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ABSTRACT 

The flapping motion of ·a single wind tur�ine 
rotor blade has been analyzed and equations describing 
the flapping motion have been developed. The analysis 
was constrained to allow only flapping motions for a 
cantilevered blade, and the equations of motion are 
linearized. 

A computer code, called FLAP (Force and Loads 
Analysis Program), to solve the equations of motion 
and compute the blade loads has been completed and 
compared to measured loads for a 3-bladed downwind 
turbine with stiff blades. The results of the program 
are presented in tabulated form for equidistant points 
along the blade and equal azimuth angles around the 
rotor disk. The blade deflection, slope and velocity, 
flapwise shear and moment, edgewise shear and moment, 
blade tension, and blade torsion are given. The de­
terministic excitations considered in the analysis in­
clude wind shear, tower shadow, gravity, and a pre­
scribed yaw motion. 

INTRODUCTION 

The objectives of the research described in this paper 
were threefold: 

1. Development of an analytical model for the flap­
ping response and dynamic loads experienced by a 
wind turbine rotor blade. 

2. Development of an interactive, user-friendly com­
puter code written in FORTRAN V and available in 
the public domain for computing the response and 
loads. 

3. Verification of the model and the computer code 
with available machine data. 

The model allows only flapping motion of an 
individual wind turbine blade. It accounts for the 
blade bending deformation about the smallest blade 
inertia axis. The rotor is assumed to rotate at a 
constant speed, but the hub is allowed to move in a 
prescribed yawing motion. Rotors that are tilted and 

yawed relative to the mean wind direction can be 
accommodated in a straightforward manner. 

The model and the code are designed to operate 
with aerodynamic models of varying sophistication. 
Currently the model is configured to include the 
effects due to the mean wind, wind shear, and tower 
shadow. The code is structured in such a manner that 
time-dependent turbulent wind fluctuations can be 
added in the future. The rotor blade flapping motion 
is represented by a set of coordinate shape functions 
that are simple polynomials. Four functions are in­
cluded in the computer code, but any number of the 
functions can be used, from only one up to the maximum 
of four. At present only cantilever blade attachment 
conditions have been implemented in the code. Thus, 
for the results presented in this report, the flapping 
motion is represented with only one coordinate func­
tion (i.e., one flap degree of freedom). 

The current version for the aerodynamic model 
uses a quasi-steady linear aerodynamic model to com­
pute the blade aerodynamic forces. However, the code 
has been designed to use more sophisticated aero­
dynamic force models, including time-dependent aero­
dynamics such as those involved in dynamic stall 
computations. 

The model operates in the time domain, and the 
blade acceleration equation is integrated via a 
modified Euler trapezoidal predictor-corrector met­
hod. The method involves the use of a set of low 
order relations, is self-starting and stable, and 
allows frequent step size changes. The procedure is 
entirely automated within the computer program. Re­
sults of the blade loads analysis are printed in tab­
ular form, and include the deflection, slope, and 
velocity, the flapwise shear and moment, edgewise 
shear and moment, blade tension, and blade twisting 
moment for any point along the bla<Le. axis. 

The program, written i� FORTRAN V, is in the pub­
lic domain and �as developed for easy end-user modifi­
cation and customization. A substantial effort has 
been made to make the actual code contain its own 



documentation through extensive use of comments within 
the program. 

STRUCTURAL EQUATIONS 

Moment Curvature Relationship 
The blade is assumed to be a long slender beam so 

that the normal strength of materials assumptions con­
cerning the bending deformation are valid. ·Figure 1 
shows an infinitesimal element of the deformed 
blade. It is assumed that the blade bends only about 
its weakest principal axis of inertia; in the figure 
this is the x axis. No other deformations are con-P 
sidered. 

The strength of materials bending analysis 
assumes a one-dimensional form for Hooke's Law that 
neglects all stresses except the longitudinal bending 
stress. It results in the following moment curvature 
relationship: 

(1) 

where � is the bending moment about the blade
p principal axis of inertia x , E is the elastic modu­p

lus, Ix is the area moment of inertia about the xp
axis, J'nd v is the bending displacement in the yp
direction. 

