Innovation for Our Energy Future

Next Generation Natural Gas Vehicle (NGNGV) Program Review

Mike Frailey
National Renewable Energy Laboratory

NGNGV Program

U.S. Department of Energy initiative starting in 2000

- Develop working prototypes to meet 2010 emission standards (0.5 g/bhp*h NO_x proposed, 0.2 g/bhp*h final)
 - Class 3-6 vehicle applications
 - Class 7-8 vehicle applications
- Leverage funding & previous DOE advance development efforts
- Competitive with conventional fueled vehicles
 - Initial cost
 - Operating costs

NGNGV Program

- Vehicle Working Group established in 2000
- Multiple workshops held with > 40 industry stakeholders:
 - Engine and vehicle OEMs
 - Industry and trade associations
 - Fleet operators
 - National labs
 - Utilities and fuel distributors
 - Equipment suppliers
 - Consultants and universities
 - South Coast Air Quality Management District
 - California Energy Commission

NGNGV Program

- Engine Performance
 - 1) Reduce capital and operating cost
 - 2) Increase fuel economy
 - 3) Improve maintainability
- Combustion Technology Development Areas
 - 1) DING
 - 2) Lean-SING
 - 3) Stoichiometric-SING
- Emission Control Areas
 - 1) Lean-NOx technology
 - 2) THC reduction
 - 3) Oxidation catalyst
- Perform market research for NG target applications
- Near-term development encouraged (2004/2002.5)
- VWG results and recommendations available on http://www.nrel.gov/vehiclesandfuels/ngvtf/pdfs/37647.pdf

NGNGV Integrated R&D Strategy

Engine/Vehicle Development

Engine Laboratory Development

Proof of Concept

NGNGV Projects

Proof of Concept Projects

Proof of Concept Projects

Findings and Results:

- (Better than) 2007 emission standards demonstrated with Class 8 capable engines
 - 1) Clean Air Power C12 Dual-Fuel-- 0.5 g/bhp*h NO_x
 - Prototype EGR & commercially available DPF
 - ESC 13
 - 2) Cummins Westport High Pressure Direct Injection ISX-- 0.6 g/bhp*h NO_x
 - Increased EGR & oxidation catalyst
 - FTP
- 2010 emission levels demonstrated
 - 1) Teleflex/GFI-- 0.08 g/bhp*h NO_x
 - Production 6.0L NG engine w/optimized 3-way catalyst
 - FTP
 - 2) Cummins Westport B Gas Plus-- 0.15 g/bhp*h NO_x
 - Spark-ignited lean-burn @ 1.2 g/bhp*h NO_x
 - CWI's "NO_x Storage and Reduction" (NSR) system
 - AVL 8

Engine Laboratory Projects

Cummins Laboratory Development stoich-SING, EGR, TWC w/ 8.3L

Project Targets:

- Stoichiometric air/fuel (& EGR) control
- 2010 emission demo (AVL8/FTP)
- Engine ratings 310 hp/950 ft-lb
- 40% peak thermal efficiency

Status:

- Steady-State laboratory engine operation has demonstrated
 - 2010 emission viability
 - Peak efficiency target
 - Engine rating targets
- Transient calibration development initiated

Contact: Naveen Berry (SCAQMD)

Mack Laboratory Development stoich-SING, EGR, TWC, VVT w/11 L

Project Targets:

- Multimode steady-state operation
- Stoichiometric air/fuel (&EGR) control
- 2010 emission demonstration (Mack 16)
- Variable valve operation
- Engine ratings 325 hp/1,250 ft-lb

Status:

- Engine assembled
- VVT Head assembled

Contact: Margo Melendez (NREL)

Sturman DHOS™ Valve Actuation Module

Engine/Vehicle Development

Deere Power Systems 6081 Engine/Vehicle Development

Results:

- DPS proprietary engine controls
- Engine ratings 280 hp/900 ft-lb
- 6 months operational fleet data

Contact: Richard Parish (NREL)

Significance:

Introduction of DPS 6081 to transit bus market and increased NG engine availability

Deere certified the engine to 1.5 g/bhp NOx + NMHC

Cummins Westport L Gas Plus Engine/Vehicle Development

Results:

- Implemented Plus Technology to larger 8.9L
- Engine ratings 320 hp/1,000 ft-lb
- Development data four fleets w/refuse & transit

Contact: Mike Frailey

Cummins Westport L Gas Plus Engine/Vehicle Development

Results:

- Implemented Plus Technology to larger 8.9L
- Engine ratings 320 hp/1,000 ft-lb
- Development data four fleets w/refuse & transit

Contact: Mike Frailey

Significance:

