Fermentation of "Quick Fiber" Produced from a Modified Corn Milling Process into Ethanol and Recovery of Corn Fiber Oil Nick J. Nagle*2, Kelly Ibsen, Melvin P. Tucker² Bruce S. Dien¹, Vijay Singh³, Robert A. Moreau⁴, Nancy N. Nichols¹, David B. Johnson⁴, Michael A. Cotta¹, Kevin B. Hicks⁴, Quang Nguyen², Sally Noll⁶ and Rodney J. Bothast⁵ #### **Ethanol Dry Mills** - Over two billion gallons of ethanol were produced in 2002 in the U.S. - Projected ethanol production is expected to more than double by 2010. - Currently, 60% of all US ethanol is produced using dry mill technology. - Traditional starch based operation using standard S. cerevisiae cultures. #### Ethanol Dry Mills cont. - Two major co-products from the dry mill process: - Distillers grain (DG) - Carbon dioxide - Over three million tons of DG are produced each year. - Used in feed formulations to replace soy bean meal for cattle. - Price and market concerns as DG production increases from increased ethanol production. #### Quick Fiber Project Objectives - Improve profitability of the dry mill ethanol industry. - Model the wet milling process with a diversity of coproducts from corn processing. - Increase ethanol production. - Produce higher quality DDG and DDGS. - Increase efficiency for the dry mill process ### Quick Germ and Fiber Process* with Fiber to Ethanol Conversion ^{*}Developed by V.J. Singh, U of IL US patent #6,254,914 *Cereal Chem. 1999 76(6):868-872 #### Germ & Fiber Recovery in Dry Mill Process #### Fiber Composition | Component | Corn Fiber* | Quick Fiber* | |------------------------|-------------|--------------| | Glucose
**(Starch) | 11-23 | 15 | | Glucose
(Cellulose) | 12-18 | 22 | | Xylose | 18-29 | 17 | | Arabinose | 11-19 | 11 | | Protein | 11-12 | 11 | | Oil | 3 | 1 | ^{* %} w/w db ^{***}anhydrous basis ## Theoretical Ethanol Yield from a Bushel of Corn Product (per bu) Ethanol Yield (gallons) Starch Ouick Fiber* 2.5-2.7 0.2 *Assumes 90% efficiency & 3.8 lb Q.F./bu One bushel of corn weighs 56 lbs One gallon of ethanol = 3.785 L = 6.58 lbs # Potential Co-Products from Quick Fiber Separation #### Corn Fiber Oil - Extracted from the pericarp, aleurone, and tip cap. - Contains phytosterols - Phytosterols have been recognized to lower serum cholesterol. #### Corn Fiber Gums - Comprised mainly of hemicellulose (arabinoxylan) - Can be used as a substitute for gum arabic (food emulsifier) or in industrial films and adhesives. #### **Experimental Protocol** - Pretreat Quick Fiber using dilute acid. - Condition and neutralize resulting pretreatment residue and hydrolyzate. - Determine bioconversion potential of pretreated residue using *S. cerevisiae* and the hydrolyzate using a recombinant *E. coli*. - Extract oil from starting material, pretreatment residue and SSF residue. # Dilute Acid Pretreatment of Quick Fiber (Yeast Fermentation) - Solids loading of Quick fiber was 10-20% dry wt. basis. - Acid loading at 3.2 % of H₂SO₄ per dry wt. of biomass. - Temperature: 150°C. - Hydrolysis Time: 10 minutes. - After hydrolysis, hydrolysate was neutralized with Ca(OH)₂. Conditions based upon Grohmann and Bothast, 1993 ### Dilute Acid Pretreatment of Quick Fiber (Bacterial Fermentation) - Quick fiber was ground using a small grinder. - Solids were pretreated at 121°C using 1% H₂SO₄ for one hour. - Liquor was filtered from the solids and overlimed using Ca(OH)₂ for one hour. - Liquor was neutralized to pH 7.0 and centrifuged to remove gypsum - Final hydrolzate was filtered sterilized prior to fermentation #### **SSF** Conditions - Solids were loaded at 16.4% db. - Cellulase (15 FPU/g cellulose), β-glucosidase and glucoamylase were added. - Inoculated with S. cerevisiae and incubated