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FOREWORD 

Designers, researchers, builders, and consumers who are examining the poten­
tial of solar energy to reduce auxiliary energy use of heating, cooling, and 
hot water constantly face the problem of quantifying this savings. Because or 
the limited rlata base of performance results from operating systems, we are 
dependent on design techniques to predict energ-y savings. Consequently, the 
accuracy of these design methods is called into question. For as long as 
there has been work to develop method·s for predicting the performance of solar 
heating and cooling- systems, the discussion of "validation" has ensued; and, 
one should add, without much agreement. 

This work seeks to add to the literature information on the statistical as­
pects of validation. It is concerned with the statistical variability of the 
design technique and performance measurement processes, and the influence this 
variahility can have on experimental design, validation data selection, accu­
racy of validation results, and appropriateness of the validation task. 

Joel Cohen, Assistant Professor of Mathematics at the University of Denver, on 
sabbatical at the Solar Energy Research Institute, is responsible for 
undertaking the research and preparation of this report. He is indebted to 
many individuals at the Solar Energy Research Institute who helped formulate 
the ideas in this report. In particular, he would like to thank F. Kreith, N. 
Kelley, L. Morrison, L._ M. Murphy~ R. McConnell, M. Connolly, J. Henderson, A. 
Eden, M. Edesess, C. Bishop, and G. Fegan. 

This research has been supported by the Systems Development Division, Office 
of Solar Applications, DOE. 

Approved for: 

SOLAR ENERGY RESEARCH INSTITUTE 

Dennis Costello, Manager 
Buildings Division 

Michael Holt , Chief' 
Building Syste Devel'opment Branch 

iii 



· THIS PAGE 

WAS INTE-NTIONALLY 

·. LEFT BLANK 

ascott
Blank Stamp



S:tl ('' t1 -------------------------------------"'Rc;R.,_-....;3:....:...7.a...7 
'-==-/ 

1. 0 

2.0 

3.0 

4.0 

5.0 

6.0 

7.0 

8.0 

TABLE OF CONTENTS 

Introduction ••••••••••• · •••••••••••••••••••••••••••••••••• ~ ••••••••••• 1 

What is Validation? .•..... • .............•..•......••................. 3 

The Statistical Nature of the Validation Problem ••••••••••••••••••••• 7 

Experimental Design for Statistical Validation. ...................... 9 

4.1 
4.2 
4.3 

Introduction•••••••••••••••••••••••••••••••••••••••••••••••••••• 9 
Sources of Statistical Error in Validation Studies •••••••••••••• 9 
External and Internal Validation Studies ••••••••••••••••••• ·· ••••• 13 

Practical Design of External Validation Methods...................... 17 

5.1 
5.2 
5.3 
5.4 
5.5 

The Accuracy of the Results ...•.... .•..• , •.••.....•...••..•...••. 
Population Definition and Sampling Strategies ••••••••••••••••••• 
Instrumentation for Statistical Validation •••••••••••••••••••••• 
Sociological Survey Accompanying the Validation Study ••••••••••• 
Pilot Study of Validation •••••••••••••••••••••• 4•••••••••••••••• 

A Simplified Validation Method for Solar Domestic Hot Water 

17 
19 
21 
21 
22· 

Heaters~ ••...•.•......•.••••....•.••.••.•...•..•.•...•............. 23 

Conclusion • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

References •. , ••••.....••.........•.•.......•••......••.•....•.•...... 29 

;. 

V 



S:~I 
(·--:, 

ID DI ---------------------------------------------
'·:-> 

RR-377 

LIST OF FIGURES 

2-1 Di~tribution of Fa - fd••••••••••••••••••••••••••••••••••••••~······· 6 

LIST OF TABLES 

4-l 95% Precision Confidence Interval Est"imates for Bd.Using the t 
Distribution wi~h o ~ 8•••••••••••••••••••••••••••••••••••••••••••• 10 

vi 



S:il t"~I _______________________________ RR_-_3_7_7_ 
\.-~-/ 

µ 

(1 

design error bias 

design error spread 

NOMENCLATURE 

annual auxiliary energy requirement 

annual energy provided by the solar system 

annual solar fraction of the load 

overall heat transfer coefficient 

mean or average 

standard deviation 

Subscripts 

a actual value occurring in the structure 

d design value 

m measured value 

vii 



S:~I ir·~, _________________________________ .::.;R:.::.R::....-....:3::..;7c...;7;__ 
'·~-/ 

SECTION 1.0 

INTRODUCTION 

During the past ten years, many procedures have been developed for predicting 
the thermal performance of solar energy heating and cooling systems. These 
include simple hand computational procedures requiring a minimal amount of da­
ta and computation, computer-based design procedures such as F-CHART and 
SOLCOST to predict long-term annual performance, and elaborate computer codes 
such as TRNSYS, which simulate the performance of systems on a time-dependent 
basis. The following question is of primary interest to users and designers 
of these procedures: 

How accurate are design techniques for predicting thermal perfor­
mance of solar energy space heating, cooling, and hot water 
systems? 

A design procedure is used in a situation that has~ large degree of statisti­
cal uncertainty. Included in this uncertainty are basic model inaccuracy; in­
accuracy or absence of necessary meteorological data; and imprecision in esti­
mating thermal load and other important system parameters. The uncertainties 
involved may be so great that the question arises as to whether the system 
performance can be reliably predicted at all (D. S. Ward 1978). 

Although much has been written about the accuracy of design techniques in iso­
lated situations (National Solar Data Program; SERI 1978; Knasel et al. 1979b; 
Hill 1979; Fanney 1978; Winn 1978), and a validation methodology has been pro­
posed (Kennish 1978; Kennish and Stolarz 1979; Knasel et al. 1979a; Anand et 
al. 1979), a detailed discussion of the statistical nature of validation has 
not been presented. This report is concerned with this statistical aspect; it 
includes a discussion of the statistical variability inherent in the design 
techniq.ue and performance measurement processes, and the ways in which this 
variability can affect the choice of experimental design, the selection of 
validation data, the accuracy of the validation results, and even the types of 
questions that can be reliably answered. 

It seems impossible that any practical validation study could give special at­
tention to all the aspects of experimental design outlined here. This work 
should be viewed primarily as a set of guidelines for the evaluation of pro­
posed statistical approaches to validation. In reality, validation studies 
can range from an overall consensus of a few experts on the subject to a full 
scale statistical analysis of a random sample of the systems involved. Asta­
tistical approach has the potential of obtaining a more accurate· picture of 
the situation; however, to have some assurance that the final· results of the 
study can infer anything about the larger population of unmeasured systems, it 
is important to take into account the potential for statistical mistakes and 
to avoid obvious pitfalls in the experimental design. If not, there is little 
chance that the approach will give error estimates that ate any more accurate 
than an educated guess and, in this case, there is little point in carrying 
out the statistical study in the first place. 

1 
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In this work, validation* refers to a statistical evaluation of the relation­
ship between the predictions of thermal performance and the actual performance 
of a given class of systems over a given period of time--usually one year. 
Validation of the economic predictions, which involves another set of crite­
ria, will not be considered. The study primarily relates to computer-based 
design techniques such as F-CHART of SOLCOST, although the discussion can also 
apply to· any design technique--and · to some extent fo the validation ·of time­
dependent detailed codes such as TRNSYS. 

*The ·term evaluation is more appropriate for the type of studies portrayed 
here. Validation often implies that part of the study involves a modification 
of the design code to obtain a greater correlation with reality. · Here, we are 
only interested in techniques for evaluating the accuracy of the procedures. 
However, since the term validation is commonly used in the literature, we will 
use this terminology. 

2 



., S:~I it"'~, ---------------------------------~R""R,...-...,3"-'7'--'7~ 
'·=·/ 

SECTION 2. 0 

WHAT IS VALIDATION? 

