c) surface pressure (Ps), (d) wind speed (WS), and (e) wind 
direction (WD) for all stations in CHUWD-H v1.0. Each dot represents an individual station. The basemap is 
the shaded relief map blended with a land cover palette from MATLAB.
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Ground-based hourly weather observations. Hourly weather observations for representative sta-
tions were retrieved from the Integrated Surface Database (ISD) (https://www.ncei.noaa.gov/products/
land-based-station/integrated-surface-database). ISD is a global database that includes hourly and synoptic sur-
face observations from more than 100 original data sources35. As one of the flagship climate data products of the 
NCEI, ISD currently covers over 14,000 active stations. To ensure the high quality of data in ISD, various quality 
control measures were carried out, including validity checks, extreme value checks, internal consistency checks, 
and external continuity checks. These measures extend beyond the internal quality controls already present in 
source datasets (e.g., the Automated Surface/Weather Observing Systems; ASOS/AWOS). To further filter out 
duplicate values and sub-hourly data, we retrieved hourly air temperature, dew point temperature, sea level pres-
sure, wind direction, wind speed, one-hour accumulated liquid precipitation, and six-hour accumulated liquid 
precipitation data from ISD-Lite for 1998–2021.

It is noteworthy that the same weather station can be listed under different station IDs over time. To mini-
mize gaps in observational data, we compared the geographical locations, names, and elevations of stations in 
proximity to each target station to identify those that have undergone changes in name, ID, and/or location. 
For stations missing entire years of observations, we identified and used nearby stations with similar elevations 
(<100 m difference) and geographical conditions to fill in data gaps. The final dataset includes 312 stations 
merged from multiple station records, with nine of these stations partially supplemented with data from nearby 
stations. Note that data retrieved from ISD directly reflect raw observations, which may not be homogenized 
for some stations.

Fig. 3 Percentage of missing hourly observations by year and station for (a) near-surface air temperature (Ta), 
(b) dew point temperature (Td), (c) surface pressure (Ps), (d) wind speed (WS), and (e) wind direction (WD) 
for all stations in CHUWD-H v1.0. Note that weather stations are grouped according to the nine climate regions 
defined by the NCEI51. In each subplot, each row shows the percentage of missing hourly observations for a 
specific station across different years.
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Given that most energy system models require meteorological data in local time for model input, we con-
verted all hourly observations from Coordinated Universal Time (UTC) to local time. To maintain consistency 
with TMY3 data, we also removed February 29 in leap years from our database. We further converted the sea 
level pressure to surface pressure for each station using the hypsometric equation and the station’s elevation.

Radiation data from NSRDB. Solar radiation data were retrieved from the National Solar Radiation 
Data Base (NSRDB) (https://nsrdb.nrel.gov/), developed by the NREL37. This database provides 4-km resolution 
solar irradiation data at 30-min intervals covering the entire CONUS from 1998 to the present. NSRDB uses the 
two-step Physical Solar Model (PSM), which computes solar radiation from satellite data under both clear sky 
and cloudy conditions with the Fast All-sky Radiation Model for Solar Applications (FARMS)38. More specifically, 
FARMS integrates cloud properties from satellite data, aerosol optical depth from Moderate Resolution Imaging 
Spectroradiometer (MODIS) and Modern-Era Retrospective analysis for Research and Applications Version 2 
(MERRA-2) data, along with additional atmospheric and land surface data from multiple sources to calculate 
Global Horizontal Irradiance (GHI), Direct Normal Irradiance (DNI), and Diffuse Horizontal Irradiance (DHI). 
Evaluation against concurrent ground-based measurements suggests a mean bias error of ±5% for the estimated 
hourly GHI and ±10% for DNI39. We retrieved 30-min GHI, DNI, DHI, clear-sky GHI, clear-sky DNI, clear-sky 
DHI, and zenith angle from NSRDB for each station location, and converted these instantaneous values to hourly 
average (during the preceding hour) using the trapezoidal rule.

Reanalysis data from MeRRA-2. We further used the Modern-Era Retrospective analysis for Research 
and Applications, Version 2 (MERRA-2) dataset as an additional resource to fill gaps in weather observations. As 
a reanalysis dataset developed by NASA’s Global Modeling and Assimilation Office, MERRA-2 is generated with 
the Goddard Earth Observing System (GEOS) atmospheric data assimilation system40. It provides hourly data 
from 1980 to the present at a spatial resolution of 0.5° latitude × 0.625° longitude. The current version includes 
several major improvements over its predecessor (MERRA), such as the assimilation of aerosol observations, 
improved characterization of stratospheric processes, and better representation of glaciated land surface pro-
cesses. However, the coarse native resolution of MERRA-2 is not suitable for direct station-level gap filling. Here 
we used hourly air temperature, dew point temperature, surface pressure, wind speed, and wind direction from 
downscaled 4-km MERRA-2 data developed by NREL (https://nsrdb.nrel.gov/). The high-resolution temperature 
and pressure data were downscaled from the native resolution of MERRA-2 using an elevation scaling, while the 

