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SUMMARY 

A computer model of a horizontal axis wind turbine (HAWT) with four structural degrees of 

freedom has been derived and verified. The four degrees of freedom include flapwise motion of the 

blades, teeter motion, and variable rotor speed. Options for the variable rotor speed include synchro-

nous, induction, and constant-tip speed generator models with either start, stop, or normal operations. 

Verification is made by comparison with analytical solutions and mean and cyclic ESI-80 data. The 

Veers full-field turbulence model is used as a wind input for a synchronous and induction generator test 

case during normal operation. As a result of the comparison, it is concluded that the computer model 

can be used to predict accurately mean and cyclic loads with a turbulent wind input. 
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1.  INTRODUCTION 

The determination of inertial and aerodynamic loads is necessary for the design of horizontal axis 

wind turbines (HAWTs). Extensive work has been done predicting steady-state and cyclic blade and 

rotor loads [1 -6] for constant speed HAWTs. Currently, variable-speed generators are being examined 

for use with HAWTs [7] . The effect of variable-speed operation on blade and rotor loads is not well 

known. Understanding variable-speed operation of HAWTs is critical because the rotor speed can 

coincide with many system natural frequencies. Instabil ities and excitations near system natural 

frequencies can reduce working l ifetimes of components and, in extreme cases, cause catastrophic 

failure. The wind turbine designer needs tools to predict potential trouble spots. This report develops 

techniques for analyzing the loads associated with variable speed operation of HAWTs. 

The objective of this study was to develop a four-degree-of-freedom time-domain computer model 

of a two-bladed, teetered HAWT with a variable-speed rotor. The specific geometry was chosen to 

parallel projected development of HAWTs, that will have this configuration [8]. The computer code 

determines loads and response by combining a mathematical model having four degrees of freedom 

with aerodynamic loading. The aerodynamic loading consists of deterministic effects, such as wind 

shear, tower shadow, and yaw, with stochastic effects from wind turbulence. 

1 .1 Variable Speed 

In order for variable speed to be economically viable, the additional cost of variable-speed 

equipment must be offset. These offsets are a combination of increased power capture from the wind 

and decreased loads, which result in longer turbine component l ifetimes. In the past, this has not been 

the case; consequently, most HAWTs run at a fixed speed. Recently, the capital cost of the power 

transmission components used in variable-speed generators has decreased [7] . With this decrease, 

variable speed implementation has become a favorite candidate for use on the next generation of wind 

turbines. The advantages of variable-speed operation are numerous and have been extensively 

discussed, but the energy savings realized from using variable-speed systems are widely varied and 

often cannot be assigned a dollar value. 

1 



A typical HAWT rotor power coefficient (Cp) versus tip speed ratio (I') is shown in Figure 1.1. A 

fixed-speed wind turbine can be designed to have an optimum power coefficient at only one wind speed. 

When the wind speed is either higher or lower than this optimum wind speed, the aerodynamic efficiency 

is reduced. A variable-speed turbine can operate with a optimum power coefficient by varying the rotor 

speed proportionally to the wind speed. This results in increased power capture over fixed-speed 

operation. Predictions of increased power have been widely varied, from 3% to 6% [9] up to 10% to 

20% [1 0). 

A variable-speed machine can reduce the power and load fluctuations caused by rapid changes in 

the wind. When a fixed-speed machine experiences a gust or wind deficit, the machine experiences a 

change in torque, which consequently changes the power sent to the util ity [11). This has dis-

0.36. 
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Cp 0.24 

0.22 
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Figure 1 . 1  Typical HAWT Power Coefficient Curve. 
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l_ 1 advantages for wind farms with a large number of turbines; when a wind gust occurs, a large, potentially 

r damaging voltage spike could be sent through the util ity distribution system. The direct variation of 

torque with wind tends to decrease the fatigue l ife of the drive-train components. Variable-speed 
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machines can use the rotor as a flywheel storage system to reduce these effects. When a wind gust is 

experienced the rotor can accelerate, transferring the increase in wind energy to the rotor as kinetic 

energy instead of passing it down the drive train as a sudden increase in torque. During a wind deficit 

the opposite effect occurs. The generator extracts energy from the rotor, which will decelerate the rotor. 

This process significantly dampens torque variations due to turbulence, tower shadow, and wind shear. 

The variable-speed configuration can be used as a turbine control system. Many fixed-pitch 

machines use blade pitching to keep thrust and torque below some nominal value dictated by machine 

limitations. Instead, the rotor speed can be varied to achieve the same result without the complicated 

pitch actuators. Control schemes using both variable-speed generators and mechanical blade pitching 

were developed for HAWT [12-1 3]. Blade pitching reduces torque variations while maintaining rated 

power. 

