SERI/TR-35-234 September 1979 j/ \mathcal{D} . 197

A General Reliability and **Safety Methodology and Its** Application to Wind Energy Conversion Systems

MASTER

Michael Edesess Robert D. McConnell

Solar Energy Research Institute

A Division of Midwest Research Institute

1536 Cole Boulevard Golden, Colorado 80401

Operated for the **U.S. Department of Energy** under Contract No. EG-77-C-01-4042

> **NISTRIALITION O U.S. BOCUMENT IS 14**

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Printed in the United States of America Available from: National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 Price: Microfiche \$3 .00 Printed Copy *\$5.25*

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

SERI/TR-35-234 UC CATEGORY: UC-60

A GENERAL RELIABILITY AND SAFETY METHODOLOGY AND ITS APPLICATION TO WIND ENERGY CONVERSION SYSTEMS

MICHAEL EDESESS ROBERT D. MCCONNELL

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government.

Neither the United States Government nor any agency thereof, nor any of their employees, makes any

warranty

SEPTEMBER 1979.

 $\sqrt{1-\sqrt{1-\rho}}$

PREPARED UNDER TASK No. 3522.10

Solar Energy Research Institute

1536 Cole Boulevard Golden, Colorado 80401

MASTER

A Division of Midwest Research Institute

Prepared for the U.S. Department of Energy Contract No. EG· 77·C·01·4042

> DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED *--1'0)*

THIS PAGE WAS INTENTIONALLY **LEFT BLANK**

FOREWORD

This report documents work done on SERI Task 3522.10 by members of the Systems Analysis Branch, Research Division.

ے Neil H. Woodley, Chief

Systems Analysis Branch

Approved for:

SERI

SOLAR ENERGY RESEARCH INSTITUTE

Dennis Costello, Acting Assistant Director Analysis Division

THIS PAGE WAS INTENTIONALLY **LEFT BLANK**

SUMMARY

In conventional system reliability calculations, each component may be in the Operable state or the Under Repair state. These calculations derive system unavailability, or the probability of the system's being down for repairs. By introducing a third component state between Operable and Under Repair--namely, Defective, But Defect Undetected--the methods developed in this report enable system safety projections to be made in addition to availability projections. Also provided is a mechanism for computing the effect of inspection schedules on both safety and availability. A Reliability and inspection schedules on both safety and availability. Safety Program (RASP) is detailed which performs these computations and also calculates costs for system inspections and repairs. RASP is applied to a calculates costs for system inspections and repairs. simplified wind energy conversion system example.

THIS PAGE WAS INTENTIONALLY **LEFT BLANK**

THIS PAGE WAS INTENTIONALLY **LEFT BLANK**

SERI ^{en}

LIST OF FIGURES

 \bar{z}

LIST OF TABLES

SECTION 1.0

INTRODUCTION

In the electric power industry, a standard methodology has been developed for calculating system reliability $[1-3]$. Under this methodology it is assumed that each component of a system occupies either of two states: Operable or Under Repair. The duration of residence in the Operable state is the "time to failure," and the duration of residence in the Repair state is the "time to repair." This construction assumes that the Operable state lasts until failure and that the Repair state begins immediately thereafter.

In this simple form, the reliability methodology assumes perfect knowledge of the inoperabi1ity or "failure" of a component. For many components, however, there is an intermediate state between Operable and Under Repair which is of serious concern. This intermediate state we shall call "Defective, But Defect Undetected." Thus the cycle of performance for each component may be diagrammed as in Figure 1-1.

Figure 1-1. Performance Cycle for Each Component

By identifying this intermediate·state between Operable and Under Repair, we can calculate not only the system's reliability--i.e., its unavailability, or probability of being down for repairs--but also the probability of catastrophic failure due to undetected defects.

The method so developed will be applied to determining the reliability and safety of a simplified wind energy conversion system. Work on wind energy conversion system reliability is nascent. A failure modes and effects analysis has been performed by Kaman Aerospace Corporation [4], and a systems analysis study has been completed in Canada for a large vertical axis wind
turbine [5]. Analysis by General Electric on component failure modes was Analysis by General Electric on component failure modes was
pleted for the Mod-1 wind turbine [6]. Boeing has studied recently completed for the Mod-1 wind turbine [6]. reliability and maintainability for the Mod-2 [7]. Calculations of system reliability and safety will surely be required as wind power moves toward commercialization.

s=~~~-~ -------------------------=-=TR~--=-2~34

SECTION 2.0

THE DEFECTIVE STATE

A component resides in the "Defective, But Defect Undetected" state if it is either

- operating substandardly and thereby degrading system performance (but not enough to occasion immediate detection),
- in danger of experiencing total failure (even if not currently degrading system performance), or
- totally failed, if a standby component.

We shall refer to the "Defective, But Defect Undetected" state as simply the "Defective" state.

There is some arbitrariness about the boundary between the Operable and Defective states. The threshold at which a component has degraded to the point of being called "substandard" is arbitrary. So is the point at which the danger of total failure becomes significant. We shall use as a working definition of the Defective state: a defect which would be identified, if detected during an inspection, as warranting nonroutine maintenance or repair. Crack development beyond a specified size is one example of defect development.

A component in the Defective state might experience total failure before its defectiveness is detected. The possibility of a component's going from defective to failed is a matter of concern only if failure of the component affects system safety. We shall refer to the total failure (as opposed to the defectiveness, or susceptibility to failure) of components affecting system safety as "catastrophic failure." A datum which will be required for such a component is its rate of catastrophic failure, given that it is defective .

•

3

. **fi**

SERI®

 $\langle \rangle$

 $\mathcal{L}^{\text{max}}_{\text{max}}$

 $\ddot{}$

 $\ddot{}$

 $\hat{\mathbf{v}}$

 $S\equiv$ $\begin{array}{cc} \bullet & \bullet & \bullet & \bullet \end{array}$

SECTION 3.0

A SIMPLE EXAMPLE

Consider a special automobile braking system, consisting of the usual foot brake and an independent emergency brake. Suppose that the rate of defect development (such as brake fluid leak) is once in five years for both brakes and that the rate of catastrophic failure, given that the brake is defective, is once in ten days. To restate, each brake can be expected to perform an average of five years before becoming defective and, once defective, can be expected to last ten days before failing ·completely.

The foot brake is used constantly. A defect like a brake fluid leak will be noticed fairly quickly. Assume an average time of one day until detection of
this defect in the foot brake. The emergency brake, on the other hand, is The emergency brake, on the other hand, is used only as backup for the foot brake. A defect in the emergency brake will be discovered only during inspection, which takes place at regular four-month intervals. Thus, the expected time (in a probabilistic sense) until detection of a defect in the emergency brake is equal to the expected time until the next inspection, or two months.

Assume for this example that repair of either brake requires two days, but that inspections take negligible time.

The data for the two components of the braking system are given in Table $3-1$.