Fig. 4 The multi-step gap filling (MSGF) approach to fill a missing air temperature data point at the target 
weather station. MLR and SLR models are multiple linear regression and simple linear regression models, 
respectively. For clarity, this flowchart omits connections from statistically insignificant results in the MLR 
or SLR models based on 30-day, 90-day, and one-year windows (i.e., “No” decision in the light pink box 
“Statistically significant”) to the data gap decision boxes for subsequent longer windows (light green boxes on 
the left for MLR and right for SLR).
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high-resolution humidity and wind data were downscaled with a nearest-neighbor approach37. It is noteworthy 
that the elevations of the downscaled 4-km MERRA-2 grids may slightly differ from those of station locations. 
Although the elevation discrepancy for most stations is less than 100 m, which is likely to have only marginal 

Variable Unit Definition

Year — Year of the data.

Month — Month of the data.

Day — Day of the data.

Hour — Hour of the data (1–24).

Minute — Minute of the data.

Ta °C Air temperature at the time indicated.

Ta_flag — Gap filling flag for air temperature: “0” is based on observation, “1” is gap filled.

Td °C Dew point temperature at the time indicated.

Td_flag — Gap filling flag for dew point temperature: “0” is based on observation, “1” is gap filled.

RH % Relative humidity at the time indicated.

Pa Pa Atmospheric pressure at the time indicated.

Pa_flag — Gap filling flag for atmospheric pressure: “0” is based on observation, “1” is gap filled.

GHI W h m–2 Global horizontal radiation during the hour preceding the time indicated.

DNI W h m–2 Direct normal radiation during the hour preceding the time indicated.

DHI W h m–2 Diffuse horizontal radiation during the hour preceding the time indicated.

CS_GHI W h m–2 Global horizontal radiation assuming clear sky condition during the hour preceding the time indicated.

CS_DNI W h m–2 Direct normal radiation assuming clear sky condition during the hour preceding the time indicated.

CS_DHI W h m–2 Diffuse horizontal radiation assuming clear sky condition during the hour preceding the time indicated.

WD °
Wind direction at the time indicated, following the convention North = 0.0, East = 90.0, South = 180.0, 
West = 270.0. If calm, direction equals zero. (The angle, measured in a clockwise direction, between true north 
and the direction from which the wind is blowing.)

WD_flag — Gap filling flag for wind direction: “0” is based on observation, “1” is gap filled.

WS m s–1 Wind speed at the time indicated.

WS_flag — Gap filling flag for wind speed: “0” is based on observation, “1” is gap filled.

PCW cm Total precipitable water contained in a column of unit cross section extending from the earth’s surface to the top 
of the atmosphere at the time indicated.

PC_1hr mm Liquid precipitation depth measured over a one-hour accumulation period. Trace precipitation is coded as “–1”, 
while missing data are “999”.

PC_6hr mm Liquid precipitation depth measured over a six-hour accumulation period. Trace precipitation is coded as “–1”, 
while missing data are “999”.

Zenith ° Zenith angle at the time indicated.

Table 1. Summary of variables in CHUWD-H v1.0.

Variable Definition

CHUWD_ID Station ID used in CHUWD-H v1.0.

CHUWD_Name Station name used in CHUWD-H v1.0.

ISD_USAF United States Air Force (USAF) Station ID in ISD.

ISD_WBAN Weather Bureau Army Navy (WBAN) Station ID in ISD.

ISD_Name Station name in ISD.

TMY3_USAF USAF Station ID in the official TMY3 dataset.

TMY3_Name Station name in the official TMY3 dataset.

OB_USAF USAF Station ID in the updated TMY3 dataset from Climate.OneBuilding.Org.

OB_Name Station name in the updated TMY3 dataset from Climate.OneBuilding.Org.

Class Station class (I, II, or III).

State Station state (abbreviations).

Lat Latitude of the station (unit: °).

Lon Longitude of the station (unit: °).

Elev Elevation of the station (unit: m).

Time_zone Number of hours from UTC (Standard Time).

Within_UA Whether the station is located within the boundary of an urban area (population ≥ 50,000).

Table 2. Definitions of variables in “CHUWD-H v1.0 stations.xlsx”.

https://doi.org/10.1038/s41597-024-04238-4
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Fig. 5 Hourly (a) air temperature (Ta; °C), (b) dew point temperature (Td; °C), (c) relative humidity (RH; %), 
(d) atmospheric pressure (Ps; kPa), and (e) wind speed (WS; m s–1) averaged over the 23-year period (1998–
2020) for all stations in CHUWD-H v1.0.

Fig. 6 Hourly (a) global horizontal irradiance (GHI), (b) clear-sky GHI, (c) direct normal irradiance (DNI),  
(d) clear-sky DNI, (e) diffuse horizontal irradiance (DHI), and (f) clear-sky DHI averaged over the 23-year 
period (1998–2020) for all stations in CHUWD-H v1.0. The unit is W h m–2.

https://doi.org/10.1038/s41597-024-04238-4
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effects on meteorological variables, we specifically corrected the pressure data for two stations where the elevation 
difference from the nearest MERRA-2 grid exceeds 100 m.