Validation of design techniques means different things to di.fferent people. 
In validation, the predictions of mathematical or computer models are compared 
with physical reality. But agreement stops there. For example, validation 
can be a measure of how close a design technique compares to a highly con­
trolled experimental situation in which the thermal load, insolation, and oth­
er important parameters are known to a high degree of accuracy. At the other 
extreme, validation may be done on a design procedure used in a realistic res­
idential situation in which the full statistical variability of the design 
process is encountered. In fact, a validation can often be classified by the 
amount of statistical variability that the situation includes. In the first 
of the above cases, the discrepancy between predicted and measured quantities 
is a result of the limitations .of the mathematical model used in the design 
technique. In the second case, the discrepancy is due to the inadequacies of 
the input data and the limitations of the mathematical model. Obviously, the 
results of tl\ese two situations do not have much in common, and it would be 
inappropriate to infer that one situation says much about the other. A simi­
lar distinction must be made in the choice of data. If the accuracy of a de­
sign technique in a realistic residential situation is of .interest, it may be 
inappropriate to use performance data from an accurately instrumented experi­
mental structure even if typical design data is used for design predictions. 
Such structures are often offices or laboratories, with thermal loads differ­
ent from homes. In addition, if there is constant observation by a team of 
research workers, there is likely to be a higher level of system performance 
than in a typical residence. If the validation study is concerned with the 
residential application of design techniques, then the data must be chosen 
from a random sample of houses that accurately reflects this target 
population. 

Fundamental to any validation study is an unambiguous statement of the ques­
tion being investigated; only then is a criterion available for deciding which 
data are appropr.iate to the study. The validation question may go beyond com­
paring predicted and measured· results. For example, a design technique may be 
used in choooing components Lu optimize the performance of a system. Even if 
the design technique is inaccurate in an absolute sense, it may still be able 
to predict the degree to which one collector system outperforms another. 
Validation questions of this type appear to be more difficult to answer than 
the question of absolute accuracy. 

This study is primarily concerned with the development of experimental designs 
for the sLaLh;tlcal analysis ot the absolute accuracy of design techniques 
used in field systems. The basic question .is as follows: 

How well do design techniques predict the annual thermal perform­
ance of an "operating," "well-designed," and "well-constructed" 
solar space heating system, solar cooling system, or solar domes­
tic hot water heater when using input data "generally available" 
to the typical nser of the technique? 

3 
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Criteria that are independent of design predictions must be formulated to de­
termine if a system is "operating," "well designed," and "well constructed." 
The results of the study only apply to systems sati·sfying these criteria. 
Without this distinction, confusion arises because two related questions are 
being tested simultaneously: ( 1) are operating, design, and construction er­
rors inhibiting the performance of the system; and (2) can the design proce­
dure accurately predict the performance of the system? In this context, it is 
important to define what const.itutes an operating solar energy system. For 
many problems (a malfunctioning pump, for instance), the distinction is 
straightforward. For minor problems, such as an incorrectly adjusted thermo­
stat, the distinction is more difficult. A decision must be made as to which 
problems characterize a malfunctioning system and which are part of the sta­
tistical variability the validation study is designed to measure. The ques­
tion is not how well design techniques predict the performance of optimally 
tuned· systems, but how do they predict the performance of the typical operat..:.. 
ing solar energy system. 

A definition of "generally available" data must also be formulated. For de­
sign data, this might mean ASHRAE or manufacturers design data. The selection 
of· meteorological data is more difficult. Most design techniques use weather 
data averaged over many years to pr.edict long-term average performance of the 
system. By comparing predictions usj_ne yearly averaged weather data to a sin­
gle year's actual performance, additional design error is j_ntroduced since the 
weather during that particular year may deviate markedly from the average.* 
On the other hand, it may be inappropriate to use we~ther data measured during 
the year of the study, because this is data that is not generally available to 
the user. In addition, the measured weather data taken during the year of the 
study will undoubtedly be more accurate than the long-term averaged data that 
is currently available. Therefore, by using this data, the study will not re­
flect the inherent statistical variability of insolation measurement error. 
By using the averaged data in the study, long-term design error is overesti­
mated; by using weather data taken during the yeat of the study; long-term de­
sign error is underestimated. It seems that the only reasonable 8olution is 
to perfor.m the analysis tor both sets of data.*A 

As the validation question now stands, the statistical variability introduced 
by the general (possibly inexperi.enced) user is included. This variability 

*In some cases, variations in solar fraction due to yearly weather change is 
relatively small. For example, using the temperature and insolation data giv­
en in KlPin et al. (1976), the variation in solar fraction for system C (solar 
fraction 69%), using eight years of Madison, Wisc., weather data, ls ±4%. 
This variation is considerably smaller Lha11 the variation du~ l:li ,:,th~'I'.' i nflf".C".11-
racies in weather data, parameter error, and uncertainty in thermal load. 
However, other variables, such as auxiliary energy use, are considerably more 
sensitive to yearly variation. 

**If meteorological data is measured during the year of the study, 1L should be 
measured at the collection site of the long-term averaged data, not at the 
system site. In this way, the statistical variability of extrapolating tem­
perature and insolation data from nearby or similar locations. is included in 
the experiment. , 

4 
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can occur because of an inappropriate choice of input data for the technique; 
during the use of the technique; and in inter~reting the results of the tech­
nique. To eliminate this variability, the design technique calculations 
should be done by an "expert," making a uniform selection of the data, doing 
and interpreting the procedure correctly. (The statistical variability intro­
duced by the general user can be examined in a separate experiment.) On the 
other hand, the validation question should include the variability occurring 
because of the use of generally available data. For instance, solar insola­
tion and temperature input data are frequently estimated using data from near­
by or similar locations. The _statistical variability that this introduces 
should be part of the validation. 

Restating the validation question: 

How well do techniques predict the annual thermal performance of 
an "operating," "well-designed," and "well-constructed" solar 
space heating system, solar cooling system, or solar domestic hot 
water heating system when using input data that is "generally 
available" and when the technique is performed by an "expert?" 

The design and implementation of a method to obtain statistical information 
about this question is referred to here as statistical validation. 

A statistical validation should produce confidence interval estimates for 
variables such as solar fraction, displaced energy, auxiliary energy, or ap­
propriately normalized versions of these quantities. By way of an example, 
suppose that a design technique predicts the solar fraction* of a system. Let 
fd be the predicted solar fraction and let fa be the actual solar fraction. A 
confidence interval estimate for the error fa - fd is of the form Bd ± Ed, 
where Bd is the average error in the predictions of this variable, and Ed is a 
measure of the variability of this prediction (see Fig. 2-1). The value Ed is 
defined in such a way that at the time of tl;te validation study, 95% of ,the 
systems in the target population have a prediction error fa - fd that falls 
within the interval Bd ± Ed·** 

The interpretation of the results of a validation study would be as follows. 
Assume that the results for s6lai:' fraction are Bd = -10 and Ed= 8 1 and that 

*Because of difficulties in accurately measuring load, solar fraction is one of 
the hardest variables to validate statistically. However, since solar frac­
tion is frequently used as a measure of system performance, it will be used as 
an example in this paper. 

**The 95% confidence interval is somewhat arbitrary. If 99% confidence inter­
vals are used, the expected variability Ed is larger and the codes may seem 
less accurate. If fa - fd is normally distributed, Ed = 1. 96a, where a is the 
standard deviation of the values fa - fd. If the prediction error is not nor­
mally distributed, Ed can be determined numerically~ 

5 
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Bd 

Figure 2-1. Distribution of fa-fd 

for a given system chosen at random from the population, the design procedure 
predicts a solar fraction fd = 57%. Then 

Ther~ i.s a Q. 95 probability that -18 ~ f - fd ~ -2. Therefore, there is a 
O. 95 probability of fa being between 39% !nd 55%. In .qn actual study, it is 
more appropriate to consider normalized variables such as (fa - fd)/fd. 

6 
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SECTION 3.0 

THE STATISTICAL NATURE OF THE VALIDATION PROBLEM 

This section is a summary of the statistical variables that can contribute to 
the inaccuracy of design techniques. 

• Basic Model Error. The equations of the design technique are approxi­
mations, and certain aspects of the system have been deliberately eli­
minated for simplicity. 

• Errors in Weather Data. This includes errors in temperature and solar 
insolation data due to inaccurate measurements, yearly variation, ab­
sence of data at a given location, and microclimate variation. 

• Errors Due to the Habits of the Occupants. This includes the effect of 
the thermostat settings, appliance use, amount and pattern of hot water 
use, installation of window covers and storm windows, and the occu­
pant's contribution to infiltration. The Twin Rivers conservation 
study has shown that variations in energy consumption for identical 
structures can vary up to 100% due to occupant habits alone 
(Socolow i977/1978). 

• Parameter Data Error. This includes incorrect estimation of heat-loss 
parameters, collector parameters,' etc. 

• Errors Due to Minor System Design, Construction, and Performance Prob­
lems. This includes the· mismatch of components, the incorrect place­
ment of sensors, minor control problems, etc. These minor problems are 
viewed as a legitimate component of the statistical variability that 
the validation study is designed to measure. 