Table 3-1. BRAKING SYSTEM DATA

It is apparent that the expected time to defect development is identical to the expected residence time in the Operable state. Further, the expected time to defect detection is the expected time in the Defective state and the expected time to repair is the expected time in the Repair state. Table 3-2 gives the state residence probabilities which are normalized to the Total Cycle Time.

5

Table 3-2. STATE RESIDENCE PROBABILITIES

Assume that, once defective, each brake is subject to a constant failure rate. This implies that the failure distribution is exponential, so that the probability of a failure of either brake within time t in days after defect development is $1 - exp(-t/10)$. Therefore, the probability that the foot brake will fail during its expected one day until defect detection is $1 - \exp(-1/10)$ or 0.0952. The probability that the emergency brake will fail during its expected 60 days (two months) until defect detection is $1 - \exp(-60/10)$ or 0.9975.

We shall need to know the probability that each brake resides in the "catastrophically failed" state. If T is the duration of residence in the defective state,* then the expected duration in the failed state is

> T $f(T-t)$ Pr {failure occurs during time dt} 0

 $f(T-t)$ $\frac{1}{10}$ $e^{-(1/10)t}$ dt $f(T-t)$ $\frac{1}{10}$ $e^{-(1/10)t}$ dt = T - 10 $[1 - \exp(-\frac{1}{10}T)]$

For the foot brake, $T =$ one day. Therefore, the expected residence time in the failed state during one cycle is $1 - 10$ $[1 - \exp(-1/10)] = 0.0484$ day or 0.00013 year. Since one cycle spans 5.0082 years (from Table 3-1), the probability that the foot brake is in the failed state is $0.00013/5.0082$ or 2.6 x 10^{-5} . Similarly, the probability that the emergency brake is failed is

 ${60 - 10[1 - exp(-60/10)]}/(5.1721.365) = 0.0265$

Table 3-3 shows the state residence probabilities of Table 3-2 expanded to include the probability of residence in the failed state. It also states the

^{*}We have assumed in these calculations that the duration of residence in the Defective state is deterministic, although it is really a random variable. This approximation is warranted since some choice of a probability distribution must be made, and the one-point distribution--while unrealistic--is simplest and likely to produce as good an approximation as any other assumption.

failure rates on a per year basis. liability and safety calculations. These are all the data needed for the re-

Catastrophic failure of the two-brake system occurs whenever one brake fails and the other has already failed. (Failure of both brakes at the same instant is an event with a vanishingly small probability.)

The probability that catastrophic failure occurs during the instant Δt is therefore equal to

Pr{foot brake failed} • Pr{emergency brake defective}

 \cdot (emergency brake failure rate) \cdot Δt

+ Pr{emergency brake failed} • Pr{foot brake defective}

• (foot brake failure rate) • Δt

 $=(2.6 \times 10^{-5} \cdot 0.0322 \cdot 36.5 + 0.0265 \cdot 0.0005 \cdot 36.5) \cdot \Delta t$

 $= 0.0005$ Δt

This implies that the probability of catastrophic failure of the braking system is about 0.0005, or one in 2000, per year.

Note that a figure for unavailability of the system due to repairs may also be obtained from the data. The system is unavailable when either the foot brake or the emergency brake is being repaired. The probability is

> Pr{foot brake under repair} + Pr{emergency brake under repair} - Pr {foot brake under repair} • Pr {emergency brake under repair} $= 0.0011 + 0.0011 - 0.0011 - 0.0011 = 0.0022$

Therefore the system is available $1 - 0.0022 = 0.9978$, or 99.78% of the time. Of course, this is not meaningful in practice since components of the system other than brakes have not been considered. In a realistic example, all components of the system should be included in the availability calculation.

SERIA

ł,

 $\ddot{}$

 $\frac{d\mathbf{r}}{dt}$

 $\ddot{}$

 $\bar{\gamma}$

$s=$ \mathbf{S} \mathbf{R} \mathbf{R} \mathbf{S} \mathbf{R} \mathbf{R}

SECTION 4.0

GENERALIZED COMPONENT CALCULATIONS

We now proceed to the calculations for the general case.

The inputs required for each component of the system are as follows:

- mean time to defect development (in years) T_{α}
- T_f , expected time (in days) until catastrophic failure, given that component is operating defectively (required only if component failure affects system safety)
- frequency of inspections of this component. (number per year) N_i ,
- H. time in man-hours required to inspect this component
- Q, probability of detecting an existing defect during an inspection
- C_i , inspection cost in dollars allocable to this component
- t_d , mean time to defect detection (in days), if less than time until next inspection
- mean time to repair (in days) T_{r} ,
- average cost in dollars to repair/replace this component $C_{\bm{r}},$

Also required is W , the number of workers on the inspection and maintenance team (this input is system-specific, not component-specific).

The duration of an inspection is

 $\frac{H}{8W}$ (days) = $\frac{H}{8W}$ /365 .(years) = $\frac{H}{2920W}$ (years)

assuming an 8-hour work day.

Therefore,

time between inspections = $\frac{1}{N_1}$ - $\frac{H}{2920W}$ (years).

If a component is currently in the operating mode (either Operable or Defective), then the expected time until the next inspection is

$$
\frac{1}{2}\left(\frac{1}{N_1}-\frac{H}{2920W}\right) .
$$

If the component is defective but the defect is not discovered until the (k + l)'st inspection, then the operating time until detection is

$$
\frac{1}{2}\left(\frac{1}{N_{\mathbf{i}}} - \frac{H}{2920W}\right) + k\left(\frac{1}{N_{\mathbf{i}}} - \frac{H}{2920W}\right) = \frac{1}{2}\left(\frac{1}{N_{\mathbf{i}}} - \frac{H}{2920W}\right) (2k + 1).
$$

The probability that a defect is discovered during the $(k + 1)$ 'st inspection, but not until then, is $Q \cdot (1 - Q)^k$. Therefore, the expected operating time until a defect is discovered by inspection is

$$
\frac{1}{2} \left(\frac{1}{N_1} - \frac{H}{2920W} \right) Q \sum_{k=0}^{\infty} (2k + 1) (1 - Q)^k
$$

which equals

$$
\frac{2-q}{2Q}\left(\frac{1}{N_1}-\frac{H}{2920W}\right)
$$

The expected time until defect detection, however, may be less than the expected time for a defect to be found through inspections. The input, t_{d} , is provided to cover this eventuality. For example, the defective foot brake is discovered not through shop inspections but through observation of its behavior in use. To summarize, the expected time T_d in years until defect detection is expressed by

$$
T_d = \min_{\text{min}}
$$
 $\left[\frac{2 - Q}{2Q} \left(\frac{1}{N_i} - \frac{H}{2920W} \right), \frac{t_d}{365} \right]$

The inspection time as a fraction ot the nominal operating time (i.e., all but the time down tor repairs) is

$$
f = \frac{H}{2920W} / \frac{1}{N_1} = \frac{N_1H}{2920W}
$$

Then the elapsed time which is actually spanned by the first two states of the component's cycle (Operable and Defective), when time down for inspections is included, is $(T_0 + T_d)/(1 - f)$.