Equilibrium Equations 
The equations of equilibrium are derived by sum-

ming forces and moments in the three coordinate direc­
tions. Referring to Figure 1, Px • Py and Pz arep p p 
the applied forces per unit length and qx , qy , and 
qz are the applied moments per unit leng�h. the p's

p and q's are the sum of all applied loadings, both 
aerodynamic and inertial. The internal bending 
moments in the blade are Mx • Mp y , and Mz , and the
internal forces are Vx • V ' anp Yp J' T. Sumnfing forces
and moments gives: 

x direction: (2a) 

y direction: (2b) 

z direction: (2c) 

x direction: - v + Tv I + qx 0 Yp p = (3a) 

y direction: + Vx + q 0 (3b) p Yp 

z direction: - V
I 

x v + qp z 0 (3c) p 
dwhere the symbol (') implies the operation _� dzp 

Differentiation of the moment Eqs. 3a and 3b allows 
substitution of Eqs. 2a and 2b to eliminate the 
shearing forces Vx and V " In addition the y momentp Yp
equation can be used to eliminate the shear force 
Vx in the z moment equation. Finally, the moment 
cu�vature relationship can be used to replace M inx 
the x direction moment equations. These substitutions 
give the following combined equilibrium equations: 

Flap: (-v" Eiy )" + (Tv')' + q' + p p X = 0 (4a) p Yp 

Lead-Lag: My + q I - Pp Yp xp = 0 (4b) 

Torsion: M
I 

z + M� v I + v ' + q 4( c) qy z 0 
p p p p 

Tension: T' + Pz 0 (4d) p 

. Xo 

M,+M',dz 

�T+T'dz 

Figure 1. Blade element showing forces and moments, all 
acting in a positive sense. 

Coordinate System Definitions 
Figure 2 shows the orientation of the turbine 

blade under analysis with all the intermediate coordi­
nates required to represent the blade motion. The 
capital X,Y,Z coordinates are the fixed reference sys­
tem. The mean wind velocity at the hub, V • and itshub
fluctuating components, liVx• liVy, and liVz. are given 
in this system. The rotor spin axis is allowed to 
tilt through a fixed angle x and the rotor is allowed
to have a prescribed time-dependent yawing motion 
given as $(t), where $is the yaw angle. The yaw axis 
is coincident with the Z coordinate axis. The hub,
loc.·,ted a distance "a" from the yaw axis, is con­
sidered to be rigid and· to have some radius h. The 
flexible portion of the blade begins at the outer hub 
radius, h. The airfoil shape may begin at h or at 
some position further out along the blade z axis. The 
blade is coned at some angle � as shown in theo 
figure. 

The x,y, z coordinates are located in the surface 
of revolution that a rigid blade would trace in space, 
with the y axis normal to this surface. The x ,y ,zp
are the blade principal bending coordinates, wh� p

re the
z 
� axis is coincident with the elastic axis of the 

u deformed blade. Bending takes place about the xp 
coordinate. It is further assumed that the blad� 
principal axes of area inertia do not change along the 
z 

� axis. The influence of blade twist on bending dis­
p acement is neglected. The orientation used to set
the angle 9 

\?t
for computations is the principal axis

near the bla e tip, because the deformation is largest
there. The final coordinate system is the �,C,� sys­
tem which is on the principal axes of the deformed 
blade at some point along the elastic axis. 

The coordinate transformation which takes vector 
components from the fixed X, Y,Z system to the blade
undeformed principal coordinates x ,y ,z is given byp p p 

2 
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Xn 

a Reference Frame = X. Y.Z System 
f3 Reference Frame = Xp. Yp.Zp System 

Xp X 

Yn,Yh,Yr, 

Figure 2. Illustration of the rotor system coordinates with positive displace-
ments and rotations shown. [ ] 

Yp 

(cepc<!i + 130s9ps<!i + �sep) (cepc<H> - sap + xc9ps<Y) (-xsep - cOps<!J + 30s9pcrJ,)

(sepc<!i - !3oc6ps<!i - rpcep) (s9pc<!J¢ + c9p + xseps<!>) (xcep - s9ps<li - 3oc8pcr.;,) 

s<J> (.�sq,+ 30 - xc<li) cc)i 

x 

y 

z (5) 