Variable-speed generators can be used to regulate start and stop conditions. Turbines can be 

motored to a start-up rotation speed, and braking can be achieved by setting the generator electrical 

torque higher than the mechanical rotor torque. Braking ability would still be needed for emergency loss 

of load. Some fixed-speed machines freewheel up to their normal operating speed and the generator is 

then turned on. This causes an impulse torque to be transmitted through the drive train increasing wear 

and fatigue. Fixed-speed machines need a braking device to stop the turbine. Brakes are aerodynamic, 

such as blade feathering, or mechanical, such as friction brakes. Anderson et al. [1 0] were able to use 

motored start up to 67% of rated rotor speed for a 500-horsepower variable-speed demonstration. The 

start up took approximately 1 00 seconds. 

Variable-speed generators can be used to dampen out torsional modes that exist in the drive train. 

This phenomenon is often referred to as ringing. The quick response of generator torque allows 

damping of very high modes. A simulated 0.1 Hertz drive train resonance was successfully damped out 

on a 500-horsepower variable-speed demonstration [1 0] . 

3 



The problem of synchronizing wind turbine output power with the util ity is eliminated with variable-

speed operation. This reduces the amount of time the generator is off line during start-up conditions. 

This can be significant when the wind is oscillating around the minimum operating speed. 

Variable-speed operation can also reduce acoustic noise. Noise reduction is important when the 

turbines are sited near residential areas. At high wind speeds the rotor is operating slower to limit 

torque. The slower rotor speed reduces the noise emitted by the blade. 

The preceding paragraphs have outlined the many advantages of operating HAWTs with variable-

speed generators. A number of variable-speed test machines have been built to date. 

The MOD-OA, a two-bladed HAWT, was equipped with a variable-speed generator and tested in a 

number of configurations [1 4). Drive train load variations were reduced and the power quality was 

improved with the variable-speed operation. 

A three-bladed 40-kiloWatt HAWT was tested in Sweden [ 15] with a constant tip-speed ratio below 

rated torque. Significant torque variations were reduced with the variable-speed generator. 

Other test variable speed HAWTs have been studied in Japan [ 16], Germany [1 7], and Italy [ 1 8]. 

At the German site, noise reduction was reported for the variable-speed operation. 

1 .2 Blade Dynamics 

The blades of a HAWT are long cantilever beams: The blades are frequently rigidly attached to 

the hub. The hub can either be rigidly attached to the low-speed shaft or allowed to teeter. Teeter 

mechanisms can include the displacement of the teeter axis from the blades principal bending axes, 

which is referred to as undersling, and the teeter axis may be rotated from a perpendicular alignment 

from the blades, referred to as a delta-3 angle. Each blade has three degrees of freedom: motion in the 

flapping direction, motion in the edgewise direction, and torsional motion. A teetered rotor would have 

seven degrees of freedom, three for each blade and one for the teeter motion. This geometry is similar 

to that of many helicopter rotors. One major difference is that helicopter blades are kept as light as 

possible to reduce power required for flight. Helicopter blades are also replaced frequently, as often as 

every 1 000 hours of flight time, resulting in less required structural support to resist fatigue. Conse-
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quently, most HAWT blades are much heavier and stiffer than helicopter blades. Most of the governing 

equations for blade motions are similar. The large difference in stiffness results in some of the terms 

governing HAWT blade motion to be small. The torsional stiffness can be more than an order of 

magnitude greater than the edgewise stiffness, which in turn may be an order of magnitude greater than 

the flapwise stiffness. Often, the degrees of freedom in these directions can be ignored. A thorough 

description of governing equations for blade motion can be found in Johnson [19],  Bramwell [ 20] , and 

Gessow and Meyers [ 21 ]. A discussion of current blade modeling techniques is made by Hodges [ 22]. 

Solutions to the blade equations can be f()Und depending on their complexity. Aeroelastic solutions can 

be obtained by linearizing the dynamics and the aerodynamics. This technique is more suitable for 

helicopters, where the geometry lends itself to linearization. In  the iiterature, a number of researchers 

have examined aeroelastic solutions for helicopter rotors [23-25]. Kottapalli and Friedman [ 26] 

examined the aeroelastic stability of a wind turbine blade by computing an equilibrium position for the 

nonlinear equations and then examining the behavior of perturbations about the equilibrium position. 

Linearized dynamics has been used to examine system natural frequencies and stability regions [ 27-28] . 