Letting T_i = inspection and maintenance time during component cycle,

$$
T_{i} = (T_{o} + T_{d})/(1 - f) - (T_{o} + T_{d}) = \frac{f}{1 - f} (T_{o} + T_{d}).
$$

Letting T_c be the time required to complete one component cycle,

 $T_c = T_0 + T_d + T_i + T_r$

The associated state residence probabilities are

$$
P_o \equiv T_o/T_c
$$

\n
$$
P_d \equiv T_d/T_c
$$

\n
$$
P_i \equiv T_i/T_c
$$

\n
$$
P_r \equiv T_r/T_c
$$

SERI

The failure rate of the component, given that it is defective, is

$$
\lambda = 365/T_f \text{ per year}
$$

and the probability of residence in the failed state is 동시 시스템

$$
P_f = P_d - \frac{1 - e^{-\lambda T_d}}{\lambda T_c}
$$

The expected inspection and maintenance cost per year is

 C_iN_i $(T_o + T_d + T_i)/T_c$

and the expected repair/replacement cost per year is C_r/T_c .

The above calculations assumed that the component is not operating during inspections or repairs. It is easy to adjust the calculations for cases when these assumptions are not true. These adjustments are incorporated as options in the computer program listed in Appendix B.

SERI

 ϵ

SECTION 5.0

GENERALIZED SYSTEM CALCULATIONS

A generalized system is described through its minimal path sets and minimal cut sets. A "path set" of a system is a set of components such that, if all are in working order, then the system is in working order. A minimal path set is a path set such that no proper subset is a path set. Obviously, any component which is not in a specified minimal path set can be labeled redundant. A "cut set" of a system is a set of components such that, if all are not in working order, then the system is not in working order. A minimal cut set is a set of components such that no proper subset is a cut set.

If all the minimal path sets of a system are specified, then the minimal cut sets can be derived and vice versa $[8]$. Nevertheless, the computer program listed in Appendix B requires both minimal path sets and minimal cut sets as input. An algorithm deriving one from the other could be added easily as a front end to the program. However, it is a useful exercise in qualitative analysis of the system for the program user to list both the system's minimal path sets and minimal cut sets.

The system reliability and safety calculations to be presented are based on the assumption that the performance cycles of the components in the system are independent of one another. For example, the time to· defect development of component A is assumed to be independent of the time to defect development of component B, and the time to repair component A is assumed to be independent of the time to repair component B. This is an assumption which .may not apply to some systems. Care should be taken to consider the possible invalidity of this assumption before applying the methodology.

We shall describe in detail the calculation of two system statistics: the probability of the system's being down for inspection and maintenance or repairs (i.e., system unavailability), and the probability of catastrophic failure (i.e., system safety). Other statistics--the probabilities of normal and defective system operation and the annual inspection and repair costs--also are computed in the Reliability and Safety Program listed in Appendix B. (See Appendix A for sample output.)

System unavailability, the probability of being down for inspection or repair, . is easily calculated. The probability that the system is down due to inspection or repair of some component is the probability of the union over all k of the events {component k is undergoing inspection or repairs}.* Let $r_k = P_i +$ P_r for the k'th component. The probability of a union of events can be computed from the probabilities of the events themselves by means of an elementary law of probability (see, for example, $[9]$, page 27) sometimes called the General Law of Addition. Thus, the probability of system unavailability for a system of m components is

^{*}Assuming the system is shut down whenever any component is undergoing inspection or repair. The program in Appendix B relaxes this requirement.

$$
\text{S=}\text{P}(\begin{smallmatrix}\text{m}\\\text{m}\end{smallmatrix})
$$

$$
\sum_{k} r_{k} - \sum_{j \neq k} r_{j} r_{k} + \sum_{i \neq j \neq k} r_{i} r_{j} r_{k} - \dots + (-1)^{m+1} \prod_{k} r_{k}
$$
 (5-1)

To compute the rate of system catastrophic failure, we first note that system failure will be determined by some sequence of component failures. Any one of the components may be the last to fail.

Suppose that the k'th component is the last to fail. System failure due to failure of the k'th component will occur during the instant Δt if:

- (1) All the other safety-related components in some cut set to which component k belongs have already failed.
- (2) Component k is defective (but not failed).
- (3) Component k passes from defective to failed in the subsequent instant Δt .

Let the minimal cut sets containing component k be designated S_1, \ldots, S_N , and let E_n denote the event α 11 safety-related components in S_n (except component k) have failed \cdot .

Letting $q_i = P_f(j)$ = the probability that component j is in the failed state (= 1 if component j does not-contribute to system safety),

$$
Pr(E_n) = \prod_{\substack{j \in S_n \\ j \neq k}} q_j
$$

The probability that all of the safety-related components except component k have failed in at least one of the cut sets S_1, \ldots, S_N [i.e., that event (l), above, occurs) is Pr $(E_1UE_2U...UE_N)$. But by the General Law of Addition we have

$$
P_{k} = Pr \{ \text{event} \ (1) \} = Pr(E_1 \cup E_2 \cup \ldots \cup E_N)
$$

$$
= \sum_{n=1}^{N} \Pr(F_n) - \sum_{m \neq n} \Pr(E_{\overline{m}} \Omega_{\overline{m}}) + \ldots + (-1)^{N+1} \Pr(E_1 \Omega \ldots \Omega_{N})
$$

$$
= \sum_{n=1}^{N} \prod_{j \in S_n} q_j - \sum_{\substack{m \neq n \\ j \neq k}} \prod_{j \in S_n} q_j + \ldots + (-1)^{N+1} \prod_{\substack{N \neq j \\ j \in US_n \\ n = 1^n}} q_j
$$
(5-2)

The probability that events (2) and (3) occur is

 $S=$ \blacksquare \blacksquare

$$
\left[\mathbf{P}_{\mathbf{d}}(\mathbf{k})-\mathbf{P}_{\mathbf{f}}(\mathbf{k})\right] \lambda(\mathbf{k}) \Delta \mathbf{t}.
$$

Hence, the probability that events (1) , (2) , and (3) occur is

$$
\rho_k \left[P_d(k) - P_f(k) \right] \lambda(k) \Delta t.
$$

The probability that catastrophic system failure occurs during time Δt is simply the sum of these probabilities over all components k. Letting λ_S be the rate of catastrophic system failure, so that $\lambda_S^2 \Delta t$ is the probability of catastrophic system failure during the instant Δt , we have

$$
\lambda_{\mathcal{S}} = \sum_{k} \rho_{k} \left[P_{d} \left(k \right) - P_{f} \left(k \right) \right] \lambda(k) \tag{5-3}
$$

 -2.12 The mean time to system catastrophic failure is then $1/\lambda_{\rm S}$, and the probability of catastrophic failure in a single year can be assumed to be $1 - \exp(-\lambda_{\rm S})$, or approximately λ_S (if λ_S is small).