• Errors in the Use of the Design Procedure. This includes the use of 
inappropriate data, incorrect use of the procedure, and misinterpreta­
tion of the results. (Because of numerical truncation, the choice of 
units can have an effect on the predictions of some computer-based de­
sign procedures). 

• Miscellaneous Errors. This includes the ef.fects of snow . cover and 
shading; house color; system degradation; and surrounding topography, 
vegetation, and other structures. 

It is impossible to get reiiable statistics on the individual effects of most 
nf these variables. D. S. Ward (1978) has· shown that it is reasonable to ex­
pect errors in the prediction of solar fraction of as much as 10% or 15% from 
errors in load calculations and insolation data alone. 

In the application of a design tec~nique to a solar energy system, the above 
variables can make either a posi1;ive or ·negative contribution to the overall 
design error fa - fd. However, from a statistical point of view, the situa­
tion is somewhat different. To see this, let µi and oi (i = 1, 2, ••• ) be 
the mean and standard deviation of the error contribution to fa - fd produced 

7 



by each of the sources of error listed-above. The error bias Bd of the design 
process is given by 

B = µ(f - f) 
d a d = I 

i 
(3-1) 

Assuming the error contributions are independent, the variance of fa - fd is 
given by 

a2(f ..... f ) 
a d = I o/ 

i 

If f.'i - fd is normally d'istributed, then 

= 1.96 (I o.2)112 
• l. 
l. 

(3-2) 

(3-3) 

From Eq. ·3-.1, it can be seen that the various error contributions can again 
make either positive or negative contributions to the average bias Bd. Howev­
er, it the error -contributions are indepentleul, Ey_. J-J shows that every 
source of error will make a positive contribution to the variability Ed, .al­
though the contributions with large oi will have a more notable effect. There 
has been a tendency in some validation work to dismiss the error contributions 
of ~ome of the above variables because of the relative insensitivity of design 
predictions to their· variation. Sometimes this insensitivity can be demon­
strated for specific examples, but usually the limits of this insensitivity 
are not explicit. It is important to note that the collective contribution of 
a large number of relatively insensitive parameters can cause an increase in 
the variability Ed; by ignoring any of these contributions, a false impres·sion 
of the accuracy of a design technique can be created. 

8 
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SECTION 4 .O 

EXPERIMENTAL DESIGN FOR STATISTICAL VALIDATION STUDIES 

4.1 INTRODUCTION 

Because validation is statistical, the techniques of statistical sampling the­
ory are appropriate. Quality control in the experimental design is important 
to ensure that the results reliably infer information about the larger, target 
population. A poor experimental design will have little chance of being sta­
tistically accurate and may not give results that are any more accurate than 
an edu·cated guess. The problem is that solar energy systems are difficult and 
expensive to instrument and monitor; if usual computer-based" observational 
techniques are part of the experimental design, financial a·nd engineering con­
straints will make it unreasonable to obtain the statistical precision of tra­
ditional sampling studies. Fortunately, time-dependent variables, such as in­
cident insolation, collec.tor temperature, or storage tank temperature, which 
are important for engineering studies, are not really needed for this type of 
study. In the case of statistical validation, one is primarily interested in 
measurements of annual solar fraction fa, the annual displaced energy Qs, and 
the annual auxiliary energy requirements Qaux· By restricting the study to 
system variables that can be accurately monitored and by paying careful 
attention to the statistical experimental design, it is possible to increase 
the chances for success within prescribed financial limitations. 

4.2 SOURCES OF STATISTICAL ERROR IN VALIDATION STUDIES 

It has been state_d that the object of statistical validation is to obtain con­
fidence-interval-type estimates of the form Bd ± Ed for the prediction errors 
of the variables of interest. The final appraisal of a validation is based on 
the degree of statistical precision that can be assigned to estimates for Bd 
and Ed. The factors that can contribute to the loss of precision are given 
below: 

The Random Sample Does Not Accurately Represent the Target Population 

It is important to emphasize the sample/population question, because it is an 
issue in much of present validation work. The data must be accurate in the 
statistical sense as well as the engineering sense. The data must accurately 
reflect all the statistical variability present in the situation. Though it 
is difficult to achieve a random sample in practice, this criterion for study 
data selection can help evaluate the quality1 of the study and can indicate 
validation data that are not appropriate and that might subtly bias the re...: 
sults. Referring again to the question of design accuracy in the realistic 
application environment: if the data set (the sample) consists only of loca­
tions where solar insolation data is routinely available, the results of· the 
study would not reflect the statistical variability caused by estimating inso­
lation data from nearby or similar locations (i.e., ·would be appropriate for 
only a very narrow target population). 

In evaluating a random sample, 
study must also be considered. 

the time-dependent character of a validation 
Because the solar energy industry is rapidly 
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changing, a validation study could become obsolete shortly after its 
completion. Changes in system and control components, implementation of load­
matching strategies, refinements in insolation data, improvements in installa­
tion techniques, changes in the precision of parameter estimation, and socio­
logical changes in the characteristics of the user population can alter the 
precision of the results. The design techniques will also evolve with time. 
Finally, if measurements for the validation study are carried out while the 
weather is significantly different from average, the precision of the results 
will be altered. (Statistical methods can be used to test the significance of 
this difference.) The conclusion of a validation study should include a real­
istic estimate of the limitations of the precision of its results. (Practical 
approaches to ~ample selection are discussed in Section 5.2.) 

The Sample Size. is Too Small to .. Give Accurate Results 

Since the random sample is a small fraction of the target population, there is 
uncertainty because or randoru scuupling error. It is necessary to determine 
the . size. of the experiment required to ensure a desired degree of sampling 
precision in the estimates for Ba and Ea· For example, consider the problem 
of estimating Ba and Ea for the variable fa - fa· Suppose that in the target 
population fa - fa is normally distributed, with µ(fa - fa) = -10 and a(fa 
fa) = 8. In this case, Ba= -10 and E<l = 1.96a = 15.b. In Table 4-1, the Y5% 
precision confidence interval estimates for the bias Ba <is given. The pre_ci­
sion confidence interval is a measure of the expected precision of the study 
with respect to errors due to random sampling mistakes. For example, if the 
sample size 18 n = 20, one would expect that, with probability 0.95, a valida­
tion study would estimate that Ba would fall within the interval from -13. 7 
(- -10 · 3.7) to -6.3 (= -10 + 1.7).* Larger values of the sample size n will 
give smaller precision confidence intervals. Precision confidence interval 
estimates for Ed are obtained using the chi-square distribution and in this 
case are roughly the same size. 

Table 4-1. 95% PRECISION CONFIDENCE INTERVAL 
ESTIMATES FOR Brl USING THE 
t DISTRIBUTION WITH a= 8. 

, n - size of random 
sample 

4 
10 
20 
50 

100 

Praci~ion. 
Confidenc8 luL~rval 

Estimate 

±12. 7 
±5.I 

· 13. 7 
±2.2 
±1. 6 

*This confidence interval presumes a random sampling procedure; negligible mea­
surement error; and a measuring process that does not affect system 
performance. 
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It should be noted that confidence interval estimates depend on the value for 
o. Smaller (or larger) values of o will give greater (or less) precision in 
these estimates. Of course, the estimate for Ed (or o) is a desired product 
of the·validation study. Rough estimates of o for use in estimating the ap­
propriate sample size in an actual study may be obtained from a pilot study or 
from existing data. 