I ncluding the nonlinearities in the dynamics and the aerodynamics requires a solution in the time 

domain. Recently, Hartin [4] combined tower motion and elastic blade flapping with an unsteady 

aerodynamic model for a HAWT. The response was obtained by using a time domain predictor-

corrector method. 

1.3 Rotary Wing Aerodynamics 

Aerodynamic loads on a HAWT rotor are determined using the axial momentum theory for an 

actuator disk, which was first examined by Rankine [29] and Froude [30].  This theory balances the 

thrust from the momentum change of the flow passing through rotor with the blade element thrust. This 

theory is often referred to as strip theory as the flow through the rotor can be divided up into individual 

stream tubes or "strips." This theory was modified by Prandtl [31] and Goldstein [ 32] to account for tip-

loss effects. A modified strip theory was developed by Wilson and Walker [33] to account for wake 

expansion. Using the assumption of linear aerodynamics, closed-form solutions can be achieved. Most 

5 



HAWTs operate with large portions of their blades in deep stall, so use of linear aerodynamics is not 

generally a valid assumption. When nonlinear aerodynamics is used, a solution can be found through 

an iterative procedure. The inclusion of nonlinear aerodynamics has been shown to be an improvement 

[34] . 

A wind model to drive the aerodynamic model consists of two distinct parts: a deterministic part 

and a stochastic part. The deterministic wind consists of effects that are repeated for each rotor 

revolution. These are the mean wind, wind shear, tower interference, and yaw. The stochastic portion is 

due to atmospheric turbul�nce. Turbulence consists of lateral, vertical, and longitudinal components. 

Only the longitudinal component is important in HAWT load analysis. Many turbulence models have 

been developed using simple autoregression for a single point in space. Connell [35] developed a 

model that decomposes a Fourier Transform of a autocorrelation for a rotating point in turbulent wind, 

which can be used for analysis of a small HAWT with a rigid rotor. Veers [36] developed a full-field 

model that has many applications in wind engineering but requires mainframe memory to run. Walker et 

al. [37] summarized turbulence models for HAWT use. A number of analysts have implemented 

turbulence models into load prediction codes [38-40]. 
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2. DEVELOPMENT OF EQUATIONS OF MOTION 

Four degrees of freedom are necessary to model a HAWT with a two-bladed, teetered hub 

connected to a variable-speed generator. One degree of freedom arises from the flapwise motion of 

each of the two blades. Motion of the blade is confined to the flapwise direction. Edgewise and 

torsional blade motion are not considered in this study. The direction of the blade flapping is a function 

of the twist and pitch of the blade, so that the motion is in the direction perpendicular to the axis of the 

blades' smallest moment of inertia. The model allows for blade precone and delta-3. The model also 

allows for the teetering hub center to be offset from the teeter axis. This length is referred to as under-

sling. The model has provisions for fixed-rotor tilt and yaw. Time-varying yaw is not considered. The 

variable-speed generator is driven by the aerodynamic torque, drive train losses, and an arbitrary 

generator load. The aerodynamic loading is determined using the modified strip theory with nonlinear lift 

and drag characteristics. The aerodynamics are driven by a wind model that consists of a deterministic 

portion made up of mean wind, shear, and yaw, and a stochastic portion, consisting of an atmospheric 

turbulence model. The aerodynamic loads are calculated in the deformed blade position. The resulting 

nonlinear equations are solved in the time domain using a predictor-corrector method. The bending 

moments, shear, and tension forces are integrated along the deformed blade. The derivation of the 

governing equations of motion is presented in this chapter. 

2.1 Geometry and Coordinate Transformations 

Figure 2. 1 shows the orientation of one turbine blade with all the coordinate systems required for 

determination of the system equations of motion. These coordinates are defined as: 

aj = inertial coordinates 

a[ = yaw coordinates 

ai = tilt and generator coordinates 

bi = rotating rotor coordinates 

ci = rotating teeter coordinates 

7 
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Figure 2.1. Rotor Coordinate System. 
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di = delta-3 rotation coordinates 

ei = precone rotation coordinates 

fi = elastic axis rotation coordinates 

gi = deflected blade coordinates 

(i= 1 ,2,3) 

The first two coordinate transformations, a" to a' and a' to a, are yaw and tilt rotations respec-

tively, and are used to determine wind input. The tilt rotation also affects the.gravity load on the rotor. 