SERI®

 $\bar{\beta}$

 \sim \sim

 \mathcal{L}_{max}

 $\frac{1}{2}$, $\frac{1}{2}$

 ~ 10 λ

 \mathbf{r}

 \sim \sim $\mathcal{L}^{\text{max}}_{\text{max}}$ \bar{z}

 \sim \sim $\mathcal{L}_{\mathcal{A}}$ $\label{eq:2} \frac{1}{2} \int_{\mathbb{R}^3} \frac{1}{\sqrt{2}} \, \frac$ \sim ϵ

SECTION 6.0

A SIMPLIFIED WIND ENERGY CONVERSION SYSTEM EZAMPLE

The general methodology described in the previous section is capable of treating systems containing many components. One reason for developing the methodology was for use in analyzing the reliability and safety of wind energy conversion systems.

A recently reported wind turbine accident involving the collapse of a 150 ft vertical axis machine was, in fact, closely related to one component, a set of drag brakes, having been in the "Defective, Defect Undetected" state [10]. Similar undetected defects seem to have been responsible for the collapse of several small wind turbines. While many of these problems have· been due to lack of quality control in the production of research and demonstration machines, the possibility of wind turbine catastrophic failure is not insignificant. The following examples are fairly realistic but are simplified considerably to illustrate the methodology's application.

Figure 6-1 diagrams a skeleton wind energy conversion system (WECS). Note that this is a highly simplified version of a WECS, including no pitch-control or yaw-control mechanisms. Furthermore, a large or sophisticated WECS will include many auxiliary safety devices such as vibration, loss of line voltage, overspeed, and other.critical parameter sensors.

The WECS diagrammed in Fig. 6-1 has only a braking system to control the rotor. The primary brake is the disc brake, which is applied to the shaft of the rotor. The drag brake, which serves as backup, is located near the outer extremities of the rotor and extends to offer air resistance against the rotor's angular momentum. The failure probability of such a system has been analyzed previously using conventional electric power systems reliability methods [5).

Modes of catastrophic failure of this system are:

- both brakes fail, resulting in an uncontrollable rotor; or
- the rotor fails catastrophically of its own accord--i.e., breaks and collapses.

The gear box and generator can become defective also, but we can assume that their defectiveness will not pose a safety hazard. Their defectiveness, however, will have a negative effect on system performance. As a result, the defectiveness of either gear box or generator would probably be discovered simply through observing the system performance over time.

As the above discussion implies, the cut sets of this system are:

- rotor;
- disc brake and drag brake;

17

SERI (S

Figure 6-1. SIMPLIFIED WIND ENERGY CONVERSION SYSTEM

 \mathcal{L}_{max} \mathbb{R}^2

- •- gear box; and
- generator.

,_=·/

That is, the system is operating defectively (or in danger) if all the components in one of these four sets are Defective.

The path sets of the system are:

- rotor, disc brake, gear box, and generator; and
- rotor, drag brake, gear box, and generator.

That is, the system is operating normally (i.e., it is safe and performance is not degraded) as long as all the components in one of these two sets are. Operable.

Appendix A shows the output of the Reliability and Safety Program (RASP) for this example. Pages A-2 and A-3 list the component ·inputs which were used. Page A-4 lists the minimal path sets and minimal cut sets that were input. These inputs were chosen in order to represent as realistically as possible those of a real wind energy conversion system, but they are still illustrative.

Page A-7 gives the system outputs. The probability of a catastrophic failure as calculated by Eqs. 2 and 3 is 0.012 per year in this example, and the mean time to catastrophic failure is 81.4 years. The unavailability due to maintenance or repairs (Eq. 1) is 1.3%. 4.2% of the time the system will be operating but defective. Thus the system is available for normal operation 94.5% of the time. The cost of maintenance and repairs averages about \$3900 per year. These numbers are probably reasonable for a wind turbine of intermediate size, but note that other protection devices, such as pitch and yaw controls on a horizontal axis wind turbine, have not been included.

The subsequent tables on pages A-7 and A-8 show the effect of improving each of the components, either by increasing its mean time to defect development, by decreasing the time to defect detection, or by decreasing the time to repair. For example, on page A-7 it is shown that increasing the mean time to rotor defect development by 50% increases the mean time to system failure by 43.5%. On the other hand, increasing the mean time to defect development for either brake has a much smaller impact on system safety. This shows clearly that the rotor is the most safety-critical component. If maintenance and repair costs are a concern, however, improvement of the drag brake will have the most favorable impact (-7. 79%). Such sensitivity calculations provide valuable input to a design-to-cost project, in which the systems engineering of a wind energy conversion system is optimized while the system cost is minimized.

As an improvement to the system, let us consider the addition of a crack sensing device which would detect major cracks developing in the rotor blades. Figure 6-2 diagrams the system with this addition. Only system safety is being considered so the gear box and generator are irrelevant and are shown in dashed lines.

The crack sensor will be attached so as to activate the disc brake if a major crack is sensed.

SERI

 $20\,$

 $S=$ \blacksquare

For the objective of system safety, the cut sets become:

- rotor and crack sensor (because if the rotor becomes defective and the crack sensor is not working then the system is in danger);
- rotor and disc brake (because if the rotor becomes defective and the disc brake is not working then the crack sensor has no means to stop the rotor); and
- disc brake and drag brake (as above).

The fact that the crack sensor is a rather unreliable device is expressed by its being assigned a one-year mean time to defect development (which we shall assume is followed immediately by or is synonymous with failure). Assume the crack sensor is inspected four times a year, but that the probability of detecting and correcting a defect is only 0.8 .

The result of rerunning RASP with the crack sensor included is that the probability of catastrophic system failure becomes 0.0044, about three times less than that of the system without the crack sensor.

The above example shows how system reliability and safety projections can be made when data on component defect development and failure rates are available. . It cannot be emphasized enough that component failure rates are often unknown or highly uncertain. This is the case, for example, for the rotor in a large wind turbine. Additional testing and experience will make better component failure rates available, which will improve the meaningfulness of system reliability and safety estimates. Even in the absence of good component failure rate estimates, however, the Reliability and Safety Program can compare different system designs to determine their relative reliability and safety.

بعك

 $S=$ \blacksquare \blacksquare

SECTION 7.0

CONCLUSION

The methodology embodied in the Reliability and Safety Program can be used to determine both system availability and the probability of catastrophic system
failure. By investigating the sensitivity of these statistics to changes in By investigating the sensitivity of these statistics to changes in the reliability of individual components, the methodology can identify_ critical components, thereby aiding in decisions relating to inspection and maintenance schedules, durability of various components, and system redundancies. Although the program was developed for wind energy conversion systems, it is a general one and would be useful for any system for which reliability and safety are major concerns.