Quality control and gap filling methods. While the hourly irradiance variables from NSRDB are gap 
free, substantial gaps are prevalent in the raw observations from weather stations. Figures 2 and 3 illustrate the 
distributions of data gaps in time series of air temperature, dew point temperature, surface pressure, wind speed, 
and wind direction. Most data gaps occurred in the years prior to ~2005. On average, missing observations 
account for 5.46 ± 9.81% (mean ± 1 standard deviation or SD) for air temperature, 5.60 ± 9.89% for dew point 
temperature, 14.23 ± 26.84% for surface pressure, 5.72 ± 9.70% for wind speed, and 9.01 ± 9.50% for wind direc-
tion over the entire 23-year time series. No clear variations in data gaps were observed among different climate 
regions. While all stations recorded some measurements for air temperature, dew point temperature, wind speed, 
and wind direction over the 23-year period, there are 28 stations where surface pressure data were almost entirely 
missing (data gaps >99.99%).

Despite the internal quality controls conducted in the original data sources and ISD, we identified several 
potential erroneous data points (outliers) in the observations, which could introduce uncertainties into the 
subsequent gap filling process. Therefore, we carried out additional controls to remove these outliers based on 
the variations in raw data from both ISD and MERRA-2. Specifically, the acceptable upper and lower limits for 
temperature and pressure data were established using the mean ± 5 SD of ISD and MERRA-2 data and the range 
of MERRA-2 data over a 3-month moving window41,42. Any temperature or pressure data points falling outside 
these limits were considered outliers and subsequently removed. A similar procedure was applied to raw wind 
speed data, although a broader 10 SD threshold was used43. Following this quality control procedure, up to 
0.09% of the ISD raw data were removed for individual stations. Additionally, all negative wind speed observa-
tions were removed.

We developed a multi-step gap filling (MSGF) approach to fill observational data gaps for all stations. This 
approach leverages data from both ISD and MERRA-2, aiming to retain as much observational data from ISD as 
possible. We constructed locally adaptive regression models that integrate available data from the target weather 
station, its nearest station, and the closest MERRA-2 grid44–46. For each missing data point, we first trained a 
multiple linear regression (MLR) model using available data at the target station and its nearest station as well as 
data from the nearest MERRA-2 grid within a specified moving window centered around the missing data point. 
The size of the moving window is 30 days (~ a month), 90 days (~ a season), 1 year, or 3 years for air temperature, 
dew point temperature, and wind speed, but 1 year or 3 years for pressure due to larger data gaps. The selection 
of the window size was determined by two key criteria: the statistical significance of the MLR model, which must 
achieve a p-value < 0.05 in a two-tailed t-test, and the number of non-missing observational data pairs from 
both stations within the window, which must be ≥ 10%. If the trained MLR model was statistically insignificant 
or if over 90% of observational data pairs were missing in the longest window (3 years), we switched to a simple 
linear regression (SLR) model trained using only the target station and its nearest MERRA-2 grid data, again 
selecting the moving window size based on statistical significance and data availability. If neither MLR nor SLR 
models sufficed, we filled the gap with data directly from the nearest MERRA-2 grid. To further enhance the 
robustness of the regression models, we excluded calm wind observations prior to constructing regression mod-
els. As an example, Figure 4 illustrates the MSGF approach for gap filling air temperature data.

Unlike air temperature, dew point temperature, surface pressure, and wind speed, missing wind direction 
data for each weather station were directly filled with data from the nearest MERRA-2 grid. Additional quality 
controls were applied to the gap filled data, such as adjusting dew point temperature higher than air temperature 
and correcting negative wind speed data. Furthermore, we derived hourly relative humidity from the gap filled 
air temperature and dew point temperature data47.

Fig. 7 Data inspection and downloading platform for CHUWD-H v1.0, featuring (a) interactive station 
inspection, and (b) downloading of individual annual hourly weather files.

https://doi.org/10.1038/s41597-024-04238-4
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Data Records
The CHUWD-H v1.0 is publicly available through the Open Science Framework31. Hourly weather data from 
1998 to 2020 for each station are organized into individual csv files for each year under individual project 
components, resulting in a total of 12,650 csv files following the naming convention “S******_year_Lat_***_
Lon_***_State_Class.csv”. For example, the file “S690150_2020_Lat_34.29_Lon_-116.15_CA_II” stores hourly 
data in 2020 for Station (S) ID 690150 (Twentynine Palms), a Class II station located in California (CA) at lati-
tude 34.29° (34.29°N) and longitude –116.15° (116.15°W). Each csv file contains an annual time series of 8,760 
hourly data points across 26 variables. These include five date and time variables, 16 meteorological variables, 
and five gap filling flag variables that indicate whether data points for air temperature, dew point temperature, 
pressure, wind speed, and wind direction were gap filled.