1:1 \'.:l 

where this transformation has been linearized for 
small yaw angles rjl, small tilt, x,.and small coning 
angles 130• The angle of the principal axis ep has 
been assumed to be large. The azimuth angle � is, of 
course, considered to be large. In addition, short­
hand expressions for sin 9p and cos 9p have been writ­
ten s9p and c9p, and similar shorthand is used for 
sin q, and cos <J>. The inverse transformation taking 
the x ,y ,z compp p p onents into the X,Y,Z system is given 
by the transpose of the above matrix. Notice that the 
<ji = 0 position is with the rotor straight up at the 
12 o'clock position and that Figure 2 has been drawn 
for the special case of q, = 90° for convenience. The 
necessary intermediate coordinate transformations for 
components in other coordlnates can be obtained as 
follows: 

1. Set 9p = 0 for transforming to the x,y,z,system. 

2. Set ap = 0 and � = O for to ransforming to the 
xr,Yr•zr system. 

·
3. Set 9p = O, �o = O, and � • 0 for transfor�inc to 

the x system. h• yh• zh 
One additional transformation is necessary to obtain 
components in the deformed blade system. For sl'lall 
deformations this is 

(: :. -'.] 

WIND INPUTS 

Wind Shear Velocity Distribution 

11

r 

r 

The change in mean velocity with height above the 
ground is often described by the simple power law as 

(II m 
V(H) = V(P.0) H ) (7) 0 , 

where H is the height above ground, H0 is the 
reference height, and V(H0) is the reference velocity 
at height !i0• The exponent m is called the shear 
exponent. For a wind turbine it is convenient to let 
H0 hub height and V(H0) V hub height wind h 
velocity. The wind may be described 

= = 

in the rotor hub 
coordinates x , yh h and z , or in terms of the blade h
coordinates x ,Yp,zp by letting zh = rcoscji and 
r = 

g( h+zp), ana expanding in powers of ( z /Hh 0) and 
harmonics of the azimuth angle q, to obtain · 

Zh m 
V(z) = Vh(l + (u-)} = Vh{l + W

,-
s(r,' )}, (8) 0 

where the wind shear coefficient 

-
Ws is 

m(m ·_
= 

- l) 2) rr Ws(r,·�) + m 
4 

) cosrj, 
. Ho Ho 

m(m 1) ,r_ 2
+ 4 ) cos

H0 2(� , (9) 

In this expression, the harmonics above cos2•v have 
heen neglected. 

Wind Velocity in the Tower Shadow 
The shadow region behind the tower has been 

assumed to have a velocity profile of the form 

3 
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where 

V(z,<jJ) = V(z){l - Ts(<V)} , (10 ) 

l t0 + tp cos { p ( <lr"<Vs ) } for <Vs- <Vo < <Ii < <ls + <V0

0 elsewhere 
(11) 

aQd p = 2nk/2�0 is an integer. 

The parameters t0, tp, q.,0, <¥s, and k are selected 
to give the desired approximation for the velocity 
profile in a pie-shaped region of 2q., • The deficit is 
often modeled as a sin2 function. £his can be accom­
plished by setting: t 0 = t = t.V /2 "one-half of 
desired velocity deficit" ; q.,0 g "shadow half angle";
<Vs ':" "shadow position," usually 180° degrees; k = 
"number of oscillations" (1 for this case). This sha­
dow profile is reasonably general and many other 
shapes are possible. For example, a three legged 
tower with a peak deficit of t.V could be modeled by 
setting: t0 = tp = t.V/2 and k = 3. This would give a 
velocity profile with three peaks in the tower shadow 
region. 

Combined Wind Effects 
The combined effect of both wind shear and tower 

shadow can be written as 

vh {1 + Ws(r,<v)} {1 - Ts(<li)} 

Vh{l + Ws(r,<jJ) - Ts(<li)} , (12)

where the combined effect has been linearized by drop­
ping the product term T8(q.,) Ws(r,q.,). 