SERI ®

 $\ddot{}$

SECTION 8.0

REFERENCES

- 1. Billinton, R.; Ringlee, R. J.; Wood, A. J. Power System Reliability Calculations. Cambridge, MA: M.I.T. Press; 1973.
- 2. Billinton, R. 1970. Power System Reliability Evaluation. Gordon and Breach;
- 3. Hall, J. D.; Ringlee, R. J.; Wood, A. J. "Frequency and Duration Methods for Power System Reliability Calculations: I - Generation System Model." IEEE Transactions on Power Apparatus and Systems. Vol. PAS-87 (no. 9): pp. 1787-1796; September 1968.
- 4. Kaman Aerospace Corporation. "Design Study of Wind Turbines 50kW to 3000kW for Electric Utility Applications." DOE Report No. DOE/NASA/9404- 76/2, Appendix C; February 1976.
- 5. Fortin, M. "Etude de Fiqbilite, Systeme de Freinage, Eolienne des Iles de la Madeleine." Unpublished report, Institut de Recherche de 1 'Hydro-Quebec, 1977. (In French)
- 6. General Electric Co. "Mod 1 Wind Turbine Generator Failure Modes and Effects Analysis." DOE Report No. DOE/NASA/0058-79/1; February 1979.
- 7. Boeing Engineering and Project: Reliability, Review." May 15, 1979. Construction. "Wind Turbine System Hod-2 Maintainability, Logistics; Detail Design
- 8. Kaufman, *A.;* Grouchko, D.; Cruon, R. Mathematical Models for the Study of the Reliability of Systems. Academic Press; 1977.
- 9. Hickman, Edgar· P.; Hilton, James G. Probability and Statistical Analysis. Intext Educational Publishers; 1971.
- 10. Templin, R. J.; McConnell, R. D. "Summary Report on the Collapse of the Magdalen Islands Hind Turbine." Proceedings of the Workshop on Economic and Operational Requirements and Status of Large Scale Wind Systems. EPRI ER-1110-SR, p. 353; July 1979.

SE21

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{0}^{\infty}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2}d\theta\,d\theta.$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2}d\mu\,d\mu\,.$ \sim \sim $\frac{1}{2} \frac{1}{2} \frac{d}{dt}$

 \cdot $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

 $\ddot{}$

APPENDIX A

SERI

Output of
Reliability and Safety Program for Simplified Wind Energy Conversion System Example

 $A-1$

 \mathbf{r}

 \mathcal{L}^{max} , \mathcal{L}^{max}

 \sim \sim

 \sim

 \mathbf{r}

 \mathcal{A}

SIMPLIFIED SKELETON WIND ENERGY CONVERSION SYSTEM

FUNCTION: RELIABLE AND SAFE OPERATION

 ~ 10

 $\bar{\mathcal{A}}$

 $\ddot{}$

 $\ddot{}$

 $\ddot{}$

 $\frac{1}{2}$

 $\ddot{}$

 \mathcal{A}

 $\ddot{}$

 \mathbb{R}^2

 $\ddot{}$

 $\ddot{}$

 $A-3$

MINIMAL PATH-SETS

 \mathbf{r}°

ROTOR DISC BRAKE GCnR DO)(**GENERATOR**

ROTOR DRAG BRAKE GEAR BOX **GENERATOR**

MINIMAL CUT SETS

ROTOR

DISC BRAKE DRAG BRAKE

GEAR DOX

GENERATOR

 $A-4$

EXPECTED STATE RESIDENCE DURATIONS
FOR INDIVIDUAL COMPONENTS

(IN YEARS)

Ġ

 $\mathbf{C}^{\mathbf{\odot}}$

STATE RESIDENCE PROBABILITIES
FOR INDIVIDUAL COMPONENTS

 $\sim 10^{11}$

 \mathcal{L}

 $\sim 10^{-1}$

MAINTENANCE AND REPAIR COSTS (\$ PER YEAR)

l,

 \otimes

 $\ddot{}$

 $\ddot{}$

 $\overline{}$

 $\langle \rangle$.

SIMPLIFIED SKELETON WIND ENERGY CONVERSION SYSTEM

FUNCTION: RELIABLE AND SAFE OPERATION

SENSITIVITIES TO 50 PCT. INCREASE IN MEAN TIME TO DEFECT DEVELOPMENT, FOR EACH COMPONENT

CHANGE IN:

 $A-7$

SENSITIVITIES TO 50 PCT. DECREASE IN MEAN TIME TO DETECT DEFECT. FOR EACH COMPONENT

 $\mathcal{L}_{\mathbf{r}}$

 $\sim 10^{11}$

CHANGE IN:

 \sim

 \mathbb{R}^2

SENSITIVITIES TO 50 PCT. DECREASE IN MEAN TIME TO REPAIR, FOR EACH COMPONENT

CHANGE IN:

 $\ddot{}$

APPENDIX B

 SEV

Eisting of
Reliability and Safety Program (RASP)