Fig. 8 Results of 10-fold Monte Carlo cross-validation, evaluated by the (a,d,g, and j) Pearson correlation 
coefficient (r), (b,e,h, and k) Root Mean Square Error (RMSE), and (c,f,i, and l) Mean Absolute Error (MAE), 
for (a–c) air temperature (Ta), (d–f) dew point temperature (Td), (g–i) surface pressure (Ps), and (j–l) wind 
speed (WS) using four gap filling methods: Direct Replacement (DR) with data from the nearest MERRA-2 
grid, Simple Linear Regression (SLR) model constructed using 23-year data, Multiple Linear Regression (MLR) 
model constructed using 23-year data, and the multi-step gap filling (MSGF) approach proposed in this study. 
The box bounds the interquartile range divided by the median, with whiskers extending to ±1.5 times the 
interquartile range beyond the box. Circles are sample data points, and their distributions are represented by 
halved violin plots. Sample size N is 550 for air temperature, dew point temperature, and wind speed but 522 for 
surface pressure.

https://doi.org/10.1038/s41597-024-04238-4
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Note that CHUWD-H v1.0 also includes three auxiliary precipitation-related variables: total precipitable 
water from MERRA-2, and observed one-hour and six-hour liquid precipitation depths, sourced from ISD with 
existing data gaps. Due to the absence of reliable hourly precipitation sources for gap filling station-scale data, 
the current version does not include gap-free hourly precipitation data. However, these variables are included 
to support potential future applications such as model evaluation and the further development of CHUWD-H.

Details of all variables, their units, and definitions are summarized in Table 1. Information on all 550 weather 
stations in CHUWD-H v1.0 is provided in "CHUWD-H v1.0 stations.xlsx", accessible via the same data reposi-
tory31, with variables detailed in Table 2.

Figures 5 and 6 show major hourly variables averaged over the 23-year period (1998–2020) for 550 stations 
in CHUWD-H v1.0. To make this database more accessible to both researchers and the general public, we devel-
oped an interactive webpage32 using ArcGIS Online (Fig. 7). This platform features clickable weather station 
locations, each linked to a pop-up box that provides detailed information about the weather station and down-
load links for annual hourly weather data files.

technical Validation
In addition to thorough quality controls on both raw data and gap filled data, we carried out a 10-fold Monte 
Carlo cross-validation (MCCV)48,49 to evaluate the performance of the proposed MSGF approach against three 
commonly used gap filling methods. The alternative gap filling methods are: (1) Direct Replacement (DR), 
which fills missing data points with data from the nearest MERRA-2 grid; (2) an SLR model that uses the 
entire 23-year time series of data from both the target station and the nearest MERRA-2 grid; and (3) an MLR 
model that uses the entire 23-year time series of data from the target station, the nearest station (when data 
are non-missing), and the nearest MERRA-2 grid. Figure 8 shows the results of these four gap filling methods 
through 10-fold MCCV, evaluated by the Pearson correlation coefficient (r), Root Mean Square Error (RMSE), 
and Mean Absolute Error (MAE). The MSGF approach consistently outperforms the other methods, achieving 
higher r values and much lower RMSE and MAE values. Specifically, the average MAE value is 1.04 °C for air 
temperature, 1.04 °C for dew point temperature, 0.07 kPa for surface pressure, and 1.13 m s–1 for wind speed 
(Table 3).

Usage Notes
The national coverage of CHUWD-H v1.0 will facilitate detailed hourly urban energy system modeling and ena-
ble cross-regional comparisons across cities under various realistic weather conditions, which will advance our 
understanding of how urban energy systems respond to extreme weather events and climate change. Originally 
developed for energy system modeling in urban areas, CHUWD-H v1.0 is also expected to support a wide range 
of applications in historical urban meteorological and climate studies, including the validation and evaluation 
of urban climate models. Moreover, it will serve as a valuable resource for future dates of CHUWD-H. Notably, 
parts of CHUWD-H v1.0 have been used in the first long-term, city-scale building energy consumption mod-
eling across the entire U.S. to assess the impacts of climate change, population dynamics, and power sector 
decarbonization on urban building energy use12. Additionally, this database has supported analyses of casual 
interactions among U.S. cities during historical heat waves50.

Code availability
The MATLAB code to perform the proposed multi-step gap filling approach for missing data points is available 
through the Open Science Framework31.

Received: 22 June 2024; Accepted: 4 December 2024;
Published: xx xx xxxx

References
 1. Kang, J.-N. et al. Energy systems for climate change mitigation: A systematic review. Appl. Energy 263, 114602, https://doi.

org/10.1016/j.apenergy.2020.114602 (2020).
 2. DeAngelo, J. et al. Energy systems in scenarios at net-zero CO2 emissions. Nat. Commun. 12, 6096, https://doi.org/10.1038/s41467-

021-26356-y (2021).
 3. Nik, V. M., Perera, A. T. D. & Chen, D. Towards climate resilient urban energy systems: a review. Natl. Sci. Rev. 8, nwaa134, https://

doi.org/10.1093/nsr/nwaa134 (2021).
 4. United Nations. World Urbanization Prospects: The 2018 Revision. Report No. ST/ESA/SER.A/420 (2019).
 5. IEA. Empowering Urban Energy Transitions (International Energy Agency, 2024).
 6. Craig, M. T. et al. Overcoming the disconnect between energy system and climate modeling. Joule 6, 1405–1417, https://doi.

org/10.1016/j.joule.2022.05.010 (2022).
 7. Bloomfield, H. C. et al. The importance of weather and climate to energy systems: A workshop on next generation challenges in 

energy–climate modeling. Bull. Am. Meteorol. Soc. 102, E159–E167, https://doi.org/10.1175/BAMS-D-20-0256.1 (2021).