The net wind velocity is specified in the X, Y,Z 
coordinate system and is composed of steady terms and 
turbulence inputs as follows: 

o ov x 
v + ov r r + RQ ov y

0 X,Y,Z ov z X,Y,Z
Steady Turbulence 

(13) 

The turbulence inputs are not specifically defined in 
this paper but provision is made for them to be con­
sidered at a later date. The variables in this 
expression are defined as follows: 

Hub velocity minus induced velocity due to 
uniform inflow 
Vh/RQ - v0(r)/RQ 

= Hub height mean wind velocity 

�:��g{k og�d i�du��d ¥10�isk velocity minus 
VhWs(r,<jJ)/RQ - VhTs(r,<jJ)/RQ - ovi(r,<jJ)/RQ 
Wind shear coefficient 

= Tower shadow coefficient 
Steady induced flow associated with the 
effects of wind shear and tower shadow 
oV x/RQ, &Vy = oV yfRQ, and OVz = oV z/RQ are
the wind fluctuations associated with tur-
bulence and no induced flows computed. 

Although the analysis of this section has made pro­
visions for wind turbulence excitations to be included 
as wind input, no specific recommendations can be made 
at this time. It seems clear from recent field 
studies of experimental turbines that wind turbulence 

plays an important part in the excitation input. No 
validated approaches for simulating this input are yet 
available. 

For this analysi& it is assumed that the induced 
velocity can be written in the form 

N 
vi(r,<jJ) = v0(r) + I {vnc(r) cosn<jl

n=l 
+ Vns(r) sinn<¥} - vpcos{p(<V - <Vs)} , (14)

where the v0(r) term is associated with the mean wind 
Vh, the vnc and vns·terms are associated with the non­
uniform contributions caused by wind shear and yaw 
misalignment, and the v p term is due to the tower 
shadow. 

The magnitude of each of these various induced 
flow contributions is estimated using a simple balance 
of momentum at the turbine rotor. This is done for 
the special case of a linear relationship between the 
lift coefficient and the angle of attack. It results 
in a closed-form solution which includes the effect of 
wind shear, yaw orientation, and tower shadow. The 
reader interested in the procedure used for computa­
tion of the induced flows is referred to 
reference (..!.). 
KINEMATICS 

Velocity Analysis 
Referring to Figure 2, designate the X, Y , Z

ground-based coordinates as the a reference frame. 
Call the x ,y , zP .P p principal coordinates, located at
point B, tne r reference frame. The velocity for an 
arbitrary point A on the deformed blade may then be 
written symbolically as 

(15) 

Performing \ the computations indicated by Eq. 15 
and transforming the result into the ,,, I;, I; coordinate 
system using the transformstion of Eq. 5 gives 

rcep - i!Ci + B0r)cep + v}c<V - i \rsep }s<V

V RQ rsep + � - i {(� + 60r)sep}c<V + i {rcep}sq.,A 
(v'r - v)sep - � {a+ (V - v'r)cep}s<V 

,,, c.i; 

!
(16) 

where the • dimensionless 
by r = r/R, � = �/Q, 
tion, it has been assumed 

a variables are defined 
= a/R, and v = v/R, In addi­

that the order of magnitude 
for the various terms are as follows: 

Order l variables: r 
1/2 -

Order E0 variables: � 
Order Eo variables: a, v, ' Bo• v, v , h/R

In the above velocity equation, terms of order ,.2 0 and 
higher have been neglected. 

The relative velocity of the wind with respect to 
the moving rotor blade is computed by transforming the 
wind velocity components into the deformed blade 
coordinates and subtracting the blade velocity of 
Eq. 16. This gives 



-reap - �r+6Vr+6vy)sap + cq,( 6Vx+4'Vr)cap 
+ 1{(a+�0r)cap+v}J

. 
+ sq,[-(6Vz-xVr)cap + $(rsap} 

-rsap-V+CVr+6Vr+lVy)caP + c<V[ (6Vx+q,Vr )sap. 
+ 1{(a+�or)ap}l 
+ s4'[-( 6Vz-xVr )sap-$\rcap}] 

-(v'r-v)saP+ c4'(ovz-xvrl 
+ s4'[6Vx+•1>Vr+${3+\v-v1r)cep}l 

,,,,,;; (17) 