The rotor generator and main shaft spin about the a1 axis. The rotation about this axis is the variable-

speed degree of freedom, q4. The rotor assembly teeters about the b2 axis, with the teeter axis being 

displaced from the yaw and tilt axes' center by a distance, d. The rotation about the teeter axis is the 

teeter degree of freedom, q3. The hub is displaced from the teeter axis by the undersling distance, Ru. 
The axes c1, d2, and e3 define rotations at the hub center for delta-3 (a3), precone (�).  and the elastic 

bending axis (ep), respectively. The resulting coordinate transformation from the generator coordinate 

system to the rigid blade coordinate system is given by: 

where, 

Q11 Q12 Q13 l �
�.
:
1 

} Q21 Q22 Q23 ,, 
Q31 Q32 Q33 
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(2.1.1) 



a 11 = capcpcq3 + saps�3sq3 - cepspc�3sq3 

a 12 = -sapcpcq3 + caps�3sq3 + sapspc�3sq3 

a 1
3 

= spcq3 + cpca3sq3 

021 = caPcpsq3sq4 + saP a A + cePspa 8 

022 = -saPcpsq3sq4 + cePa A - saPspa 8 

Q23 = spsq3sq4 - cp(sa3cq4 + ca3cq3sqJ 

0
31 = -cePcpsq3� + saP a c .:... cePspa 0 

0
3
2 = saPcpsq3cq4 + caPac + saPspQ 0 

Q33 
= -spsq3� + cp(-s�3sq4 + ca3cq3cqJ 

Q A = C83CQ4 - S�3cq3SQ4 

Q B = S�aCQ4 + C�3cq3sq4 

Q C = C83sq4 + S�3cq3SQ4 

Q D = -S8aSq4 + C�aCq3cq4 

(cos(q4) is written as cq4, sin(q4) as sq4, and so on for brevity) . 

For determining aerodynamic loads, the transformation from rigid blade coordinates to the 

(2.1.2) 

deformed blade coordinates can be taken as a local rotation about the 12 axis. This must be done for 

each blade element with a rotation (. The transformation between the rigid and deformed blade 

coordinates is given by: 

cos{{) 0 -sin{{) 
0 1 0 

sin{{) 0 cos({) 

1 0  

(2.1.3) 
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2.2 Blade Deflection 

The displacement of each blade is modeled as a single degree of freedom in a direction 

perpendicular to the axis of the blades smallest moment of inertia. This is not necessarily perpendicular 

to the swept rotor plane due to twist and pitch. Blade deflection tangential to the axis of the smallest 

moment of inertia is zero, although provisions have been left in the code for future development. 

Deflection in the radial direction can be expressed as a function of the flapwise displacement. 

Displacement of the blade is given by a product of an assumed mode shape and a function of time. 

This relation for displacement in the flapwise or f1 blade coordinate direction can be expressed as: 

where, 

q(t) = the blade displacement, a function of time 

( i  = 1,2) 

<Mr) = the assumed mode shape, a function of the blade coordinate r. 

= blade number (i = 1 ,2) 

(2.2. 1 )  

The displacement in the tangential or f2 blade coordinate can be expressed i n  the same manner 

as: 

(i=1,2) (2.2.2) 

For this model the assumed mode shape <!>2(r) is zero for all values of r. 

For a small blade deflection as shown in Figure 2.2, the radial deflection can be expressed as: 

r r 

( 
au11) u31 = Jo cos Tr dr (i=1,2) 

Taking the first two terms from a Taylor series of the cosine function and l inearizing gives: 

so that: 

( l ( 
)2 au1 . 2 au1 1 au1 cos - = 1-2sm--1---ar ar 2 ar 

1 1  

(2.2.3) 

(2.2.4) 
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Figure 2. 2. Blade Deflection 
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The local blade element rotation used for Eq. (2. 1 . 3) can be approximated as the slope of the 

displacement function given as: 

(1{r) "' q.(t) a<J>, 1 ar 

(2.2.5) 

(2.2.6) 

The choice for the shape function was determined using the following relation developed by 

Wilson et al. [1] for an Euler beam that has stiffness that varies as: 

El "' kr-b (2.2.7) 

where k is a constant, r is the distance from the fixed hub, and b � 0. For a uniformly loaded cantile-

vered beam with stiffness variation as given in Eq. (2.2.6) , the static deflection (normalized to unity at the 

blade tip) is given by: 

1 2  
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zb+2 
= - [(1 +b)(2+b)z2 - 2(1 +b)(4+b)z + (3+b)(4+b)] 

6 
(2.2.8) 

where z = (r-RH)/(R-RH), R is the length of the blade, and RH is the hub length. For a cantilevered 

beam with a force acting at the tip and the stiffness given in Eq. (2.2.6), the static deflection (normalized 

to unity at the tip) is given by: 

zb+2 <l>b(z) = - [(3+b) - (1 +b)z] 
2 

(2.2.9) 

For a cantilevered beam with a uniform load and a force acting at the tip (i.e., a tip mass), the relation 

for the static deflection is a weighted superposition of Eqs. (2.2.8) and (2.2.9), written as: 

(2.2. 1 0) 

where w is a weighting factor between one and zero. Wilson and Hartin [41 ] found that the parameter b 

could be found by calculating the bending natural frequency for a range of values of b and selecting the 

value of b that minimizes the flapwise bending frequency. This procedure can be extended to find a 

combination of values w and b that minimizes the bending natural frequency. For the ESI-80, the turbine 

used for comparison in this study and described in the DRT user's guide [42], minimizing values were 

found to be 1 .3 for b and 0 for w. These values were used for the rest of the analysis. 