 $B-1$

C

```
^{\circ}COMMON/X/TITLE(8),FNCTN(8),CNAME(2,100),DT(100),FT(100),XNI(100),
       & H(100) +Q(100) +CI(100) +DD(100) +RT(100) +CR(100) +DDT(100) +
       & TIM(100),PN(100),PD(100),PR(100),PIM(100),FR(100),PF(100),
       % IS(100) +JI(100) +KI(100) +LR(100) +IDP(100+30) +NCP(100) +
      8. IDC (30, 100), NCC (30), NP, NC, N, Z(100), IN (100)
        DATA UND/1----------//
心
\tilde{\mathbb{C}}Ċ
     READ IN NAME OF SYSTEM FOR THIS RUN
        READ 10, TITLE
    10 FORMAT (8A10)
C
 C
     READ IN FUNCTION OF SYSTEM FOR THIS RUN (E.G. RELIABILITY OR
Ċ
     SAFETY OR BOTH)
       READ 10, FNCTN
Ć
Ć
     REAB NUMBER OF DIFFERENT COMPONENTS IN SYSTEM (UP TO 100)
       READ 20.N
    20 FORMAT (13)
C
C.
     READ COMPONENT INPUTS FOR EACH COMPONENT
\mathbb C(COMPONENT I.D. NUMBERS WILL BE ASSIGNED IN INPUT ORDER)
       DQ = 30 I = 1 \cdot N30 READ 40, CNAME (1, I) + CNAME (2, I) + DT (1) + IS (1) + FT (1) + IM (1) + XNI (1) + H (1) +
      & Q(I) \starJI(I) \starKI(I) \starCI(I) \starBB(I) \starRT(I) \starCR(I) \starLR(I)
    40        GORMAT(A10,A5,F10,2,I2,F8,2,I2,F7,2,F6,2,F6,4,2I2,F10,2,F10,4/
      & 2F10.2 \times 12\mathbb{C}C
     CNAME = NAME OF COMPONENT (15 CHARACTERS)
\mathbb CDT = MEAN TIME TO DEFECT DEVELOPMENT (YEARS) (F10.2)
\tilde{C}IF FAILURE OF THIS COMPONENT AFFECTS SYSTEM SAFETY
     IS = 1\mathbb CIF NOT
                      (12)= 0Ċ
     FT = EXPECTED TIME IN DAYS UNTIL CATASTROPHIC FAILURE, GIVEN THAT
\tilde{\mathbb{C}}COMPONENT IS OPERATING DEFECTIVELY (BLANK IF IS=0)
                                                                      (F8.2)\mathbb CIF FAILURE CAUSES IMMEDIATE SYSTEM FAILURE
     IM = 1\ddot{\mathbb{C}}= 0IF NOT
                       (12)C
     XNI = FREQUEMCY OF INSPECTIBNS OF THIS COMPBMENT (#ZYP)(F7.2)\overline{c}H = 71ME in MAN-HOURS REQUIRED TO INSPECT THIS COMPONENT
                                                                        (F6, 2)Ċ
     Q = PROBABILITY OF DETECTING DEFECT DURING INSPECTION
                                                                    (F6.4)C<br>C<br>C
              IF SYSTEM IS SHUT DOWN DURING INSPECTION OF THIS COMPONENT
     JI = 1= 0
              IF NOT
                       (12)IF COMPONENT IS OPERABLE DURING INSPECTION
    KI = 1COOC
              IF NOT, OR IF JI=1 (12)
        = 0CI = INSPECTION COST IN $ ALLOCABLE TO THIS COMPONENT
                                                                     (F10.2)DD = MEAN TIME TO DEFECT DETECTION, IF LESS THAN TIME UNTIL
          NEXT INSPECTION (DAYS)
                                      (F10.4)Ć
        = MINUS ONE, IF TIME TO DEFECT DETECTION NOT LESS THAN TIME
\frac{1}{2}UNTIL NEXT INSPECTION
    RT = MEAH TIME TO REPAIR (DAYS)
                                           (F10.2)\bar{c}OR = AVERAGE COST IN $ TO REPAIR/REPLACE THIS COMPONENT.
                                                                     - (F10.2)
              IF SYSTEM IS SHUT DOWN BURING REPAIR OF THIS COMPOMENT
\mathbb CLR = 1C.
        = 0
              IF NOT
                       (12)\mathbb{C} –
```

```
\frac{6}{6}
```

```
PRINT OUT COMPONENT INPUTS
   PRINT SO. TITLE. FNCTN
50 FORMAT (10 (Z) + T11+
                                         SAFETY
                                                       PROGRAM<sup>2</sup>
                                A A B& RELIABILITY
  & /T11,59('-'),5(/),8A10//8A10)
   DQ = 70 I = 1.44.3M = I + 2IF (M.GT.N) M=N
   PRINT 55, (K.K=1.M)
55 FORMAT (5 (2) +10X+10DMPONENT:1+T15+3(16X+13+1+1))
   PRINT 60, ((CNAME(J,K), J=1,2),K=1,M)
60 FORMAT (20X, 3 (5X, 810, 85))
   PRINT 65. CUND.UND.K=I.M)
65 FORMAT (20%, 3 (5%, 810, 85))
   PRIMT 71, CDT (C), K=1, M)
   PRINT 72, (IS (K), K=I, M)
   PRINT 73, (FT (K), K=I, M)
   PRINT 74*(IM(K), K=I, M)
   PRINT 75, CKNI (K) > K=I, M)
   PRINT 76, (H(K), K=I, M)
   PRINT 77, (Q (K), K=I, M)
   PRINT 78, (JI (K), K=I, M)
   PRINT 79, (KI (K), K=I, M)
   PRINT 80, (CI (K), K=I, M)
   P RIMT = 81, CDB (K), K = I, M)
   PRINT 82, (RT (K) \starK=I, M)
   PRINT 83, (CR(K), K=I, M)
70. PRINT 34 \times (LR(K) \times K = I \times M)71 FORMAT(/SX)/MEAN TIME TO DEFECT1/SX)/DEVELOPMENT (YEARS)1,
  & T16+3(10X+F10.2))
72 FORMAT(25%, DOES FAILURE AFFECT125%, 1SYSTEM SAFETY?125%,
  \& \leq (1=YES, 0=NE) \leq T14, 3(198, I1))
73 FORMAT(/5X, 'EXP. TIME IN DAYS TO'/5X, 'CATASTROPHIC FAILURE,'
  % /SX, (GIVEN DEFECTIVE', T16, 3(10X, F10.2))
74 FORMAT (25X) (DOES FAILURE CAUSE /25X)
  & KIMMED. SYSTEM FAILURE? (FI4+3 (198+11))
75 FORMAT(25%, 1# OF INSPECTIONS OF125%, 1THIS COMPONENT PER YR. 1,
  8 T16,3(13X,F7.2))