at 32°C for 70 hr in a temperature controlled shaker at 150 rpm. - Ethanol, sugars and organic acids were analyzed periodically. #### **Bacterial Fermentation** - Recombinant strain E.coli FBR5 was used to ferment all of the sugars in the hydrolyzate. - Mini-bioreactors with pH control were used. - No added cellulase cellulose partitioned w/ solids. - Inoculated with E. coli FBR5 at 5% v/v inoculum. - Fermentation held at pH 6.5, 35°C for 70 hr. - Ethanol, sugars, and organic acids were analyzed periodically. ### Pretreatment Results from the Hydrolysis of Quick Fiber Using Dilute Acid | % Acid
Loading ^a | Glucose b | Xylose b | Arabinose b | pH ^c | |--------------------------------|-----------|----------|-------------|-----------------| | 0 | 75±0 | 16±0 | 39±0 | 4.41 ±0.07 | | 0.8 | 92±2 | 50±6 | 77±2 | 2.78 ±0.00 | | 1.6 | 90±1 | 74±9 | 86±3 | 2.12 ±0.07 | | 3.2 | 92±3 | 98±6 | 98±4 | 1.89 ± 0.07 | | 4.8 | 87±4 | 98±8 | 87±0 | 1.56 ±0.09 | ^a % g H₂SO₄ per g biomass b % of theoretical yield ^c measured following pretreatment #### SSF of Pretreated Quick Fiber by S. cerevisiae **Legend:** ■ Glucose • Ethanol. ### Fermentation Results For Various Fibrous Feedstock's Using Ethanologenic Strain FBR5 | | Initial Hydrolyzate Sugar
Concentrations
% w/v | | Maximum | Ethanol | Ethanol | | |----------------|--|---------|---------------|-----------------|--------------|------------------------| | Feedstock | Arabinose | Glucose | <u>Xylose</u> | Ethanol
%w/v | Yield
g/g | Productivity
g/l/hr | | Quick
Fiber | 1.47 | 3.13 | 3.40 | 3.52±0.03 | 0.44±0.00 | 0.43±0.04 | | DWG | 0.79 | 1.96 | 1.23 | 2.12±0.05 | 0.49±0.01 | 0.71±0.01 | | Corn
Fiber | 2.00 | 2.80 | 3.70 | 3.74±0.01 | 0.46±0.00 | 0.77±0.05 | # Fermentation of Quick Fiber Hydrolyzate by Strain FBR5 Legend: ▲ Xylose ■ Glucose ◆ Arabinose, and • Ethanol # Fermentation of Control Sugar Mixture by Strain FBR5 Legend: ▲ Xylose ■ Glucose ◆ Arabinose, and • Ethanol ### Recovery Of Corn Fiber Oil From Process Fiber Residues | Fiber | Total Oil | Free Sterol | FPE ¹ | St:E ² | |----------------|---------------|-----------------|---------------------------|-------------------| | Source | % w/w | Yield w%
oil | Yield w% oil | Yield %w
oil | | Pre SSF | 7.9 ± 0.1 | 4.43 ± 0.19 | 3.27 ± 0.04 | 7.9 ± 0.1 | | Post SSF | 1.8 ± 0.5 | 6.03 ± 3.74 | 5.82 ± 3.66 | 1.2 ± 0.57 | | Post FBR5 Ferm | 12.2 ± 1.8 | 5.80 ± 0.79 | 4.29 ± 0.69 | 12.2 ± 1.8 | ¹ FPE= Ferulate Phytosterol Esters ² **St:E** = Phytosterol Fatty Acyl Esters #### Conclusion #### Quick Germ and Quick Fiber Process: - Remove non-fermentable material from process stream. - Increase fermentor capacity leading to increasing ethanol production. - Achieve high yields of sugars resulting from pretreatment. - Achieve high levels of bioconversion using C5 or C6 organisms. - Lead to potential co-products from corn fiber oil and gum. - Allow for the dry mill process to model the wet milling process using less capital investment. - Increase profitability and efficiency of the dry mill process. #### Future Work: Scale-Up Fiber Conversion Acid Impregnation Study 30 qt. bread dough mixer Fiber sprayed with red dye ### Scale-Up of Fiber Conversion Using Several Types of Pretreatment Reactors **Zipperclave** 4 L Steam Gun #### Acknowledgement - ¹ National Center for Agricultural Utilization Research, USDA, Agricultural Research Service - ² National Bioenergy Center, Biotechnology Division for Fuels and Chemicals, National Renewable Energy Laboratory - ³Eastern Regional Research Center, Agricultural Research Service. USDA - Department of Agricultural Engineering, University of Illinois, Urbana, IL - ⁵ National corn to ethanol research pilot plant, SIU Edwardsville,