2.3 Blade Kinematics 

Expressions for the velocity and acceleration of an arbitrary point on the blade is required for 

determining blade equations of motion and blade forces. A position vector of an arbitrary point Q on the 

ith deformed blade can be written as: 

(i=1,2) (2.3. 1 )  

1 3  



where, 

(2.3.2) 

(i=1,2) 

where (Np0)i is the position vector of a point Q in the inertial reference frame N. The displacements u1i, 

u2i•· and u3i are given in Eqs. (2.2. 1 ), (2.2.2), and (2.2.5), respectively. The velocity of the point Q is the 

time derivative of the position vector in (2.3. 1 )  given by: 

(2.3.3) 

This can be expressed in the rigid blade coordinate as: 

(2.3.4) 

where, 

(2.3.5) 

where, 

u11 = cfi<1>1 

u21 = cfi<1>2 = o (2.3.6) 

(i=1 ,2) 

1 4  
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and, 

w1 = q4Q11 + Cts(cos(q4)Q21 + sin(q4)Qs1) 

W2 = q4Q 12 + q3(cos(q4)Q22 + sin(q4)Q32) 

w3 = q4Q13 + q3(cos(q4)Q23 + sin(q4)C33) 

(2.3.7) 

where q3 and q4 are the teeter and variable-speed degrees of freedom, respectively, and q3 and q4 are 

their time derivatives. a 11 through a33 are transformations given in Eq. (2. 1 . 1  ). 

The acceleration of point a is the time derivative of the velocity vector given in Eq. (2.3.4) given 

by: 

This can be expressed in the rigid blade coordinates as: 

where (ignoring the indice i), 

a1 = 01 + 2(wiJs-WsiJ2) + (w2vs-Wsv2) + (a2Ps-asP2) 

� = 02 + 2(wsiJ1-w1iJs) + (wsvcw1vs) + (asP1-a1Ps) 

fls = Os + 2(w1iJ2-w2iJ1) + (w1v2-w2v1) + (a1P2-a2P1) 

(2.3.8) 

(2.3.9) 

(2.3. 1 0) 

where w1, w2, and w3 are given in Eq. (2.3.7); v1, v2, and v3 are given in Eq. (2.3.5); and u1, u2, and u3 

are given in Eq. (2.3.6), and: 

a1i = cM,1 

a2l = cM,2 = o (2.3. 1 1 )  
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and, 

<X1 = q4a 11 + q3a W1 + q3q4aA1 

(X2 = q4a12 + q3aW2 + q3q4aA2 

<X3 = q4a 13 + q3a W3 + q3q4aA3 

a W1 = cos(q4)a 21 + sin(q4)a 31 

a W2 = cos(�)a22 + sin(�)as2 

a W3 = COS(�)a23 + Sin(�)a33 

aA1 = cos(q4)as1 - sin(q4)a21 

aA2 = cos(q4)as2 - sin(q4)a22 

aAs = cos(q4)a33 - sin(q4)a23 

(2.3. 1 2) 

the q's are the second time derivatives of the q's and Q 11 through 033 are transformation given in Eq. 

(2. 1 . 1 ). The angular velocity can be written using Eq. (2.3. 7) as: 

(2.3. 1 3) 

The angular acceleration can be written using Eq. (2. 1 3. 1 2) as: 

(2.3. 1 4) 

2.4 Aerodynamic Loading 

The method for determining aerodynamic loads is based on the momentum theory. The 

momentum theory applies continuity, momentum, and energy to the flow passing through the rotor 

plane. Figure 2.3 shows the one-dimensional flow past the rotor. Two expressions for the thrust on the 

rotor can be found. From a conservation of momentum: 
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Figure 2.3. One-Dimensional Flow Past Rotor. 

dT 
dA = pu(V .. - U) 

I 

+­
u1 

Wake 

(2.4. 1 )  

where dT fdA is the axial force per unit area on the actuator disk, p is the fluid density, and VffJ and u are 

velocities defined on Figure 2.3. From the Bernoulli equation: 

dT = aP dA 

where aP is the pressure difference across the actuator disk expressed as: 

a P = P + - P- = � p (v; - uf) 

Solving Eqs. (2.4. 1 )  and (2.4.2) gives the velocity in the rotor disk as: 

(2.4.2) 

(2.4.3) 

(2.4.4) 

Defining a as the axial induction factor through the relation aVIIJ = V..,- u the momentum relation 

Eq. (2.4. 1 )  can be written as: 

1 7  



dT = 2 V2 a (1 - a) 
dA 

.. 