In this equation, terms of order E2 have been dis­
carded. The order of magnitude asstmptions for the
wind velocities are as follows: 

Order 1 velocities: Vr_= (vb. - v.a,(r)J/RQ
Order E0_ velocities: 6Vr, 6Vx, 6Vy,f:Nz 

Acceleration Analysis 

 

The acceleration of an arbitrary point P, located
at coordinates (ri,C) within the cross section of the
rotor, is given by the usual five-term acceleration
equation as 

The various terms in Eq. 
into 

18 must ·all be transformed
the x ,yp,zp coordinate system using the trans­

formation �f Eq. s. The indicated operations of 
Eq. 18 must be carried out and the results 
linearized. This tedious activity gives the following 
expressions 1 for acceleration components in the 
xp,Yp,zp coordinates: 

2 -sap(rQ �o+2<jlQ• .rc<Vf"<jlrsq,+v. 2 2 2 2Q cap)-t;Q capsep-11Q cap
2 . .. 

ce 2 2 2 2 2 .. 
p(rQ �o+2<jlQrc<Vf"<jlrsq,)-vQ sa p -t;Q se 

-r • 

p -71Q sa p ca p +v 
2 Q -2Qvsap Xp,Yp,Zp 

1
(19) 

where the above equation retains terms up to order E0• 

FORCE COMPONENTS 

Aerodynamic forces 

,
The lift and drag forces on the airfoil are given

by the formul
dL =} p C1ch(l;)W2dl;
dD = t p c 20ch(l;)W dl;

as shown in Figure 3. However, the force components
of interest are given for the structural analysis in
the principal inertia axes of the rotor blade 
x ,y ,zp or ri,t;,i;. For the small deformation theor�
oF t�is analysis there is no difference between these 
two coordinate systems with respect to the structural
equations. The force components of interest are dA 71 and dA1:; which are given by 

�� 

x 
Figure 3. Velocity triangle and coordinate systems used for 

computation of aerodynamic forces. 

1 .,, 
= 1 

1c v1:; - cov / 
2 pch(x)Wdl; (20) 

/c1v71 + c0vc\ 
where 

a c1 "Lift Coefficient"
a 

= c + 2 0 k C "Drag Coefficient"L 
(v� + v2 1/2 

,, c )
k constant 
a= tan-1(v�/V ) - a (x)" ,, 0 

90(x) The angle between the zero lift line
( zLL) and the assumed bending plane. This
angle includes ·the blade pretwist and the
offset angle of the airfoil lift curve. 

The aerodynamic pitching moment is given by the
equation 

dMa.c. = 1 
z p C (21) M8oC• 

where 
CM = C (constant) "Pitching Coefficient"a.c. Ma.c. 

The aerodynamic moment per unit of blade lengthas about the elastic axis, qa , is given by Zp 

(22) 

where 
(ee.a. - ac) positive if the elastic axis
is forward of the aerodynamic center 

e e.a. distance from the leading edge to the elas-
tic axis 
distance from the. leading edge to the aero­
dynamic center. 

5 
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In the computer code, the lift curve slope CL and the
drag coefficient C may be entered as a fu&tion of 
position along theD 0 rotor span, so that reasonable 
values for lift and drag coefficients are obtained, in 
regions of relatively large angles of attack. 

Inertia Forces 
The distributed inertia forces acting along the 

blade can be computed using Newton's laws as follows 

dp1 = -a� dm = (- � p dTldC) (23) P a 'P b 
where pb is the blade mass density. Then the inertia 
force per unit length is given by 

+I .. 
dp ff -aaP Pb dTldC • (24) 

Blade Section 
The inertia moments are computed from the equation 

dq +I = ;c x dpl = -(;c x a;p)Pbdl'l<ll:; ' (25) 

where the vector ;c is given as {Tl,C,o}Tl,C,�·
Substitution of the acceleration Eq. 19 for ; in 
Eqso 24 and 25 gives the inertia forces due to go�ion 
of the structure. If the gravitational force is con­
sidered as deriving from an acceleration in the X, Y,Z 
coordinate system it can be treated in a similar man­
ner. 