Variable Correlation coefficient (r) Root Mean Square Error (RMSE) Mean Absolute Error (MAE)

Air temperature (°C) 0.99 ± 0.01 2.14 ± 1.45 1.04 ± 0.34

Dew point temperature (°C) 0.98 ± 0.02 2.32 ± 1.45 1.04 ± 0.32

Surface pressure (kPa) 0.98 ± 0.04 15.99 ± 23.40 0.07 ± 0.06

Wind speed (m s–1) 0.76 ± 0.09 2.21 ± 0.92 1.13 ± 0.21

Table 3. Summary of cross-validation results (mean ± 1 standard deviation) for the multi-step gap filling 
(MSGF) approach. Note that units are for RMSE and MAE.

https://doi.org/10.1038/s41597-024-04238-4
https://doi.org/10.1016/j.apenergy.2020.114602
https://doi.org/10.1016/j.apenergy.2020.114602
https://doi.org/10.1038/s41467-021-26356-y
https://doi.org/10.1038/s41467-021-26356-y
https://doi.org/10.1093/nsr/nwaa134
https://doi.org/10.1093/nsr/nwaa134
https://doi.org/10.1016/j.joule.2022.05.010
https://doi.org/10.1016/j.joule.2022.05.010
https://doi.org/10.1175/BAMS-D-20-0256.1


1 1Scientific Data |         (2024) 11:1383  | https://doi.org/10.1038/s41597-024-04238-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

 8. Pfenninger, S., Hawkes, A. & Keirstead, J. Energy systems modeling for twenty-first century energy challenges. Renew. Sustain. 
Energy Rev. 33, 74–86, https://doi.org/10.1016/j.rser.2014.02.003 (2014).

 9. van der Wiel, K. et al. Meteorological conditions leading to extreme low variable renewable energy production and extreme high 
energy shortfall. Renew. Sustain. Energy Rev. 111, 261–275, https://doi.org/10.1016/j.rser.2019.04.065 (2019).

 10. Perera, A. T. D., Nik, V. M., Chen, D., Scartezzini, J.-L. & Hong, T. Quantifying the impacts of climate change and extreme climate 
events on energy systems. Nat. Energy 5, 150–159, https://doi.org/10.1038/s41560-020-0558-0 (2020).

 11. Berardi, U. & Jafarpur, P. Assessing the impact of climate change on building heating and cooling energy demand in Canada. Renew. 
Sustain. Energy Rev. 121, 109681, https://doi.org/10.1016/j.rser.2019.109681 (2020).

 12. Wang, C. et al. Impacts of climate change, population growth, and power sector decarbonization on urban building energy use. Nat. 
Commun. 14, 6434, https://doi.org/10.1038/s41467-023-41458-5 (2023).

 13. Al-Mofeez, I. A., Numan, M. Y., Alshaibani, K. A. & Al-Maziad, F. A. Review of typical vs. synthesized energy modeling weather 
files. J. Renew. Sustain. Energy 4, 012702, https://doi.org/10.1063/1.3672191 (2012).

 14. Chan, A. L. S. Generation of typical meteorological years using genetic algorithm for different energy systems. Renew. Energy 90, 
1–13, https://doi.org/10.1016/j.renene.2015.12.052 (2016).

 15. Herrera, M. et al. A review of current and future weather data for building simulation. Build. Serv. Eng. Res. Technol. 38, 602–627, 
https://doi.org/10.1177/0143624417705937 (2017).

 16. Berrill, P., Wilson, E. J. H., Reyna, J. L., Fontanini, A. D. & Hertwich, E. G. Decarbonization pathways for the residential sector in the 
United States. Nat. Clim. Change 12, 712–718, https://doi.org/10.1038/s41558-022-01429-y (2022).

 17. Wei, W., Ramakrishnan, S., Needell, Z. A. & Trancik, J. E. Personal vehicle electrification and charging solutions for high-energy 
days. Nat. Energy 6, 105–114, https://doi.org/10.1038/s41560-020-00752-y (2021).

 18. Sweeney, J. F., Pate, M. B. & Choi, W. Life cycle production and costs of a residential solar hot water and grid-connected photovoltaic 
system in humid subtropical Texas. J. Renew. Sustain. Energy 8, 053702, https://doi.org/10.1063/1.4963238 (2016).

 19. Jentsch, M. F., James, P. A. B., Bourikas, L. & Bahaj, A. S. Transforming existing weather data for worldwide locations to enable 
energy and building performance simulation under future climates. Renew. Energy 55, 514–524, https://doi.org/10.1016/j.
renene.2012.12.049 (2013).

 20. Shen, P. Impacts of climate change on U.S. building energy use by using downscaled hourly future weather data. Energy Build 134, 
61–70, https://doi.org/10.1016/j.enbuild.2016.09.028 (2017).