76 FORMAT (25%) 'TIME REQD. TO INSPECT125%, 'IN MAN-HOURS',
  & T16, 3 (14X, F6.2))
77 FORMAT (25X, 1PROB. OF DETECTING DE-125X,
  & KFECT DURING INSPECTION(+T16+3(14X+F6.4))
78 FORMAT (25%) 1SYSTEM SHUT DOWN125X, DURING INSPECTION? 1,
  & T14,3(198,11))
79 FORMAT (25%, "COMPONENT" OPERABLE" 25%, "DURING INSPECTION?",
  8 T14.3(198-I1))
80 FORMAT (25%) (INSPECTION COST IN $1,T16,S(10%)F10.222
81 FORMAT (25%) (MEAN TIME TO DEFECT / 25%) (DETECTION (DAYS) ()
  & T18,8(10X,F10.4))
82 FORMAT (/5X, (MEAN TIME TO REPAIR(/5X, (DAYS) (,Tié,
  & 3(10%,F10.2))
83 FORMAT (/5X) (AVERAGE COST IN $1/5X) (TO REPAIR/REPUACE1)
  6 716,3(10%,F10.2))
S4 FORMAT (25%) (SYSTEM SHUT DOWN(25%) (DURING REPAIR?) (T14-
  & 3(19%, I1))
```
Ů

```
C
Ċ
     READ SYSTEM INPUTS
Ċ
Ċ
     READ NUMBER OF MINIMAL PATH SETS (UP TO 30) AND NUMBER OF
Ċ
     MINIMAL CUT SETS
       READ 90, NP, NC
    90 FORMAT (213)
Ç
\tilde{C}READ NUMBER OF COMPONENTS IN EACH MINIMAL PATH SET, AND I.D.
Č
    NUMBERS OF COMPONENTS IN IT
       DG 110 J=1, NPREAD 100, NCOMP, (IDP (I, J), I=1, NCOMP)
   100 FORMAT (2014)
  110 NCP (J) =NCOMP
Ú
Ċ
    READ NUMBER OF COMPONENTS IN EACH MINIMAL CUT SET,
Ć
    AND I.D. NUMBERS OF COMPONENTS IN IT
       DO 115 J=1, NC
       READ 100.NCOMP: (IDCCI, J), I=1, NCOMP)
  115 NCC (J) =NCOMP
Ć
\GammaPRINT PATH SET INFO
       PRINT 120
  120 FERMAT (10(Z)+T32+1MINIMAL PATH SETS1ZT32+17(1-1))
       D = 140 J=1, NP
       NCOMP=NCP(J)
       PRINT 130
  130 FORMAT (Z)
       DO 140 I=1, NCOMP
  140 PRINT 150, CNAME (1, IDP (1, J)), CNAME (2, IDP (1, J))
  150 FORMAT (T33+A10+A5)
C
Ć.
    PRINT CUT SET INFO
      PRINT 160
  160 FORMAT (10 (2) , T33, "MINIMAL CUT SETS"/T33, 17 ("+"))
      DE 170 J=1, NC
      NCOMP=NCC(J)
      PRINT 130
      DO 170 I=1, NCOMP
  170 PRINT 150, CNAME (1, 100(1, J)), CNAME (2, 100(I, J))Ç,
    READ NUMBER OF PERSONNEL ON INSPECTION AND MAINTENANCE TEAM
Ć
    (MAY BE FRACTIONAL)
      READ 180, PERS
  180 FORMAT (F6.2)
```
Ċ

```
Ċ
\mathbb CCOMPUTE STATE RESIDENCE DURATIONS AND PROBABILITIES
Ċ
     FOR EACH COMPONENT
       D = 190 I = 1.04Ċ
     FIND RATIO OF INSPECTION TIME TO NORMAL
\mathbb CÊ.
     OR DEFECTIVE OPERATION TIME
       RATIO=XNI (I) +H (I) / (2920. +PERS)
       IF (RATIO. 6T. . 9999) RATIO=. 9999
¢
Ć
     FIND EXPECTED TIME TO DETECTION OF DEFECT
       DDT(D) = (1,28PL(D) - H(D)Z(2920, +PERS)) + (2, -0(1))Z(2, +0(1))IF(DD(1).LT, 0.) DD(1) = 99999999.LE (DDT(I).6T.(DD(I)/365.))DDT(I)=DD(I)/365.
C
Ć
     COMPUTE DOWN TIME FOR INSPECTION AND MAINTENANCE DURING CYCLE
       \texttt{TIM}(I) = (\texttt{DF}(I) + \texttt{DDT}(I) - \texttt{DT}(I) + \texttt{RHT1D} + (1, -\texttt{JI}(I)) * \texttt{KI}(I))\& \leftrightarrowRATIOZ(1.-RATIO)
\mathbb{C}FIND DOWN TIME FOR COMPONENT REPAIR
\mathbb{C}RT(1) = RT(1) + LR(1)/365.
Ċ
     COMPUTE DEFECTIVE OPERATION TIME, INCLUDING POSSIBLE OPERATION
\mathbb C\tilde{C}DURING REPAIR OR MAINTENANCE
       DDT(I)=DDT(I)+RT(I)+(1+LR(I))+TIM(I)+(1+JI(I))
C
     FIND COMPONENT CYCLE TIME
C
       Z(1) = D T(1) + D D T(1) + R T(1) + T Im(1)Č
C
     FIND EXPECTED INSPECTION AND MAINTENANCE COST PER YEAR
       CI(1) = XMI(1) \oplus CI(1) \oplus (DT(1) + DDT(1) + TIM(1)) \times Z(1)Ċ
C
    FIND EXPECTED REPAIR/REPLACEMENT COST PER YEAR
       CR(1) = CR(1) / Z(1)\mathbb{C}\mathbb{C}FIND PROBABILITY OF NORMAL OPERATION
       PM(1) = DT(1)/Z(1)C
C.
     FIND PROBABILITY OF DEFECTIVE OPERATION
       PD(I) = DDT(I) \times Z(I)\tilde{\mathbb{C}}C
     FIND PROBABILITY OF BEING UNDER REPAIR
       PR(1) = RT(1)/Z(1)Ċ
Ċ
     FIND PROBABILITY OF INSPECTION AND MAINTENANCE
       PIM(D=TIME(D/Z(1))Ċ
Û
     COMPUTE FAILURE RATE, WHEN DEFECTIVE
       IF(IS(1), EQ, 0) FR(1) = 0.IF (IS (I).EQ.0) 60 70 185
       IF(FTOD .EQ. 0.) FT(D = 1.5 - 6FR (I) =365./FT (I)
\mathbb CCOMPUTE PROBABILITY COMPONENT IS FAILED
C.
  185 IF(IS(I).EQ.0)PF(I)=0.
       IF (IS (I).EQ.D) GO TO 190
       EXPNT=FR(I) +DDT(I)
       IF (EXPMT.GT.90.)EXPMT=90.
       PF (I) =PD(I) -(1,-EXP (-EXPNT)) /(Z(I) +FR(I))
  190 H(I)=H(I)/(2920.+PERS)
                                             B-6\mathbf{r}
```
C

```
Č
    PRINT OUT STATE RESIDENCE DURATIONS AND PROBABILITIES
      PRINT 200
  200 FORMAT(10(2), T24, 'EXPECTED STATE RESIDENCE DURATIONS'/T28,
     % /FOR INDIVIDUAL COMPONENTS///T36,/(IN YEARS)///)
      PRINT 210, (CNAME(1, I), CNAME(2, I), DT(I), DDT(I), RT(I), H(I), I=1, N)
  210 FORMAT (T28, 'NORMAL', T40, 'DEFECTIVE', T55, 'REPAIR', T66,
     8 (Z5X, 810, 85, 4513, 5))
      PRINT 220
  220 FORMAT(5(Z), T26, 'STATE RESIDENCE PROBABILITIES'/T28,
     & 'FOR INDIVIDUAL COMPONENTS'///)