Distributed Forces 
The combined loads due to structural motions, 

gravity, and aerodynamic forces needed to solve the 
equations of motion are 

2
+ e1'1Q s9pc9p - � ] 
+ mg[-xc9p + s9ps<J> + �0c9pc<J>] (26a) 

Pzp = 
2 m[rQ + 2;Qs9p] - mgccji (26b) 

(26c) 

where 

m = ff PbdTldC = mass/unit length 
Blade Section 

! ff PbTl dTldC Distance along the Xp axis 
Blade Section to the center of mass, O( E0) 

EQUATIONS OF MOTION AND BLADE LOADS 

To develop the flap motion governing equation it 
is necessary. to begin with structural Eqs. 4a and 
4d. The tension equation (4d) can be directly inte­
grated to give 

(27) 

In order to reduce the flap motion equation to an 
ordinary differential equation for computer solution, 
the rotor blade flapping motion is assumed to be of 
the form 

v(zp,t) = I sk(t)yk(zp) where k = 1 to 4 (28)k=l 
The flapping displacements are taken Ln the form of 
simple polynomials that satisfy the blade kinematic 
and natural (force) boundary conditions. The time­
dependent blade displacements, sk( t), are determined 
by numerical integration. For the results presented 
here only cantilever blade attachment boundary condi­
tions have been considered, but other blade attach­
ments are currently being Lncorporated into the code. 

Substitution of the assumed blade motions given 
by Eq. 28 into the flap equation, Eq. 4a, gives 

where a summation over k = 1 to 4 is implied. Now 
using a Galerkin approach (� gives 

t{((-sky ' k)"Eiy/' + (T(sky�)) + q�p + Py }y J.dzp l' 0 
(30) 

= 

Integrating by parts and using the boundary conditions 
required of yk leads to an ordinary differential equa­
tion in sk(t)s' which can be integrated numerically in
the time domain. 

Carrying out this series of operations, and using 
the loads qx and Pp y from Eqs. 26a-f gives the fol-p 
l owing . expressions . for f lapping accelerations

.. M .B s 2 Q  k' kX = -sk-u K - sk {Q Kk:J. + •c g2Qs9psnKnkJ. - c<J>gKkJ. }
(Bending) (Tension Stiffening) 

c9p { g2 + ZQ�ccji + �scji }M�
(Rigid Body Motion) 

+ 2skQ se!�� 
(inertia Moment Stiffening) 

+ si2s 9pc 9 MP i + 

(Blade Imbalance) (Aero Force) 

+ g(-xcep + s9ps<J> + �0c9pc<J>}M� (31) 
(Gravity Loads) 

where the various coefficients in this acceleration
equation are given by 

L 
�J. my y z0 f K i p

� J1 m(h 0 + z hp iz p

B MJ. f 
L 

e myiz0 Tl p

gM 1 
J. J my J.dz0 p

B L 
KkJ. f EiypYk y 0 dz !I. p 
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KQ T Q z y y z H p ) k
' i

' 

p 0 f ( 

� I� � (L)y�(L)y� m (L) - { I ( zp ) " z (32) nn Yk Y i P n 0 

.. c L c K n dznk� f T ( zp ) y yk
, , 

� p 
0 

a F� { c!A yizP 0 r.;

Q
T (z 

1 + 
Z
f m(� �p ) )(h )d� 
p 

T�(z ) m( )yp (�)d� nZ f L 
�

p 

and all of the above constants are evaluated 
numerically. 

After a steady-state flap solution (trim solu­
tion) or after each revolution of a yaw motion solu­
tion, the flap displacement, velocity, and accelera­
tion have all been determined and the loads on the 
rotor can be computed. This is accomplished using the 
force integration method. The basic structural equa­
tions (2a-c) and (3a-c) are numerically integrated 
along the blade· using the loadings due to aerodynamic 
forces and inertia forces. Additional details on the 
development of Eq. 