Effect of Measurement Error 

It is difficult to obtain accurate data for some performance variables of so­
lar energy systems. Because measurement error can be of the same magnitude as 
prediction error, it is important to examine its effect. Measurement error 
affects estimates of both Bd and Ed. For example, let fm represent the mea­
sured solar fraction of a given system and let 

Y ,;. f - f 
a d ' 

E = f - f m a 

In a statistical validation study, one is int.erested in a statistical analysis 
of the variable y. Because of measurement error E, the variable xis used as 
an approximation for y. In this case, the error bias and spread for a given 
variable is .approximated by the equations 

Bd,observed µ(x) 

Ed,observed = 1• 96 o(x) 

Because x = y + E, 

µ(x) = µ(y) + µ(E) 

Furthermore, because y and E are, in general, independent, 

2 2 2 a (x) = o (y) + cr (E) 

(4-1) 

(4-2) 

(4-3) 

2 The quantities µ(E) and o (E) represent the overall average bias and variance 
of the measurement technique •. From Equation 4-4, it follows that 

If µ(E) and o2(E) are comparable in magnitude to µ(y) and o2(y), the measure­
ment error could significantly alter the results of the ·study. In order for 
data to be useful for Statistical validation, either the data must be extreme­
ly accurate or estimates for the statistics of the· measurement error must be 
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available. Without some knowledge of the measurement error statistics, it is 
impossible to tell whether the observed design technique error is primarily 
due to measurement error or due to the limitations of the design code and the 
inaccuracies of the design input data. When measurement error statistics are 
available, Eqs. 4-3 and 4-4 can be used to subtract the effect of measurement 
error. In this case 

(4-5) 

(4-6) 

Because of measurement error, some variables cannot be statistically validated 
reliably. Variables that can not be accurately measured, or th;:it depend on 
energy balances (which in turn depend on appruxlwaLeu 4uauLitie~), can intro­
duce a large observed statistical variability into validation. There is no 
justification for doing an expensive statistical validation study for vari­
ables that cannot be readily defined and measured with available engineering 
techniques. To be useful and reliable, statistical validation should only be. 
done for variables that can be precisely defined, have an unequivocal rela­
tionship to the reality to be measured, and can be accurately measured. From 
the economic point of view, the consumer is interested in saving electricity 
and fossil fuel by using a solar energy system. Design techniques give the 
consumer an idea of what to expect by estimating such things as thermal load, 
solar fraction of the load, energy displaced by the solar system, and expected 
backup fuel consumption. Although concepts like solar fraction, thermal load, 
and displaced energy are intuitively easy to grasp, they are difficult to de­
fine precisely and measure accurately even with sophisticated monitoring sys­
tems. For the consumer, the only variable that is the least bit concrete is 
the expected backup fuel usage, and in most cases this is the only measure 
that is available to determine ir the system is operating as advertised. The 
auxiliary energy consumption is also the easiesc and least expenisJ..\/e varictblc 
to statistically validate. A study designed to measure prediction error for 
this variable alone could give some measure of design accuracy. Statistical 
validation studies for other performance variables depend on the availability 
of accurate, inexpensive techniques to measure them. 

Errors Due t9 the Effects of Measuring the System 

Alterations in a system's performance that occur as a result of monitoring 
must be minimized. In some cases, alterations can occur becaui:;e ui the actual 
physical measuring process. Further, the people using the solar energy system 
are an important and highly unpredictable aspect of the system, and monitoring 
the performance of a system may subtly alter their energy behavior. (There is 
some evidence that the fact that the system is solar does alter the energy use 
patterns of the participants.) Dealing with these types of performance modi­
fications is difficult. One possibility is to obtain baseline data (such as 
kilowatt-hour usage) before or after the experi_ment; but because of weather 
variability, this might be of limited usefulness. The alternative (and per­
haps better) tactic is to make the measuring devices as unobtrusive as 
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possible. For ethical reasons, the participants must be made aware of the 
kinds of measurements that are being made. On the other hand, they do not 
have to know all the details of the questions that are being investigated 
until the end of the study. (It might even be useful to consult social 
scientists, who routinely face questions of this sort). · 

4.3 EXTERNAL AND INTERNAL VALIDATION 

It is possible to divide validation studies into two classes (external and in­
ternal) with contrasting approaches to the statistical analysis of design ac­
curacy. The goal of an external-type validation is simply a "bottom line" 
evaluation of the accuracy of the techniques. This involves sampling a large 
number of systems and a statistical .analysis of the difference between pre­
dicted and actual values of annual performance. The entire variability in the 
situation is characterized by the statistical analysis of the prediction er­
rors of a few annual energy variables. In this case, no attempt is made to 
investigate the statistical distributions of the various sources of design er­
ror discussed in Section 3.0. "Alternately, an internal approach involves a 
statistical analysis of some (or all) of the different sources that can con­
tribute to design inaccuracy. For example, one might attempt a statistical 
analysis of the difference between predicted ·and actual UA values or predicted 
and actual solar insolation at a randomly chosen collection of sites and then 
examine the effect of this variability on the output of a given design tech­
nique. In this case, the "bottom line" absolute accuracy of a design tech­
nique is obtained by a suitable statistical combination of all the various 
contributions to design error. 

An internal validation method has recently been 
1979; Knasel et al. 1979a; Anand et al. 1979). 
cal analysis· is divided into three levels: 

proposed (Kennish and Stolarz 
In this method, the statisti-

Detailed Code vs. Experiment (Level l). This level involves an analysis of 
the predictive capability of detailed, time-dependent computer codes (such as 
TRNSYS) when compared to a reality in which all the parameters of the system 
and the meteorological data are assumed to be known to a high degree of accu­
racy. It is proposed that the comparisons be done for components as well as 
for entire systems. 

Detailed Codes vs. Design Codes (Level 2). This level is concerned with a 
statistical analysis of the difference in output of a detailed level code 
(such as TRNSYS) and a design code (such as F-CHART) when identical data is 
used in each code. 

lnput Errors with Typical Data Bases (Level 3). This level concerns the ef­
fects of errors in parameter and weather data on the predictive capability of 
the design techniques. It. is proposed that the errors in weather data, and 
the differences between the parameter values generally available to the public 
{such as ASHRAE UA values) and actual measured values, should be analyzed sta­
tistically, and the effects of these errors in design technique prediction 
should be analyzed. 
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This method claims that an evaluation of the accuracy of a design technique 
can be found via a suitable statistical combination of the variability ob­
served at the three levels. It also suggests that an external-type validation 
(called Level IV) should be performed for a few systems as a check of the com­
bined statistics of the first three levels. 

From the point of view considered here, analysis at each level is a statisti­
cal sampling problem; if statistical precision is of interest, it is necessary 
to consider the sources of error discussed in Section 4.2. Although it may be 
possible to obtain some useful information related to design technique devel­
opment using the proposed method, it is extremely difficult to use it for a 
statistical validation, for the following reasons: 

• TI1e designer~ of thin method are awarg that it is difficult to obtain 
good, long-term data on a large number of solar energy systems. They 
rely on the premise that Level I validation, which involvi:!s thj_s type 
of data, can be accomplished by combining the results of component val­
idation with the validation results of a few well-instrumented sys­
tems. The proposers give few details as to how this would be done, al­
though it has been suggested that some of the data currently being col­
.1,ected at various instrumented sites around the country, and some of 
the previous validation work of others, might be useful at this stage 
of the study. 

• Although component validation is of interest, it is only very tenuously 
related to system validation. In addition, the available system data 
is of questionable quality (for statistical validation) because it is 
often inaccurate in both the engineering and the statistical sense. 
This is especially important when it comes to population-descripllve 
terms like "operating," "well designed," and "well coc1structed," and 
the energy-behavior characteristfc.s of the . occupants. As we have 
pointed out, for any evaluat:i.on of design. accuracy, it is essential 
that an estimate of measurement accuracy . be available. This is going 
to bl? rli ffi r.11lt to. obtain for th,;> rl;it;i -sources c1,1rrently available. 
Accurate statistical studies should not be attempted using highly pro­
cessed data of questionable accuracy from a variety of sources simply 
because that data happens to be available. 

• Because Level I is itself a statistical problem, the techniques of sam­
pling theory are applicable. Huwever, because the c,cpcctod vad.auil..i.t.y 
at Level I is smaller than that expected in an external validation 
study, it may actually be possible to use a smaller sample size. The 
random sample at this level is designed primarily to represent the ex­
pected variability due to basic model error; for this reason, the sam­
pling could be easier co implemeuL Ll1a11 that requii'.'~d for Cltterual val­
idation, where a larger degree of statistical variability is i_n­
volved. However, depending on how this level.is viewed, some or all of 
the variability that results from the occupants' lifestyle, from minor 
design and operational problems, and from the effects of shading and 
the surrounding environment might als.o be included. If this variabili­
ty is not incorporated, it would have to be added at Level III: For 
example, if the systems at Level I are all tuned to eliminate most op­
erational problems, then the variability due to minor operattonal prob­
lems will have to be introduced at Level III. If all this additional 
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variability is included at Level I, the required random sample is simi­
lar to that of an external validation and the data could be used for an 
external approach in the first place. If the variability is 
incorporated at Level III, the complications· are even more extensive. 
All the statistical variability must be accounted for at one of the 
three levels. 