Increased natural gas engine availability w/higher ratings

- CWI certified to 1.5 g/bhp NOx + NMHC
- OEM equipment availability w/ NABI & Autocar

Westport Innovations HPDI ISX-G w/OC Engine/Vehicle Development

Targets:

- Class 8 ratings, 450 hp/1,650 ft-lb
- Lean-burn combustion w/passive ECD
- 2007 emission standards (FTP)
- Assemble/operate prototypes vehicles

Status:

- Project initiated Nov-04
- Engine calibration on-going
- Durability testing initiated

Contact: Richard Parish (NREL)

Mack 12 L stoic-SING, EGR & TWC Engine/Vehicle Development

Targets:

- Stoichiometric air/fuel (& EGR) control
- 2010 emission demonstration (FTP)
- 350 hp/1,250 ft-lb
- Assemble/operate 2 prototype vehicles

Status:

- SS data demonstrated 2010 emissions
- Transient calibration progressing
- Parts procurement initiated, Apr/Mar build

<u>Contact</u>: Margo Melendez (NREL), Matt Miyasato (SCAQMD)

CWI stoich-SING, EGR w/TWC 8.9L Engine/Vehicle Development

Targets:

- Stoichiometric air/fuel (& EGR) control
- 2010 emission demonstration (FTP)
- 320 hp/1,000 ft-lb
- 40% peak thermal efficiency
- Assemble/operate prototypes

Status:

- Project initiated Feb-06
- Leverage experience from SCAQMD funded technology development project

Contact: Mike Frailey (NREL)

NGNGV Progress on VWG Objectives

- Engine Performance
- Reduce costs- ✓ operating cost parity; lean-SI v. D2 (NREL evaluation data)
- > Improve fuel economy- ✓ improved 16-18% lower than current D2 (NREL eval. data)
- ► Improve maintainability- ✓ product maturity, diagnostic tools available (NREL eval.)
- Combustion Technology Development
- ➤ DING: ✓ prototype development vehicles @ 1.2 NOx planned
- ▶ Lean-SING: ✓ new products @ 1.2 NOx available
- ➤ Stoich-SING: ✓ prototype development vehicles @ 0.2 NOx planned
- Emission Control Development
- ➤ Lean-NOx: ✓ CWI "NSR" tested- catalyst degradation, controls, packaging
- ➤ THC reduction: ✓oxidizing & 3-way catalysts reduce HC, × CH4 reduction difficult
- ➤ Oxidation catalyst: ✓ optimized/certified for '07 lean-SI, planned for '07 DI develop
- Market research for vehicle applications: ✓ for now- transit & refuse
- Near-term development (2004/2002.5): ✓ DPS 6081, CWI L Gas Plus

NGNGV Progress on DOE Objectives

- Develop and operate prototype vehicles that can meet 2010 emissions
- ✓2 Prototype engines will be fleet tested at 2010 emission levels-
 - Mack stoich-SI/EGR/TWC- refuse collection fleet, spring/summer '05
 - CWI stoich-SI/EGR/TWC- refuse and/or transit fleets, early '06
- √1 Prototype engine will be fleet tested at 2007 emission levels
 - Westport HPDI ISX- Class 8 tractor applications, late '05

- Leverage funding & previous DOE advance development efforts
 - ✓ Funding & human resources roughly doubled by SCAQMD and CEC.
 - ✓ Lean-SI & DI work evolved directly from previous development efforts

NGNGV Progress on DOE Objectives

Economically competitive with conventional fueled vehicles

Competition is good but changing

- Diesel fueled vehicles are going to change to meet 2007 and 2010
- Diesel and gasoline heavy-duty hybrids are new and evolving
- What is going to happen with the competition as they too have to comply with 2010 emission regulations?

NG engine products continue to evolve

- EGR has enabled significant NOx reduction in DING engine systems
 - √ ~80% reduction of NOx in laboratory demonstrations
- EGR has enabled TWC systems to be incorporated with SING products
 - √ 2010 emissions demonstrated
 - ✓ Cost is expected to be slightly higher than current lean-SI
 - ✓ Stoichiometric-SING/EGR/TWC could be the competition in 2010!

Acknowledgements:

- Steve Gougen & Dennis Smith @ DOE
- Naveen Berry, Mike Bogdanoff, Henry Hogo & Matt Miyasato at SCAQMD
- Jerry Wiens @ CEC
- Margo Melendez, Richard Parish, Kathee Roque and Jarett Zuboy @ NREL

Mike Frailey, 303-275-3607 mike frailey@nrel.gov

NGNGV Objectives/ Working Group Document

www.nrel.gov/vehiclesandfuels/ngvtf/pdfs/37647.pdf