By defining the rotor thrust coefficient as: 

dT 
CT = 

_d_A_ 

1 y2 
2 p .. 

the thrust coefficient can be expressed as a function of the axial induction factor: 

CT = 4 a (1 - a) 

(2.4.5) 

(2.4.6) 

(2.4.7) 

The effect of the wake expansion on the thrust coefficient was studied by Glauret both empirically 

[43] and analytically [44]. The following expression given by Wilson and Walker [33] can be used to 

specify the thrust coefficient: 

CT = 4 a F (1 - a) 

acT CT = CT + - (a - a ) 
ac aa c 

ac 

(2.4.8) 

A value of a0 = 0.2 gives the best fit to the data. F is a tip-loss factor, given by Prandtl [31 ]  as follows 

F = � cos-1 [exp -B (R � r) l 
'lt 2 'lt r stn<l>" 

(2.4.9) 

Strip theory combines the momentum theory with a blade element theory and is based on the 

assumption that the flow through the rotor can be divided into individual stream tubes that can be 

analyzed independently. The advantage of strip theory is that the axial induction factors can be found 

for each element independently of one another. The thrust relation Eq. (2.4.8) can be related to the 

blade element thrust coefficient, which is given as follows: 

1 8  
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where, 

8 c (1 - a)2 CL cos<J> « 
2 1t r sin2<1> « 

V .. (1 - a) 
<1>« = tan-1 ---­

ro 

(2.4. 1 0) 

(2.4. 1 1 ) 

A solution to Eqs. (2.4.8) , (2.4.1 0) , (2.4. 1 1  ) ,  and (2.4. 12) can be found in an iterative manner to 

give the steady-state axial induction factor. This allows the l ift and drag to be determined along the 

blade for any blade azimuth location, as follows: 

Lift/ (unit length) = ..! p W2 c CL 2 
Drag I (unit length) = ..! p W2 c C0 2 

Referring to the geometry of Figure 2.4, the l ift and drag can be resolved onto the blade 

coordinates such that the aerodynamic forces acting on a blade element can be written as: 

where, 

fn = L cos<!>« + D sin<!>« 

ft = - l sin<!>« + D COS<f>11 

where, L = l ift, and D = drag. 

2.5 Equations of Motion 

(2.4.1 3) 

(2.4. 14) 

(2.4. 15) 

The kinematics and forces are evaluated at discrete points along the blades so that determination 

of the equations of motion requires numeric integration along the blades. The methods of Kane and 

Levinson [45] were used for obtaining the equations of motion. The equations are of the form: 

1 9  



V(1 - a) 

where, 

Fr = generalized active force 

F; = generalized inertia force 

LIFT 

Figure 2.4. Airfoil Velocities. 

(2.5.1) 

The subscript r refers to the number of generalized coordinates. In this model, the number of 

generalized coordinates is equivalent to the number of degrees of freedom. As defined in section 2.1, 

r=1 and r=2 correspond to the blade deflections of the two blades; r = 3 for the teeter angle, and r=4 for 

the variable speed. The generalized active forces are determined from the blade kinematics using: 

where, 

F - v? · R + (J)ar • T r - r 

20 

r=1,4 (2.5.3) 
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V� = holonomic partial velocity of point Q 

R = resultant of all external force 

c.>� = holonomic partial angular velocity of point Q 

T = resultant torque of all external torques 

The generalized inertia forces are determined using the following relation: 

Fr* = � · (- m a 0) + cu� · (- u · 1- cu xI· cu ) r=1,4 

where, 

m = mass per unit length of the blade 

a0 = acceleration of point Q, Eq. (2.3.9) 

= Inertia dyadic of blade element Q 

a = angular acceleration of point Q, Eq. (2.3.14) 

c.> = angular velocity of point Q, Eq. (2.3.1 3) 

(2.5.3) 

The generalized speeds are defined as Ur=Ctr (r=1 ,4). The partial velocities can be found from the 

expression for blade velocity, Eq. (2.3.5): 

where, 

21 

= r 

>�< r r = 1,2 

r = 1,2 

r = 1,2 

(2.5.4) 



N31 = QW2p3 - awsp2 
N32 = QW3p1 - QW1p3 

N33 = QW1p2 - QW2p1 
N41 = Q12p3 - Q13p2 
N42 = Q13p1 - Q11p3 

N43 = Q11p2 - Q12p1 

(2.5.5) 

The partial angular velocities can be found from the expression for blade angular velocity, Eq. 