(1) 
31 and the load equation are avail­

able in reference • 

COMPUTER SOLUTION 

The computer solution of the equation of motion 
and the computation of the resulting displacements and 
loads require a sophisticated interactive program 
capable of performing a variety of tasks, including 
input and output of data and results, matrix inver­
sion, time domain analysis, and the computation of 
spatially dependent blade properties and aerodynamic 
factors. The nature of the overall project required 
that the program be flexible, well-documented, and 
easily modified. The computational requirements of 
the equation of motion and other associated quantities 
determined which portions of the program could forego 
efficiency in favor of flexibility and readability and 
which portions had to be as efficient as possible. 

The computer solution required the creation of 
two main program sets: Module 1 and Module 2. 
Module 1 is a data preprocessor. The raw blade and 
turbine property data file is processed by Module 1 to 
produce a data file that can be used to solve the 
equation of •motion. It also computes all the 
coefficient matrices since they are independent of 
most of the nonturbine-related variables such as wind 
speed, tower shadow, etc. Module 2 performs the 
actual model run including solution of the equation of 
motion, computation of the loads and printing of the 
results. A flow chart of the program organization is 
shown in Figure 4. 

Solution of the Equation of Motion 
The equation of motion for computer solution was 

given in Eq. 31. The procedure for solving the equa­
tion of motion is as follows: 

Module 2 

Input 
blade & 
turbine 

properties 

Read 
turbine 

coefficients 

t = t + t.t 

t/J = t/J + t.tjJ 
<P = Eq. (33) 

Compute 
loads 

Compute 
structural & 
mass coef. 

Eq. (32) 

File 
turbine 

Input run 
conditions 
wind. shear 

Compute 
aero 

force eq. (32) 

Integrate 
flap motion 

eq. (31) 

Compute 
loads 

No 

time = 0 
t/J = t/J+ t.t/J 

(trim) 

Figure 4. Flow Chart for FLAP Code 

1. All the coefficient matrices are multiplied by the 
inverse of the mass matrix. Thus the mass matrix 
associated with the blade tip accelerations, when 
multiplied by its inverse, gives the identity 
matrix. This results in a set of equations with 
the blade tip accelerations on one side of the 
equal!ty and the computed generalized forces on 
the other side. Multiplication by the inverse 
mass matrix is only done once at the beginning of 
Module 2. 

2. In this way, the accelerations associated with 
each flap coordinate function can be evaluated 
numerically by substituting the current values for 
the flap velocities and displacements into the 
force side of the equation. 

3. The blade tip displacements are computed by 
solving the second-order differential equation 
relating acceleration, velocity, and displace­
ment. The solution is performed via the modified 
Euler predictor-corrector method, which uses the 
current blade tip accelerations and the previous 
values of the displacements and velocities. 

4. The blade loads are computed only at the comple­
tion of a trim solution (steady-state) run. 

5. The solution during time-dependent prescribed 
yawing motions is run at the completion of the 
trim solution. Loads are computed at the comple­
tion of each revolution during the yawing solu­
tion. Yaw motion is prescribed according to the 
simple equation 
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<P( t) = <Po + <Pa sin( wq,t) (33) 

where <P is the initial yaw angle, <P is the amplitude 0 a 
of the motion, and w is the frequency of the motion. <P 

Loads Output: 
A set of nine blade motion and blade load values 

is computed for each span..,ise location on the blade 
(generally 11) and each azimuth position (usually 
36). The ni.ne quantities that are output in tabular 
form are 

1. Blade Section Flap Displacement (ft) 

2. Blade Section Flapwise Slope (ft/ft) 

3. Blade Section Flap Velocity (ftisec) 

4. Blade Tension (lb) 

5. Blade Edgewise Shear (lb) 

6. Blade Flapwise Shear (lb) 

7. Blade Flapwise Moment (1 b-ft) 

8. Blade Edgewise Moment (lb-ft) 

9. Blade Torsion (lb-ft) 

COMPARISON OF RESULTS WITH TEST DATA 

Turbine Model 
The turbine modeled was a three-bladed, downwind 

system with a rotor diameter of 33 ft. The rotor 
rotation speed.was 72 rpm and the blade first natural 
frequency was about 3.95 hz, or about 3.3 times the 
rotor passage frequency. The blade has a constant 
chord of 18 in., no twist, and is coned at °3.5 . 