 21. Bryce, R. et al. Consequences of neglecting the interannual variability of the solar resource: A case study of photovoltaic power 
among the Hawaiian Islands. Sol. Energy 167, 61–75, https://doi.org/10.1016/j.solener.2018.03.085 (2018).

 22. Hong, T., Chang, W.-K. & Lin, H.-W. A fresh look at weather impact on peak electricity demand and energy use of buildings using 
30-year actual weather data. Appl. Energy 111, 333–350, https://doi.org/10.1016/j.apenergy.2013.05.019 (2013).

 23. Wilcox, S. & Marion, W. Users Manual for TMY3 Data Sets. Report No. NREL/TP-581-43156 https://doi.org/10.2172/928611 
(National Renewable Energy Laboratory, 2008).

 24. Li, H. et al. A new method of generating extreme building energy year and its application. Energy 278, 128020, https://doi.
org/10.1016/j.energy.2023.128020 (2023).

 25. Doutreloup, S. et al. Historical and future weather data for dynamic building simulations in Belgium using the regional climate 
model MAR: typical and extreme meteorological year and heatwaves. Earth Syst. Sci. Data 14, 3039–3051, https://doi.org/10.5194/
essd-14-3039-2022 (2022).

 26. Machard, A. et al. Typical and extreme weather datasets for studying the resilience of buildings to climate change and heatwaves. Sci. 
Data 11, 531, https://doi.org/10.1038/s41597-024-03319-8 (2024).

 27. White, P. R., Rhodes, J. D., Wilson, E. J. H. & Webber, M. E. Quantifying the impact of residential space heating electrification on the 
Texas electric grid. Appl. Energy 298, 117113, https://doi.org/10.1016/j.apenergy.2021.117113 (2021).

 28. Bloomfield, H. C., Brayshaw, D. J., Deakin, M. & Greenwood, D. Hourly historical and near-future weather and climate variables for 
energy system modelling. Earth Syst. Sci. Data 14, 2749–2766, https://doi.org/10.5194/essd-14-2749-2022 (2022).

 29. Zhao, L. et al. Global multi-model projections of local urban climates. Nat. Clim. Change 11, 152–157, https://doi.org/10.1038/
s41558-020-00958-8 (2021).

 30. Zou, J. et al. Performance of air temperature from ERA5-Land reanalysis in coastal urban agglomeration of Southeast China. Sci. 
Total Environ. 828, 154459, https://doi.org/10.1016/j.scitotenv.2022.154459 (2022).

 31. Wang, C. & Deng, C. Historical Comprehensive Hourly Urban Weather Database (CHUWD-H) v1.0. Open Science Framework 
(OSF) https://doi.org/10.17605/OSF.IO/5DP8E (2024).

 32. Liu, D., Deng, C. & Wang, C. Historical Comprehensive Hourly Urban Weather Database v1.0 https://arcg.is/COWWe (2024).
 33. U.S. Census Bureau. 2010 TIGER/Line Shapefiles: Technical Document (U.S. Census Bureau, 2012).
 34. Climate.OneBuilding. Climate.OneBuilding.Org https://climate.onebuilding.org/default.html (2024).
 35. Smith, A., Lott, N. & Vose, R. The Integrated Surface Database: Recent developments and partnerships. Bull. Am. Meteorol. Soc. 92, 

704–708, https://doi.org/10.1175/2011BAMS3015.1 (2011).
 36. National Centers for Environmental Information. Climate Data Online (CDO) https://www.ncei.noaa.gov/cdo-web/ (2023).
 37. Sengupta, M. et al. The National Solar Radiation Data Base (NSRDB). Renew. Sustain. Energy Rev. 89, 51–60, https://doi.

org/10.1016/j.rser.2018.03.003 (2018).
 38. Xie, Y., Sengupta, M. & Dudhia, J. A Fast All-sky Radiation Model for Solar applications (FARMS): Algorithm and performance 

evaluation. Sol. Energy 135, 435–445, https://doi.org/10.1016/j.solener.2016.06.003 (2016).
 39. Habte, A., Sengupta, M. & Lopez, A. Evaluation of the National Solar Radiation Database (NSRDB Version 2): 1998–2015. Report No. 

NREL/TP-5D00-67722 https://doi.org/10.2172/1351859 (National Renewable Energy Laboratory, 2017).
 40. Gelaro, R. et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 30, 

5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1 (2017).
 41. Osborn, T. J. et al. Land surface air temperature variations across the globe updated to 2019: The CRUTEM5 data set. J. Geophys. Res. 

Atmospheres 126, e2019JD032352, https://doi.org/10.1029/2019JD032352 (2021).
 42. Peterson, T. C., Vose, R., Schmoyer, R. & Razuvaëv, V. Global historical climatology network (GHCN) quality control of monthly 

temperature data. Int. J. Climatol. 18, 1169–1179 https://doi.org/10.1002/(SICI)1097-0088(199809)18:11<1169::AID-
JOC309>3.0.CO;2-U (1998).