(2.3.13): 

o, 
Wr = 0 r = 1,2 

01 (ij3 = b2 
(2.5.6) 

O:z (ij3 = - b2 

o, 
(ij4 = a1 j = 1,2 

The resultant R can be written as a combination of aerodynamic Eq. (2.4.5) and gravity forces: 

where, 

R = R 1� + R2� + R 3� 

R1 = -m g (cos(x)Q21 - sin(x)Q 11) + fn 

R2 = -m g (cos(x)022 - sin(x)O 12) + ft 

R3 = -m g (cos(x)023 - sin(x)Q 13) 

The resultant torque T is due solely to that of the restraining torque of the generator. The 

(2.5.7) 

(2.5.8) 

generator model is discussed in section 2.6. The relation for the generalized inertia forces can be taken 

as: 
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2 ( R Q ) 
Fr* = - 2: Jc J.L V,l · a 0 dr 

J=1 0 
r = 1,4 (2.5.9) 

This relation can be expanded into a form where the second time derivatives are extracted so that 

the equations can be written in the form: 

[M]{q} = {G} (2.5.10) 

This form lends itself to a predictor-corrector scheme for solution of the equations. With this in 

mind, the first two generalized inertia forces can written as: 

where, 

F; = -Q, foR �( �� + ( q, f ( � r dl r ) dr 

-q3 foR J.L [(QW2p3 - QW3p2)<J>1 + (QW1p2 - QW2p1)<J>3] dr 

-q4 foR ll [(Q12p3 - Q13p2)<1>1 + (Q11p2- Q12p1)<1>3] dr 

r = 1,2 i=1,4 

�3 = (-r (�r d•l 
g�qi ,  eli ) = ct3 q4 foR ll [(QA2p3 - OA3P2)<1>1 + (OA1P-2 - OA2P1)<1>3] dr 

-foR ll [(W2V3 - W3V2)4>1 + (W1V2 - W2V1)4>3 + q�<1>3] 

r = 1,2 
The second two generalized inertia forces can be written as: 

23 

(2.5.1 1 )  

(2.5.1 2) 



where, 

F r• = -t [ qifo R ll ( <!>1 Nr� + <!>aN�} dr + ! lgfiMI'IItor ti4 (if r=4) 

-Cia foR ll [(QW2p1_Qwap2)Nr1+(0wap1_QW1p3)Nr2+(QW1p2_QW2p1)Nr3 ] dr 

-q4 foR 
ll [(Q12p3_Q13p2)Nr1+(Q13pcQ11p3)Nr2+(Q11p2_Q12p1)Nr2] dr 

r = 3,4 i = 1,4 

r = 3,4 j = 1,2 

The first two generalized active forces can be written as: 

F, = f. R ( R,�, + R3�3 - q, f.' El ( :� r di' 

- q, f.' I!! � ( � r dr) dr 

r = 1,2 

(2.5.1 3) 

(2.5.14) 

(2.5.1 5) 

The second two terms arise from the relation between the potential and the generalized active 

force: 

av F = --r 
aqr 

where the potential for a blade element is given as: 

24 

(2.5.1 6) 

r . 
r l ' 

' 

L 

f ' 

r 
l 
i:_ -

' -
I 

' . 
i 

F ' ' 



1-
\ 

\ 
f 
[ 

r 
1 

L 
J 

i 
r 
( 

V 1 L r El [ a2u1]2 d- 1 L r • 2 ( au1 )2 d-
= - -- r+- q41.1.---=- r 2 0 ar2 2 0 ar 

The second two generalized active forces can be written as: 

2 Fr = L [L R (R1Nr� + R2NJ + R3N�) dr] + 1=1 ° 

r =3,4 

Q T . w I 
r 

(2.5.17) 

(2.5.18) 

where T is the generator restraining torque. The hub mass has a contribution to the third and fourth 

generalized active and inertia forces: 

F3Hua = MHus Ru g (cosxcosq3sinq4 + sinxsinq3) 

F4Hua = MHus Ru g (cosxsinQ3cosq4) 

F;Hua = -q3 [MHus Ru + IHus] - MHue Ru 4i sinqacosq3 
(2.5.1 ) 

The generalized active and inertia forces are combined using Eq. (2.5.1 ) into the form of Eq. 