Structural and mass properties for the rotor 
blade were obtained from the basic design information 
provided by the manufacturer to Rocky Flats, and from 
reference (3). However, it required a careful review 
of this mat'erial and some judgment to extract the 
necessary information. 

The blade aerodynamic properties were modeled 
using Princeton University data for the lift and drag 
coefficients as specified in reference (_!). For the 

current version of the FLAP code the lift curve is 
modeled as a straight line; however, the slope of this 
straight line is varied as a function of blade span 
position in order to get a reasonable approximation 
for the lift coeffici.ent. For this modified 654-421 
airfoil the lift curve is quite nonlinear. For the 
three cases run during this study the angle of attack 
was between ° 0 and 15° over 75% of the blade. 

The tower shadow deficit was assumed to be 
approximately 25% to 30%, over a pie-shaped section of 
about 25 to 30° as indicated by the .data given in 
reference (5). The 350-ft meteorological tower at 
Rocky Flats-indicates that wind shear coefficients are 
typically between 0.1 to 0.25. This range of values 
was used for the stuny. 

Experimental Data 
For this comparison, data for three specific wind 

speed cases were analyzed: 12 mph, 18 mph, and 
20 mph. For each wind speed the flap bending moment 
at 20% blade span was used for comparison. The com­
parison was made using the banding moment at this 
location averaged over 20 rotor revolutions. This 
azimuth-averaged bending moment was computed by 
averaging the bending moment data at 33 azimuth loca­
tions around the blade circle of travel. All of the 
data were manually digitized from analog visicorder 
traces. For comparison of cyclic responses which are 
of primary interest the mean bending moment has been 
subtracted. 

The data were azimuth averaged in this manner to 
average out the random wind inputs for comparison with 
the code predictions which are deterministic. The 
desired comparison is for the response of the blade to 
gravitational loading, tower shadow effects, and 
average wind shear effects. The azimuth averaging 
process should clarify these effects. 

Discussion of Results 
The FLAP code was run several times for the 

18-mph wind speed case to determine sensitivity to 
tower shadow configuration and wind shear exponent. 
The results of this sensitivity study are illustrated 
in Figure 5, which is a plot of the blade cyclic 
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Figure 5. Sensitivity of predicted flap moment at 20% span to the tower 

shadow and wind shear parameters. 
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moment at 20% span versus azimuth angle. Also plotted 
in the figure are the experimental data for this 
case. The most notable difference is in the tower 
shadow region, where the predicted results are sig­
nificantly above the experimental measurements. 

The most likely cause for this dev ia t i on ls the 
pie-shaped tower shadow ui>ed in the complltt!r model. 
TQe actual shadow region is rectangular in shape, ;ind 

the shadow effect is felt fairly gradually over n milch 
wider region than is predicted by the computer 
model. In other respects the prediction is very 

similar in character to the experimental measure­
ments. By comparing the various cases run, the 
general influence of changing the shadow and shear 
exponent can be judged. However, because the chanp,es 
in harmonic content are subtle, a general cause and 
effect relationship is difficult to see. A qualita­
tive "best match" prediction was obtained by including 
10° of yaw. This case is shown in Figure 6. Using 
these same numerical values for tower shadow (25% 
deficit over a 30° sector), with a wind shear exponent 
of 1/7 and a 10° yaw angle, the FLAP predicted bending 
moment is compared with experimental data at wind 
speeds of 12 mph and 20 mph in Figures 7 and 8 re­
spectively. As can be seen the comparison is quite 
favorable. The reader wishing more details concerning 
the experimental work and the comparison 

(!:.). 
with other 

predictive codes is referred to Wright 

The reader is cautioned that a validation study 
using only one turbine configuration does not pr,)Ve 
the code is valid for all situations. The comparison 
results in this case were for a turbine with a rela­
tively stiff blade. The flapping motions 1o1ere small 
and neither control system effects nor tower motion 
effects were significant. Until the FLAP code is ver­
ified against other more flexible rotor systems it 
cannot be considered a validated computation 
procedure. 
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Figure 6. Best prediction of flap moment at 20% span at 18 mph. 
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Figure 7. Comparison of predicted flap moment at 20% span at 12 mph. 
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