      PRINT 210, (CNAME (1, I) , CNAME (2, I) , PN (1) , PD (1) , PR (1) , P1M (1) , 1 = 1, N)
C
C
    PRINT OUT MAINTENANCE AND REPAIR COSTS
Č.
      PRINT 230
  230 FORMAT(10(2),T20, MAINTENANCE AND REPAIR COSTS ($ PER YEAR) '22
     & T29, INSPECTION & , T49, REPAIR OR / T30, MAINTENANCE , T48,
     & "REPLACEMENT">T69>"TOTAL"/T29>12('-')>T48>11('-')>T69>5('-'))
      CIM=0.CRR = 0.D = 250 I = 1, NCTIT=CI(1)+CR(1)PRINT 240, CNAME (1, I), CNAME (2, I), CI (I), CR (I), CTOT
  240 FORMAT (/5X, A10, A5, 3F18.2)
      CIM=CIM+CI(I)
  250 CRR=CRR+CR(I)
      CTOT=CIM+CRR
      PRINT 260, CIM, CRR, CTOT
  260 FORMAT (/T21,3(10X,8(1-1))//2X,1TOTAL SYSTEM COSTS1,T21,3(F18.2))
\mathbb C\mathbb C\mathbb CCALL CRASP TO COMPUTE SYSTEM RELIABILITY AND SAFETY STATISTICS
      CALL CRASP (SA,UMR, DEF, FTIME, FPROB)
Ċ
Ê.
    PRINT SYSTEM RELIABILITY AND SAFETY STATISTICS
      PRINT 270, TITLE, FNCTN, SA, UMR, DEF, FTIME, FPROB, CTOT
  270 FORMAT(15(/),8A10//8A10///4X,'SYSTEM AVAILABILITY',T54,2PF15.1,
     % 1X, PERCENT ///4X, UNAVAILABILITY DUE TO MAINTENANCE AND REPAIRS / -
     & T54,2PF15.1,1X, PERCENT / / / 4X,
     & 'PERCENTAGE DEFECTIVE OR SUB-STANDARD OPERATION', T54, 2PF15.1, 1X,
     % /PERCENT///4X>/MEAN TIME TO CATASTROPHIC FAILURE/>T51>0PF18.1>
     % 1X, 'YEARS'//4X, 'PROBABILITY OF CATASTROPHIC FAILURE', T54, E15.2,
     % 1X, PER YEAR ///4X, POOST OF MAINTENANCE AND REPAIRS ($) ", T54,
     & F15.2,1X, PER YEAR >
C
```
 $\mathbb C$

```
C
     INVESTIGATE SENSITIVITIES TO 50 PCT. INCREASE IN MEAN TIME TO
r.
     DEFECT DEVELOPMENT, FOR EACH COMPONENT
       PRINT 280
  280 FORMAT(8(/),T18,1SENSITIVITIES TO 50 PCT. INCREASE IN MEAN TIME1/
     & T20, TO DEFECT DEVELOPMENT, FOR EACH COMPONENT ()
       PRINT 290
  290 FERMAT (//T22,/CHANGE IN:///T27,/SYSTEM/,T42,/MEAN TIME TE/,T60,
      & IMAINTENANCE ANDIVT24, AVAILABILITYI, T38, CATASTROPHIC FAILURE',
     % T61, REPAIR COSTS//T24, 12(/-/), T38, 20(/-/), T60, 15(/-/))
       DQ = 300 I = 1.4ZNEW=1.5+DT(1)+DDT(1)+RT(1)+TIM(1)PN(1) = 1.5 + DT(1) / ZNEW. PD (I) \Rightarrow DDT (I) \angle ZNEW
       PR (I) =RT (I) /ZNEW
       PIM(I)=TIM(I)/ZNEW
       F = P F(T)PF(1) = Z(1) + FFZZNEWCALL CRASP (SAN, UMBN, DEFN, FTIMEN, FPROBN)
       CAY=SAN-SA
       CMTTF=FTIMEN/FTIME-1
      PN(1) = DT(1)/Z(1)PD(I) = DDT(I) \times Z(I)PR(I)=RT(I)/Z(I)
       PIM (I) =TIM (I) \angleZ (I)
      PE(T) = EFCINEW=CI (I) \div Z (I) \div (ZNEW-RT (I) ) \times (ZNEW+(Z (I) -RT (I) ) ) :
       CRNEW=CR (I) +Z (I) /ZNEW
       CO=(CTET-CI(I)-CR(I)+CINEW+CRNEW)/CTET-1.
  300 PRINT 310, CHAME(1,1), CNAME(2,1), CAV, CMTTF, CC
  310 FORMAT (/5X,A10,A5,2PF10.3,1X,/PCT1,2PF14.2,1X,1PCT1,2PF14.2,1X)
     & PETYX
C
    INVESTIGATE SENSITIVITIES TO 50 PCT. DECREASE IN MEAN TIME
Ċ
Ê.
    TO DETECT DEFECT
       PRINT 320
  320 FORMAT(8(2),T18, (SENSITIVITIES TO 50 PCT, DECREASE IN MEAN TIME /2
     % T23, TO DETECT DEFECT, FOR EACH COMPONENT()
      PRINT 290
      D = 330 I = 1 \cdot NZNEW=DT(I)+,5+DDT(I)+RT(I)+2.+TIM(I)
      PD(1) = .5 + DDT(1) \times ZNEWPIM(I)=8.+TIM(I)/ZNEW
      PN(I)=DT(I)/ZNEW
      PR (I) =RT (I) /ZNEW
      FF = PF(1)IF(ISCI) . EQ. O P F (I) = 0.IF (IS (I).EQ.0) 60 TD 325
      EXPNT = .5 \rightarrow F \rightarrow (I) \rightarrow DDT(II)IF (EXPNT.GT.90.) EXPNT=90.
      PF (I) =PD (I) − (I, −EXP (−EXPNT)) / (FR (I) +ZNEW)
  S25 CALL CRASP(SAN,UMRN,DEFN,FTIMEN,FPREBM)
```

```
CAV=SAN-SA
     CMTTF=FTIMEN/FTIME-1.
    PD (I) =DDT (I) \angle Z (I)
    PIM(I)=TIM(I)/Z(I)PN (I) =DT (I) Z(1)PR(1)=RT(1)/Z(1)PF(I)=FF. CINEW=CI(I)+Z(I)+(ZNEW-RT(I))/(ZNEW+(Z(I)-RT(I)))
    CRNEW=CR (I) +Z (I) /ZNEW
    CC=<CTOT-CI<I>-CR<I>+CINEW+CRNEW><CTOT-1.
330 PRINT 310+CNAME(1+I)+CNAME(2+I)+CAV+CMTTF+CC
  INVESTIGATE SENSITIVITIES TO 50 PCT. DECREASE IN MEAN TIME TO REPAIR
    PRINT 340
340 FORMAT(8(2),T18,'SENSITIVITIES TO 50 PCT. DECREASE IN MEAN TIME(2) -
   & T26, TO REPAIR, FOR EACH COMPONENT()
    PRINT 290
    DD 350 I=1,N
    ZNEW=DT(I)+DDT(I)+.5+RT(I)+TIM(I)
    PR(1) = .5 + RT(1) / ZNEWPH(I) = DT(1) / ZNEWPD(I) = DDT(I) / ZNEWPIM(I) = TIM(I) / ZNEWFF = FF(1)PF (I) =2(I) +FF/ZNEW
    CALL CRASP (SAN+UMRN+DEFN+FTIMEN+FPROBN)
    CAV=SAN-SA
    CMTTF=FTIMEN/FTIME-1.
    PN (I) = DT (I) / Z (I)PD(I) = DDT(1)/Z(1)PR (I) =RT (I) \angleZ (I)
    PIM(1) = TIM(1)/Z(1)PF(1) = FFCIMEW = C1 (1) + Z (1) + (ZNEW - .5 + RT (1)) \times (ZMEW + (Z (1) - RT (1)))CRNEW=CR (I) +Z (I) /ZNEW
    CC=<CTOT-CI<I>-CR<I>+CINEW+CRNEW><CTOT-1,
350 PRINT 310, CNAME (1,1), CNAME (2,1), CAV, CMTTF, CC
    STOP
    END
```
Note: Subroutine CRASP is available upon request.

 $\mathbb C$ Ċ

 $B-9$