• There is some question as to whether Levels I and III are amenable to 
statistical analysis at all. Both levels require accurate determina­
tion of the parameters of the systems. The most important system pa­
rameter, the UA value of the house, is not only difficult to predict, 
it is almost impossible to accurately determine in pra·ctice without re­
sorting to energy balances based on quantities that in turn can not be 
measured and must be approximated. It is doubtful whether a meaningful 
statistical analysis can be based on variables that cannot be accurate­
ly measured. It will also be -.difficult to get the accurate estimate of 
the errors in weather data that is needed for Level III. Error esti­
mates are useless if the variables cannot be accurately defined or 
mea8ured. 

• There are additional statistical problems associated with combining the 
various sources of. variability to obtain the final estimate of design 
accuracy, including: the determination of proper variable normaliza­
tion and the dependence between variables at Level III; the dependence 
between the variability at the various different levels; and the as­
sessment of the effect of measurement error for all the different sta­
tistical analyses. 

The Level II validation, comparing the output of a detailed code to that of a 
design technique, is solely a computer study, which does not appear that 
difficult. Similar work (but without the statistical orientation) was done in 
the development of the FCHART design technique (Klein 1976). 

This has been an attempt to interpret an internal validation methodology pro­
posed by Kennish and Stolarz (1979), Knasel et al. (1979a) and Anand et al. 
(1979). Other interpretations are also possible. There are so many potential 
sources of statistical error in this approach that it is difficult to see how 
anything but extremely rough estimates of design accuracy could be obtained. 
However, some aspects of the internal approach could be used to help quantify 
weak points in design technique development and use. For evaluation of design 
accuracy, a careful external approach is much more amenable to statistical 
analysis and has a much great chance of success. 
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SECTION 5.0 

PRACTICAL DESIGN OF EXTERNAL VALIDATION METHODS 

When choosing an approach for design technique validation, it is important to 
be aware of the questions that need to be answered, the necessary precision of 
the results, and the administrative and financial resources that are avail­
able. In this section, some guidelines for the practical design of an exter­
nal statistical validation are presented. 

5.1 THE ACCURACY OF THE RESULTS 

Validation· studies have virtually ignored the question of the inferential ac­
curacy of the studies. Given the high degree of statistical variability, the 
difficulty of obtaining good data, and the rapidly changing state of the solar 
energy field, one can question whether any validation study, restricted to a 
small sample of the population at a given point in time, can reliably predict 
a measure of design accuracy. Therefore, should validation be restricted to 
inexpensive studies that give only a rough idea of design accuracy? To answer 
this, consider the consequences of a faulty estimate of design accuracy. For 
example, suppose the results of a validation study indicate that a given de­
sign method overestimates the solt:r fraction by between 0% and 20% (Bd = -10 
and E~ = 10), and suppose in reality the technique is actually accurate 
to ±10% (Bd = 0 and Ed = 10). Could this difference cause the industry to 
overdesign systems, which would increase the cost and would have a negative 
impact on commercial penetration? 

How accurate need a validation be? If . rough estimates will suffice, then 
there are inexpensive approaches that should be considered before a statisti­
cal method (involving added instrumentation) is undertaken. These approaches 
include: 

• Expert opinion: Elicit the op1n1ons of several neutral, expert observ­
ers, thoroughly familiar with the practical use of design techniques, 
and (in some way) average the results. 

• The opinions of design technique users: Take a random sample of the 
actual users of the techniques, elicit their opinions, and average the 
results. 

• Use of available data. As has been stated, much of the presently 
available system data is of limited use for statistical validation 
studies because it is of unknown statistical and engineering accura­
cy. Nevertheless, by carefully selecting data appropriate to the ques­
tion at hand, it might be possible to obtain a rough estimate of design 
accuracy. It is important to note that, from the point of view of sta­
tistical validation, additional data similar to that which is currently 
available will do little to improve the situation. 

• Sensitivity and worst-case studies. It is easy to find the effects 
that an error in one of the many variables of a design technique will 
hrive on predictions.. Combining the results of a number of tht:!~t:! 
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"sensitivity" studies, one may get some feel for design accuracy. A 
study of this type, examining the effects_of errors in insolation and 
UA va.li.1es on solar fraction and economic predictions, was done by 
D. S. Ward (1978). Of course, studies of this type can give no infor­
mation about basic model error, and they depend on assumed error dis­
tributions of the variables. Since errors in different variables can 
often hav~ opposing effects, worst-case studies, assuming errors in all 
the variables, will make a design technique appear less accurate than 
it actually is. 

• Comparison studies. It .is possible to get some measure of solar heat­
ing system performance and design accuracy by comparing the electrici­
ty, natural gas, and heating oil usage of matched pairs of conventional 
and solar. hn11sP.s. The results of a study of this type for a single 
housing development have been given by J. C. Ward (1978). Because of 
the difficulty of cont~~ll1ne for. differences in construction and resi­
dent energy behavior, this approach can also make a design technique 
appear less accurate than it actually is. 

The advantages of these procedures are their moderate expense and the fact 
that, in some cases, the experiment can easily be repeated at a later date to 
estimate the effects of industry and design method evolution. In fact, even 
if a more accurate statistical method is used, it may be useful, for compari­
son p_urposes, to also sample the opinions of the users of the techniques. The 
disadvantage of all of these procedures is t'."hat there is really no possibility 
of knowing how rough the final answers actually are: the design accuracy 
could be either over- or underestimated. However, a complex statistical meth­
od, using a random sample of systems and involving additional instrumentation, 
should be done only if the inaccuracy of the above techniques is unacceptable, 
and more accuracy is needed to ensure a high level of user confidence in the 
techniques. Note, however, that a large-scale statistical experiment, carried 
out without thorough and continuous alLention to proper experimental design, 
will not give answers thac ar.e any more accurate than the above Gimpler, less 
costly mechods. 

In Section 4. 2, the effect of sample size on the reduction of random sampling 
error was c;liscussed. To make similar computations to decide on the sample 
size for a given level of precision in an actual statistical validation, there 
must be an estimate of the standard deviation <J for the variable of interest 
(such as f 0 - fd) _before the study begins. A rough estimate for o must be ob­
tained froin pilot studies or from previous data. It should be noted th8t U1e 
precision confidence intervals in Table 2-1 have been computed assuming accu­
r.ate measurements of the variable in question. If large _ measurement er rur is 
suspected, and the statistics of chis meai::ura1m,ll'1t error -!1l"P. not known; the 
precision confidence intervals cannot provide useful information. However, 
when measurement error statistics are known, it is possible to analyze the ef­
fect of measurement error on the actual error predictions (Eqs. 4-5 and 4-6) 
and on the size of the precision confidence intervals.* In this case, it is 

*All of this applies to nonnormalized versions of the variables. The problem 
is more involved for normalized variables. In some cases, it may actually be 
possible to obtain an estimate for the statistics of the measurement error for 
nonnormalized variables: one such po?sibility is presented in Section 6.0. 
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safe to assume that precision confidence intervals for both Bd and Ed will be 
no more than twice the size of the intervals given in Table 2-1. 

5.2 POPULATION DEFINITION AND SAMPLING STRATEGIES 

Unambiguous criteria defining the population of solar energy systems of inter­
est and a sampling procedure for obtaining an accurate cross section of this 
population are essential for a successful validation. The problem is compli­
cated by the fact that the initial consumers of solar energy systems are not 
particularly representative, sociologically or geographically, of the general 
population; to obtain meaningful results, the sampling procedures may have to 
be modified to take this into account. This stage of the study is crucial, 
and it may be useful to consult with a statistical polling organization that 
has the experience and personnel for handling these problems. In this sec­
tion, we discuss some approaches to problems that arise at this stage of the 
study. 

The problem of population definition can be addressed as follows: 

• Primary classification. The study is restricted to a class of systems, 
such as solar domestic hot water heaters, and this class includes only 
systems for which the design technique was intended. Because design 
techniques are often used for situations in which they are not quite 
applicable, criteria will have to be formulated to establish which sys­
tems are appropriate for the study. For example, newer systems often 
include advanced control techniques and opportunities for economical 
modes of operation that will affect the accuracy of the design 
technique. 