 43. Zona, D. et al. Characterization of the carbon fluxes of a vegetated drained lake basin chronosequence on the Alaskan Arctic Coastal 
Plain. Glob. Change Biol. 16, 1870–1882, https://doi.org/10.1111/j.1365-2486.2009.02107.x (2010).

 44. Luzio, M. D., Johnson, G. L., Daly, C., Eischeid, J. K. & Arnold, J. G. Constructing retrospective gridded daily precipitation and temperature 
datasets for the conterminous United States. J. Appl. Meteorol. Climatol. 47, 475–497, https://doi.org/10.1175/2007JAMC1356.1 (2008).

 45. Eischeid, J. K., Pasteris, P. A., Diaz, H. F., Plantico, M. S. & Lott, N. J. Creating a serially complete, national daily time series of 
temperature and precipitation for the western United States. J. Appl. Meteorol. Climatol. 39, 1580–1591 https://doi.org/10.1175/1520-
0450(2000)039<1580:CASCND>2.0.CO;2 (2000).

 46. Wang, C. & Wang, Z.-H. A statistical view ofs the Phoenix urban heat island during the past 86 years (1933–2018). (Central 
Arizona–Phoenix Long-Term Ecological Research 21st Annual All Scientists Meeting and Poster Symposium, 2019).

 47. Shuttleworth, W. J. Terrestrial Hydrometeorology. https://doi.org/10.1002/9781119951933 (John Wiley & Sons, 2012).
 48. Zhang, T., Zhou, Y., Wang, L., Zhao, K. & Zhu, Z. Estimating 1 km gridded daily air temperature using a spatially varying coefficient 

model with sign preservation. Remote Sens. Environ. 277, 113072, https://doi.org/10.1016/j.rse.2022.113072 (2022).

https://doi.org/10.1038/s41597-024-04238-4
https://doi.org/10.1016/j.rser.2014.02.003
https://doi.org/10.1016/j.rser.2019.04.065
https://doi.org/10.1038/s41560-020-0558-0
https://doi.org/10.1016/j.rser.2019.109681
https://doi.org/10.1038/s41467-023-41458-5
https://doi.org/10.1063/1.3672191
https://doi.org/10.1016/j.renene.2015.12.052
https://doi.org/10.1177/0143624417705937
https://doi.org/10.1038/s41558-022-01429-y
https://doi.org/10.1038/s41560-020-00752-y
https://doi.org/10.1063/1.4963238
https://doi.org/10.1016/j.renene.2012.12.049
https://doi.org/10.1016/j.renene.2012.12.049
https://doi.org/10.1016/j.enbuild.2016.09.028
https://doi.org/10.1016/j.solener.2018.03.085
https://doi.org/10.1016/j.apenergy.2013.05.019
https://doi.org/10.2172/928611
https://doi.org/10.1016/j.energy.2023.128020
https://doi.org/10.1016/j.energy.2023.128020
https://doi.org/10.5194/essd-14-3039-2022
https://doi.org/10.5194/essd-14-3039-2022
https://doi.org/10.1038/s41597-024-03319-8
https://doi.org/10.1016/j.apenergy.2021.117113
https://doi.org/10.5194/essd-14-2749-2022
https://doi.org/10.1038/s41558-020-00958-8
https://doi.org/10.1038/s41558-020-00958-8
https://doi.org/10.1016/j.scitotenv.2022.154459
https://doi.org/10.17605/OSF.IO/5DP8E
https://arcg.is/COWWe
https://climate.onebuilding.org/default.html
https://doi.org/10.1175/2011BAMS3015.1
https://www.ncei.noaa.gov/cdo-web/
https://doi.org/10.1016/j.rser.2018.03.003
https://doi.org/10.1016/j.rser.2018.03.003
https://doi.org/10.1016/j.solener.2016.06.003
https://doi.org/10.2172/1351859
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1029/2019JD032352
https://doi.org/10.1002/(SICI)1097-0088(199809)18:11&lt;1169::AID-JOC309&gt;3.0.CO;2-U
https://doi.org/10.1002/(SICI)1097-0088(199809)18:11&lt;1169::AID-JOC309&gt;3.0.CO;2-U
https://doi.org/10.1111/j.1365-2486.2009.02107.x
https://doi.org/10.1175/2007JAMC1356.1
https://doi.org/10.1175/1520-0450(2000)039&lt;1580:CASCND&gt;2.0.CO;2
https://doi.org/10.1175/1520-0450(2000)039&lt;1580:CASCND&gt;2.0.CO;2
https://doi.org/10.1002/9781119951933
https://doi.org/10.1016/j.rse.2022.113072


1 2Scientific Data |         (2024) 11:1383  | https://doi.org/10.1038/s41597-024-04238-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

 49. Xiao, Q. et al. Evaluation of gap-filling approaches in satellite-based daily PM2.5 prediction models. Atmos. Environ. 244, 117921, 
https://doi.org/10.1016/j.atmosenv.2020.117921 (2021).

 50. Yang, X., Wang, Z.-H., Wang, C. & Lai, Y.-C. Megacities are causal pacemakers of extreme heatwaves. npj Urban Sustain 4, 8, https://
doi.org/10.1038/s42949-024-00148-x (2024).