• Secondary classifiGation. This involves the formulation of criteria to 
quantify descriptive terms such as "operating," "well. designed," and 
"well constructed." Ideally, these criteria should depend only on 
short-term observations of the system and should be independent of de-
sign predictions. · 

• Additional classification factors. This might involve further admini­
strative limitations, such as restricting the population to systems 
with electrical backup or only considering recently constructed systems 
to better represent the current state of the industry. In addition, 
there should be criteria to establish that the system is being used in 
an environment that reflects the purpose of the study. Finally, crite­
ria should be developed to make sure that the codes are uniformly ap­
plied to the different systems with the appropriate input data to ob­
tain the intended results of the st,~y. 

To choose a random sample from the above population, one could, in principle, 
list all the solar energy systems that satisfy the criteria and then, using a 
random sampling strategy (such as random numbers from a computer), select the 
systems to be monitored. This is impractical and may not even reflect the 
statistical variability we would like to measure. To begin with, listing.all 
the systems that satisfy the population criteria is a major task. In addi­
tion, a random sample would scatter the systems, making accurate monitoring 
time-consuming and expensive. As we have pointed out, the geographic 
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distribution of solar energy systems is not uniform throughout the country and 
is even "quite different from that of the human population. To avoid these 
difficulties and to more accurately reflect the intent of the study, an 
alternative, multistage sampling procedure should be used. For example, if 
one were interested in validation on a nationwide basis (a difficult problem), 
a possibility would be to block-out a large number of regions by placing a 
rectangular grid over a map of the country. Then a number of geographic 
regions could be chosen at random. The second stage would be to sample one or 
more systems from each of the selected regions. Strictly speaking, if a large 
number of regions are chosen, a proper interpretation of the results of this 
validation should mention that it assumed a uniform geographic use of the the 
solar energy system throughout the country. Other possibilities for the fir~t 
stage of a. multistage procedure are geographic sampling with a tendency to 
sample in highly populated 1:eglu116 or in regions of c1cpccted rapid expansion. 
of the industry. it should be noted that if (for administrative purposes) the 
study is restricted to a few randomly chosen regions of small area, the 
precision of the validation study will be· reduced with respect to t:he effecL 
of variability in weather data. 

When it comes to actually choosing systems, it appears that the only practical 
approach on a nationwide basis is to sample the installers or dealers of solar 
energy systems and randomly choose one or more of their recently installed 
systems. Lists of dealers and installers are currently being assembled at 
SERI. Of course, care must be taken to ensure that the dealers do not simply 
list their most successful systems. Other. approaches to this problem might 
involve the utilities, solar energy societies, lists of municipal building 
permits, or simply asking a statistical polling organization what to do. Of 
course, the final sample should only include those oyotcms satisfying the pop­
ulation criteria. This will require an on-site inspection by an engineering 
team thoroughly familiar with the population criteria and the intent of the 
study. 

S(.)me statistical studies divide the population into classes (or strata) and 
choose random samples from each strata. For example, there ate something like 
fifteen types of solar water heaters on the market, and sampling systems from 
each of these classes might be considered. There are two main advantages to 
stratified sampling. First, if the sample size in each strata is large 
enough, a measure of design accuracy in that particular strata can be ob­
tained. In addition, if the statistical variability within each strata ii;; 
small, the precis~on of the results of the entire study can be increased. 
However, this approach does require information on the relative frequency of 
each strata in the_ overall population. In the case ot design validation, it 
does not appear that the precision of the study will be significantly in­
creased by taking a stratified approach. A properly chosen random sample of 
the overall population of interest should contain members of each strata at 
roughly the same relative frequency as that occurring in the population. If a 
system is omitted from the overall random sample, then its relative frequency 
in the population is probably too small to have any affect on the estimation 
of design error. 

Much of what has been said here about population definition and sampling stra­
tegy represents an ideal that is difficult to achieve in practice. A 
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discussion of the advantages and disadvantages of· various sampling strategies 
for general sampling studies is given in Cochran (1977) and Hansen et al. 
(1953). 

5.3 INSTRUMENTATION FOR STATISTICAL VALIDATION 

The .data requirements and performance evaluation procedures for an engineering 
analysis of solar energy systems are not discussed in detail here because they 
can be found in Streed et al. (1976) for active systems and in Palmiter et al. 
(1979) for pa~sive systems. However, there are differences between data re­
quirements for statistical validation and for an engineering analy-sis. With 
statistical validation, unlike a technical study, interest does not lie in· en­
ergy balances, subsystem performance, component and system efficiencies, and 
component interactions. Interest· resides in the integrated values of a few 
well-defined and easily measured variables that describe system performance. 
Time-dependent data is not required. What is needed is to monitor a large 
number of systems. Although there has been some interest in simple, low-cost 
monitoring (for example, U.S. DOE 1978; Cummings et al. 1978), it will prob­
ably be more effective to develop instrumentation that is specifically de­
signed for the study at SERI. 

In Section 4.2, the effect of measurement errors on the precision of valida­
tion studies was discussed. Without knowledge of the measurement error sta­
tistics, it is impossible to tell whether the observed design error is primar­
ily due to measurement error or to the limitations of the design technique an,d 
the inaccuracies of its input data. In this context, measurement error is de­
fined to be any phenomena-that gives rise to an inaccurate picture of system 
performance. This might include instrument error, the effects of data sam­
pling rates, misplacements of sensors, the effect of the measuring process on 
system performance, data acquisition errors, or perhaps the inability to de­
fine and measure· the variables in the first place. In practice, statistical 
validation is done with respect to a reality given by the definitions of the 
measured variables and a uniform placement of .sensors in the various systems 
that make up the random sample. An accurate determination of the statistics 
of the measurement error with respect to this reality is important and should 
include a statistical model of the measurement process and estimates of the 
mean and standard deviation of the measurement error of the integrated values 
of each variable of interest. If accurate estimates of measurement error sta­
tistics are available, a correction for this uncertainty, based on Eqs. 4-5 
and 4-6, can be made for nonnormalized variables. For norcmalized variables, 
an attempt to subtract out the effects of measurement error can lead to sta­
tistical difficulties. From a practical point of view, it may be difficult to 
correct for measurement error even for nonnormalized variables. What is im­
portant is that the measurement errors be unbiased, with a standard deviation 
that is much smaller than the standard deviation of the design err9r_ that the 
validation study is attempting to find. An approach in which it may be possi­
ble to estimate the measurement error is discussed in Section 6.0. 

5.4 SOCIOLOGICAL SURVEY ACCOMPANYING THE VALIDATION STUDY 

It will be useful to conduct two soci.ological surveys in conjunction with the 
validation study to obtain information about both system users and system 
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installers. For system users, the survey should include information on 
thermostat settings, infiltration patterns, hot water usage patterns, family 
size and characteristics, impressions of system performance, use of load­
matching techniques, and system repair problems. In addition·, information 
should be obtained about the effect of moni taring on energy use. It might 
also be helpful to obtain statistical technical information on the systems 
being sampled, including a measure of the adequacy of system design, con­
struction, and level of operation. Installers should be surveyed to obtain 
information on design techniques (sources of data, performance predictions, 
etc.), imprec1.s1.ons of system performance, and impressions ot design accu-­
racy. Because many design techniques are available, this survey may not pro­
vide enough information for~ good measure of the contribution to design error 
from the user of the technique. This contribution to validation should be 
examined in a separate statistical sampling study. 

5.5 PILOT STUDY OF VALIDATION 

A pilot study, on a limited scale, would be useful to reveal problems before a 
large-scale study is attempted. All aspects of the larger study should be in­
cluded in the pilot study, including the formulation of the questions to be 
answered, the definition of the populations, the random sample selection, and 
system instrumentation. It may also be useful to place the validation instru­
ments in structures that are already being monitored by other instruments to 
compare the results with unmonitored systems. For practical reasons, che pi­
lot study would probably have to be <lone on a limited time scale in a small 
geographic region and would only give rough estimates of the statistics of in­
terest. 
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SECTION 6.0 

A SIMPLIFIED VALIDATION METHOD FOR SOLAR DOMESTIC 
HOT WATER HEATERS 

Among the commercially available active solar energy systems, domestic hot wa­
ter. IIBaters are the most economically accessible .to the consumer and also the 
easiest ( relatively) to validat·e. It is appropriate to · concentrate the ini­
tial work of statistical validation on these systems. Although there has been 
much ~peculation about the correctness of various design techniques, including 
the accuracy of the input data, no attempt has been made to measure the over­
all statistical variability in the design process. A well-designed solar water 
heater validation study would give a measure of the overall statistical vari­
ability in this process due to uncertainty in the actual design techniques, 
inaccuracies in insolation data, · hot water loads, and system parameters, and 
the effects of minor design, construction, and operational problems. In addi­
tion, it would give the solar community firsthand experience with the possi­
bilities and limitations of the statistical validition process for a case in 
which the system is relatively easy to monitor and for which there is an ample 
population. Finally, the experiment could provide information on the differ­
ences among the various approaches to system design when applied in the reali­
stic design environment. 

A wide range of instrumentation strategies is possible for solar water heat­
ers, from a simple monitoring of backup fuel usage to sophisticated computer­
based monitoring capable of obtaining energy balances for time-dependent da­
ta. In the .remainder of this section, a simple, low-cost validation method 
(suggested by F. Kreith) is discussed. This approach attempts to evaluate the 
accuracy of design predictions for the auxiliary energy requirements Q , the aux 
solar energy contribution Qs, and the solar fraction fd for domestic hot water 
heater systems with electrical backup.* The idea is to monitor electrical 
backup usage for lengthy time intervals each month for two different opera­
tional states of the system. In the first state, the system.is operating nor­
mally, with the solar components providing a fraction of the system's energy 
requirements. In the second state, the solar components are disconnected, and 
the system operates as a standard hot water heater. Kilowatt-hour and time 
measurements are recor<le.<l several times per month, including the times when 
the system is switched from one state to another. This data can be analyzed 
to obtain estimates for the annual values of Qaux' Qs, and fa· All that is 
required is a clock, a kilowatt-hour meter,** and a mechanism for switching 
the system from one state to the other. One possibility for data collection 
is to place the meter and state switch outside the residence. Actual data 
collection and state changes could be accomplished by neighbors, students, 
polling organizations, EPRI, or the utilities and sent back to a data 

*Only electrical backup systems are considered, because 
the measurement and to reduce the cost of the study. 
domestic hot water systems use electrical backup. 

of the simplicity of 
A majority of solar 

**In practice, there could be a single digital readout consisting of time dig­
its, energy digits, and error-checking lights. 
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collection center on postcards.* 
measurement sampling process, it is 
which state the system is in. 

In order to reduce the error in this 
essential that the actual user not know 

The measurement error, in this case, is due to the inaccuracies of the kilo­
watt-hour meter ~nd the fact that solar system performance is being sampled. 
Because insolation, outside temperature, and thermal load are not uniform in 
time, and because a relatively long time period (about two weeks) will be 
used, some error can be expected in the estimates of Qaux' Qs, and fd. 
However, what is important for statistical validation is not the error in 
individual cases, but the statistics of error for many systems, and there is a 
way to obtain an estimate for this quantity. A time-dependent, quasi-steady­
state program (such as TRNSYS), although of unknown absolute accuracy, does 
"perfnrm" qualitatively like a solar water heater. An estimate of the 
measurement sampling error can be obtained by running this detailed model in 
two differ,P,nt w;:iyi;; fnr ;i randomly selected s~mple of locations. First 1 the 
computer- model is run in the usual manner.** In the second case, the model is 
modified to reflect the two operational states in the actual validation 
experiment and is rerun with the same data, the system being !:lwlt:chet.l between 
the two states in the same way as in the actual measured sys terns. Computed 
auxiliary energy usage calculations are recorded at the same times that the 
r.ecordings are taken in the measured systems. The data from this computer run 
are then compared to the values for Qaux anft Qs that have been obtained in the 
first simulation run. A statistical analysis of the differences in output of 
the two runs for a large number of systems can be used to estimate the error 
due to the measurement sampling process. This analysis, together with an es­
timate of the error for the kilowatt-hour meter, will give an estimate for the 
mP.asurement ~rror in the study. 

There are technical problems to be considered before using this type of ap­
proach. The systems may have to be modified to ensure complete sta_te separa­
tion and to avoid collector stagnation or other physical effects. Transient 
effects occuring at the time of state change can be minimized by allowing time 
for the systems to come into equilibrium and by increasing the number of 

*The Department of Energy has recently supported work on a national solar data 
collection system (Delima et al. 1978). 

**We can only run this model where solar and temperature data are available. 
Although it would be useful for this data and load data to be available for 
each of· the measured systems, it would defeat the purpose of keeping the mea­
surement process simpie and it is not e!:l!:lenLlal fuL eLtui.: estiiuation, Any 
collection of sites where data happened to be avai lahle and that accurately 
reflect the random sample being tested can be used. In fact, since measure_­
ment sampling error is being estimated, it is not even necessary that the data 
be accurate. However, to make the error estimate more realistic, this comput­
er experiment should model the actual experiment as much as possible •. For ex­
ample, if data are taken at irregular intervals in the real systems, the simu­
lation should also use irregular intervals. To make the thermal load realis­
tic, hot water load data from other measured sites would be input into the de­
tailed model. 
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measurements per month. The computer simulation experiment can also be used 
to estimate these effects. 

There are other variations to this approach. For example, the systems could 
be operated with the solar components supplying a fraction of the load from 
the winter solstice to the summer solstice and disconnected the rest of the 
year. Another possibility is to run the experiment for two years ·with one 
year for each state. In these cases, stagnation can be prevented· by covering 
the collectors; however, this could influence the energy behavior of the occu­
pants. In either case, simulations could again be used to approximate the 
measurement error. 

This type of approach tries to utilize the statistical nature of the valida­
tion problem.* It has . the advantage that expensive instrumentation and data 
acquisition systems are not required, making it possible to sample the large 
number of systems necessary for statistical validation. Although a validation 
study based on highly instrumented systems has the potential of greater preci­
sion, the per system expense is much higher, and the results to date have not 
been promising. However, studies of the type discussed above do have the po­
tential of achieving a level of precision greater than the simple approaches 
used in Section 5.2. 

*In another simulation context, the statistical nat~re of the solar· energy sys­
tem analysis problem has been used. In Lameiro (1979), a simple stochastic 
model has been used to approximate the annual performance of solar energy 
systems. 
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SECTION 7. 0 

CONCLUSION 

This .work has been concerned with an analysis of the statistical validation 
process for measuring the accuracy of design techniques for solar energy sys­
tems. In the view taken here, it is important to evaluate design technique 
performance in the context of the realistic process of system design. Stati­
stical validation is an approach to measuring the accuracy of design methods 
in the environment defined by this process. 

In this context, validation is not simply a matter of gathering some data and 
making comparisons to reality. In actuality, it involves: 

• an assessment of how the design techniques are used in practice; 

• an honest appraisal of the needs for a validation study; 

• an appraisal of the precision required in the study; 

• an initial formulation of questions to be answered and variation to be 
measured; 

• a realistic assessment of measurement capability from both an engineer­
ing and fiscal point of view; 

• a restriction of the study to variables that can be precisely defined, 
have an unequivocal relationship to the reality of interest, and can be 
easily measured; 

• a precise definition of the target population of interest; 

• a judicious choice of statistically meaningful data; 

• an analysis of all sources of statistical error in the validation 
process; 

• a candid interpretation of the possibilities and limitations of the re­
sults; and 

• an assessment of the expected impact of the study, including the sensi­
tivity of this impact to inaccuracies in the final results. 

A statistical validation study is complicated by: 

• the difficulty of measuring some of the variables of inter.est; 

• the difficulty of separating measurement error and system performance 
problems from the problem of design accuracy; 

• the difficulty of obtaining an accurate random sample of the system 
population of interest; and 

• the rapidly changing state of the design methods and the solar energy 
industry. 
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There are two important questions that have not been considered in this 
report: 

• Is it possible to perform an accurate statistical validation study? 

The answer is "no" if the statistical validation process is expected to pro­
duce statistically accurate error estimates for all variables of interest for 
all the different solar energy systems on the market. However, it is the 
opinion of the author that by restricting the scope of the study to system 
variables that can be· accurately monitored, by paying careful attention to 
statistical experimental design, and by making a candid interpretation of the 
meaning and accuracy of the results, it is possible to do statistical 
validation. 

• Is it necessary to do an accurate statistical validation study? 

The answer to this question is not so obvious. It really depends on the way 
the design techniques are used, the expectations of the users of the tech­
niques, and the expected impact of such a study. 

This work is primarily an attempt to present a framework to help evaluate the 
statistical precision of potential validations. Any validation can produce 
numbers. The question is: do these numbers accurately reflect the reality 
they propose to measute? Only with the proper attention to experimental de­
sign can statistical validation give good estimates of design accuracy. 