 51. Karl, T. R. & Koss, W. J. Regional and National Monthly, Seasonal, and Annual Temperature Weighted by Area, 1895-1983 (National 
Climatic Data Center, 1984).

Acknowledgements
This research was supported by the U.S. National Science Foundation under grant Nos. OIA-2327435 and 
CNS-2301858, the National Oceanic and Atmospheric Administration under grant No. NA21OAR4590361, 
and the Seed Funding Grant funded by the Data Institute for Societal Challenges (DISC) at the University of 
Oklahoma. Financial support for publication was provided by the University of Oklahoma Libraries' Open Access 
Fund. R.R.C. and S.F. acknowledge support of ANID ACT210046. R.B.J. acknowledges support from the Stanford 
Natural Gas Initiative. We would like to acknowledge Carlo Bianchi (National Renewable Energy Laboratory, 
USA), Linda Lawrie (Climate.OneBuilding.Org), and Dru Crawley (Climate.OneBuilding.Org) for their help 
with weather data processing. This work was authored in part by the National Renewable Energy Laboratory, 
operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract 
No. DE-AC36-08GO28308. Funding was provided by U.S. Department of Energy Office of Energy Efficiency 
and Renewable Energy Building Technologies. The views expressed in the article do not necessarily represent 
the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting 
the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, 
worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. 
Government purposes.

Author contributions
Conceptualization: C.W.; Methodology: C.W., H.H. and J.L.R.; Data Curation: C.W., H.H., J.L.R. and J.S.; Formal 
Analysis: C.W.; Software: C.W., C.D. and D.L.; Validation: C.W., S.F., and R.R.C.; Visualization: C.W., C.D., D.L., 
S.F., R.R.C., and R.B.J.; Funding Acquisition: C.W.; Resources: C.W., C.D., and R.B.J.; Writing – original draft: 
C.W. and C.D.; Writing – review & editing: H.H., J.L.R., D.L., S.F., R.R.C., J.S. and R.B.J.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to C.W.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial- 
NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribu-

tion and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) 
and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed mate-
rial. You do not have permission under this licence to share adapted material derived from this article or parts of 
it. The images or other third party material in this article are included in the article’s Creative Commons licence, 
unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative  
Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted  
use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit 
http://creativecommons.org/licenses/by-nc-nd/4.0/.
 
© The Author(s) 2024

https://doi.org/10.1038/s41597-024-04238-4
https://doi.org/10.1016/j.atmosenv.2020.117921
https://doi.org/10.1038/s42949-024-00148-x
https://doi.org/10.1038/s42949-024-00148-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/

	CHUWD-H v1.0: a comprehensive historical hourly weather database for U.S. urban energy system modeling
	Background & Summary
	Methods
	Selection of weather stations. 
	Ground-based hourly weather observations. 
	Radiation data from NSRDB. 
	Reanalysis data from MERRA-2. 
	Quality control and gap filling methods. 

	Data Records
	Technical Validation
	Usage Notes
	Acknowledgements
	Fig. 1 Spatial distribution of the 550 representative weather stations in CHUWD-H v1.
	Fig. 2 Percentage of missing hourly observations over the 23-year period (1998–2020) for (a) near-surface air temperature (Ta), (b) dew point temperature (Td), (c) surface pressure (Ps), (d) wind speed (WS), and (e) wind direction (WD) for all stations in
	Fig. 3 Percentage of missing hourly observations by year and station for (a) near-surface air temperature (Ta), (b) dew point temperature (Td), (c) surface pressure (Ps), (d) wind speed (WS), and (e) wind direction (WD) for all stations in CHUWD-H v1.
	Fig. 4 The multi-step gap filling (MSGF) approach to fill a missing air temperature data point at the target weather station.
	Fig. 5 Hourly (a) air temperature (Ta °C), (b) dew point temperature (Td °C), (c) relative humidity (RH %), (d) atmospheric pressure (Ps kPa), and (e) wind speed (WS m s–1) averaged over the 23-year period (1998–2020) for all stations in CHUWD-H v1.
	Fig. 6 Hourly (a) global horizontal irradiance (GHI), (b) clear-sky GHI, (c) direct normal irradiance (DNI), (d) clear-sky DNI, (e) diffuse horizontal irradiance (DHI), and (f) clear-sky DHI averaged over the 23-year period (1998–2020) for all stations in
	Fig. 7 Data inspection and downloading platform for CHUWD-H v1.
	Fig. 8 Results of 10-fold Monte Carlo cross-validation, evaluated by the (a,d,g, and j) Pearson correlation coefficient (r), (b,e,h, and k) Root Mean Square Error (RMSE), and (c,f,i, and l) Mean Absolute Error (MAE), for (a–c) air temperature (Ta), (d–f) 
	Table 1 Summary of variables in CHUWD-H v1.
	Table 2 Definitions of variables in “CHUWD-H v1.
	Table 3 Summary of cross-validation results (mean ± 1 standard deviation) for the multi-step gap filling (MSGF) approach.