28 



RR-377 5 =!!!11 ir"-},1 -~ ' ' ----------------------------------

SECTION 8 .O 

REFERENCES 

Anand, D. K.; Kennish, W. J.; Knasel, T. M.; Stolarz, A. C. 1979 (Aug.). 
"Validation Methodology for Solar Heating and Cooling Systems."- Energy. 
Vol. 4 (No. 4): pp. 549~560. 

Cochran, W. 1977. Sampling Techniques. Third Edition. New York: John 
Wiley and Sons. 

Cummings, R. D.; Pech, ·D. J.; and Hall. W. J. 1978. Low Cost Monitoring Sys­
tem for Solar Water Heaters. Palo Alto~ CA: Electric Power Research In­
stitute; Er-795, Project 554-1. 

Delima, H.; Hirshberg, A.; and Dick, C. 1978. "A National Heating and Cool­
ing Evaluation System." Conference Proceedings: Solar Heating and Cool­
ing Systems Operational Results. Colorado Springs, CO: Nov. 28-Dec. 1. 
Golden, CO: Solar Energy Research Institute; Report No. SERI/TP-49-063. 

Fanney, A. H. 1978 (July). Experimental Validation of Computer Programs· for 
Solar Domestic Hot Water Heating Systems. Center for Building Technology, 
National Bureau of Standards; Letter Report. 

Hansen, M.; Hurwitz, W.; and Madow, w. 1953. Sample Survey Methods and Theo­
:E:J..., Methods and Applications. Vol. 1. New York: John Wiley and Sons. 

Hill, J. 1979. "Comparison of F-CHART Predictions to Performance of Solar Wa-
ter Heaters." Presentation at May 1979 SSEA Working Group Meeting. 
Golden, CO: Solar Energy Research Institute. 

Kennish, W. J. 1978 
. Simulation Codes. 

(March). An Approach to the Validation· of Computer 
Sandia Laboratories; SAND-78-0433.-: 

Kennish, W. J. and Stolarz, A. C. 1979 (Jan.). A Case Study of the Proposed 
Validation Methodology. Beltsville, MD: TPI, Inc.; SR#79-0l. 

Klein, S. A. 1976. "Design Procedure for Solar Heating Systems." Ph.D. The­
sis. University of Wisconsin. 

Klein, S. A.; Beckman, W. A.; and Duffie, J. A. 1976. 
for Solar Heating Systems." Solar Energy. Vol. 18: 

"A Design Procedure 
PP• 113-127. 

Knasel, T. M.; Kennish, W. J.; and Cassel, D. 1979a (March). Validation 
Methodology for Solar Heating and Cooling Simulation Models." Sciences 
Applications, Inc.; Contract EM-78-C-04-4261. 

Knasel, T. M.; Mansoor, Y.; and Kennish, w. J. 1979b (March). Validation 
Status of Solar Heating and Cooling Systems Models. Sciences 
Applications, Inc.; Contract EM-78-C-04-4261. 

29 



S:~l 1(\ ________________________________ ._RR_-_3_7_7 
'·~·/ 

Lameiro, G. F. 1979. 
Heating Systems." 

"A Markov Model of Solar Energy Space and Hot Water 
Solar Energy. Vol. 22: pp. 211-219. 

National Solar Data Program. ND. Solar Energy System Performance Evaluation 
Reports; National Solar Heating and Cooling Demonstration Program. U.S. 
Department of Energy. (Available from Huntsville, AL: IBM). 

Palmiter, L. S.; Hamilton, L. B.; Holtz, M. J. 1979 (Oct.). Low Cost 
Performance Evaluation of Passive Solar Buildings. Golden, CO: Solar 
Energy Research Institute; SERI/RR-63-223. 

Socolow, R. H. 1977/1978. "The Twip. Rivers Program on Energy Conservation in 
. Housing: Highlights and Conclusions." Energy and Buildings. Vol. 1: 

PP• 207-242. 

Solar Energy Research tnstitute. l 978. Conference Proceedings: Solar Heat­
ing and .Cooling Operational Results. Colorado Springs, co; Nov. 28-
Dec. 1. Golden, CO: Solar Energy Research Institute; Report 
No. SERI/TP-49-063. 

Sonderegger, R. 1977 (Nov.). Diagnostic Tests Determining the Thermal 
Response of a House. Lawrence Berkeley Laboratory; LBL-6856. 

S~reed; E. et al. 1976 (Aug.). Thermal Data Requirements and Performance 
Evaluation Procedures for the National . Solar Heating and Cooling Demo 
Program. National Bureau of Standards; Pb-257-770, NBSIR 76-1137. 

United States Department of Energy. 1978. Conference on Performance Monitor­
ing Techniques for Evaluation of Solar Heating and Cooling Systems. 
April 3-4; Solar Research and Development Branch and Solar Demonstration 
Branch. 

Ward; D. S. 1978. "Realistic Sizing of Solar Heating and 'cooling Systems." 
Boer, K. w.; Franta; c. E.; cdo. Procccdingc of the Annual Meeting of thQ 
International Solar Energy Society. August; Denver, CO. Vol 21: 
PP• 10.S-li2. 

Ward, J. C. 1978. "Electricity and Gas Consumption of 24 Solar ·Homes Com-
pared with 26 Conventional Homes Having Identical Heating Loads." Confer­
ence Proceedings: Solar Heating and Cooling Systems Operation Results. 
Nov. 28-Dec. 1; Colorado Springs, CO. Gol<leu, CO: Solar Energy Research 
Institute; SERI/TP-49-063. 

Winn, c. '8.; Pnrkinoon; B. w.; and Duong, N. 1978. 
tern Simulation Programs." Boer, K. W.; Franta, 
of the Annual Meeting of the International Solar 
Denver, CO. Vol. 2.1: pp. 120-124. 

30 

"Validation of Solar Sys­
G. E., eds. Proceedings 
Energy Society. August; 



Document Controt 11. SERI Report No. 

Page RR-721-377 

12. NTIS Accession No. 

4. Title and Subtitle 

Statistical Problems in Design Technique Validation 

7. Author(s) 

Joel Cohen 
9. Performing Organization Name and Address 

Solar Energy Research Institute 
1617 Cole Boulevard 
Golden, Colorado 80401 

12. ·sponsoring Organization Name and Address 

15. Supplementary Notes 

16. Abstract (Limit: 200 words) 

3. Recipient's Accession No. 

5. Publication Date 

Ar,ri l l QA() 

6. 

8. Performing Organization Rept. No. 

10. ProjecVTask1Work Unit No. 

3525.40 
11. Contract (C) or Grant (G) No. 

(C) 

(G) 

13. Typ·e of Report & Perioo Covered 

Research Report 
14. 

This work is concerned with the statistical validation process for measuring the 
accuracy of design techniques for solar energy stystems. This includes a dis­
cussion of the statistical variability inherent in the design and measurement 
processes and the way in which this variability can dictate the choice of 
experimental design, choice of data, accuracy of the results, and choice of 
questions that can be reliably answered in such a study. The approach here is 
primarily concerned with design procedure validation in the context of the 
realistic process of system design, where the discrepancy between measured and 
predicted results is due to limitations in the mathematical models employed by 
the procedures and the inaccuracies of input data. A set of guidelines for 
successful validation methodologies is discussed, and a simplified validation 
methodology for domestic hot water heaters is presented. 

17. Document Analysis 

a.Descriptors Solar Energy Systems; Measuring Methods; Validation; Design; Statistical 
Variability; Errors; Sampling; Accuracy; Solar Water Heaters; Solar 
Domestic Hot Water Systems 

b. Identifiers/Open-Ended Term& 

c. UC Catego/ies 

58d, 59c 

18. Availability Statement 
National Technical Information Service 
U,S, Department of Commerce 
5285 Port Royal Road 
Springfield, VA 22161 

Form No. 8200-13 i6-79) 

19. No. of Pages 

38 
-., ···-
20. Price 

$4.50 

'A' U.S. GOVERNMENT PRINTING OFFICE1 1880-677,17B/ 149 


	Foreword
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Section 1.0 Introduction
	Section 2.0 What is Validation?
	Section 3.0 The Statistical Nature of the Validation Problem
	Section 4.0 Experimental Design for Statistical Validation Studies
	Section 5.0 Practical Design of External Validation Methods
	Section 6.0 A Simplified Validation Method for Solar Domestic Hot Water Heaters
	Section 7.0 Conclusion
	Section 8.0 References