(2.5.1 0) for numerical solution. 

2.6 Generator Model 

Two variable-speed generator models are to be used for the generator restraining torque. The first 

model is for an induction generator that has small variations about a rated rotation speed due to 

generator slip. The second model is for a variable-speed generator operating at a constant tip-speed 

ratio. 

For an induction generator the restraining torque can be divided into two components: 

T = T electrical + Tlosses (2.6.1 ) 

where, 
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T electrical = 
(2.6.2) 

where N is the gearbox step-up ratio, 11GB is the gearbox efficiency, and ce, 00, and OR are constants. 

The fixed and variable losses are functions of the generator fixed-loss factor f and can be expressed as: 

Tnxed = f (-1 
- 1] PRated 

T'IGEN OR 

Tvariable = (1 - f) (-1- - 1] PRated 
T'IGEN OR 

where 11 GEN is the generator maximum efficiency and PRated is the generator rated power output. 

(2.6.3) 

The variable-speed generator operating at constant tip-speed ratio should have a restraining 

torque that varies to allow the rotor speed to follow the wind speed preserving the tip speed ratio, ROjV. 

In most wind turbine applications, future wind speed measurements are not available. The variable 

speed controller has only past torque and wind histories to use in its control algorithm. This can result 

in the generator lagging the wind, reducing the power captured. The following relation for the generator 

torque follows the optimum power coefficient as a function of the tip-speed ratio, A.. The tip-speed ratio 

is based on a moving average of the last 100 wind speed values. This results in slowly varying 

generator torque: 

_!_ 1t p V2 R 3 CP 
T = _2 _____ _ 

(2.6.4) 

The variable-speed generator can also be used as a start-up motor or a shut-down brake. For a 

motor the generator torque has a negative sign. The generator braking torque must be greater than the 

aerodynamic torque for deceleration of the rotor. Both the motor and brake can be a function of time, 

rotor speed, or any other generator variable. 
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2.7 Deterministic Wind Model 

The deterministic wind model consists of two parts: wind shear and tower shadow. The shear 

model uses a power law expression to determine the velocity distribution with height: 

( r sinq4 ) " 
V = VHUB 1 - ---'-HHUB 

(2.7.1) 

where q4 is the azimuth angle, which starts when the blade is parallel to the ground. The blade starts 

moving downward; therefore, a negative sign is used in Eq. (2.7.1). HHUB is the hub height, r is the 

blade radius location, and n is the power law exponent. 

The tower shadow occurs when the blade is straight down and in the wake from the upstream 

tower. The shadow model assumes the tower wake to have a cosine-squared-shaped deficit where the 

blade passes through it. Assuming a wake width of two diameters, an expression for the velocity 

distribution can be found using a momentum balance: 

V(y) = V .. (1 - e cos2 (; 5)) (2.7.2) 

where the velocity deficit can be expressed as a function of the tower drag coefficient: 

(2.7.3) 

In the case of the ESI-80, the tower has three legs in a truss arrangement. The tower diameter d 

in Eq. (2. 7.2) can be expressed as the distance between two legs, and the tower drag coefficient C0 is 

the sum of the individual tower leg drag coefficients. 

2.8 Numerical Solution Technique 

A numerical solution of the four equations of motion is achieved using a fourth-order Adams-

Bashforth Predictor formula together with an Adams-Moulton Corrector formula. This numerical method 

is not self starting; therefore, a fourth-order Runge-Kutta method is employed to calculate the first three 

points. 
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2.9 Code Organization 

The .computer code based on the previous theoretical development was named the DRT code. A 

detailed description of the procedure to operate this code can be found in the DRT users guide (42]. 

The DRT code is written in standard FORTRAN 77. The code operates in the time domain using 

time as the marching variable. Figure 2.5 shows a flowchart of the different subroutines used. 

Subroutine INPUT reads in the input file containing the characteristics of the turbine to be modeled. 

Subroutine INTERP takes the blade data and interpolates them at a constant blade increment. This 

increment is the integration increment used for calculation of the generalized active and inertia forces. 

Subroutine COEF determines the number of values that are used repeatedly throughout the program 

and calculates the blade mode shapes. The main program starts here at time equal to zero. The total 

time the code will run depends on the option chosen. The teeter and variable-speed degrees of freedom 

can be either start-up, shut-down, or normal operation with two different generator models. Subroutine 

SOLVER solves the four equations of motion using the numerical scheme described in section 2.8. 

Subroutine RTHS (right-hand side) calculates the generalized and inertial forces and integrates them 

down both blades. RTHS calls subroutines TRAN, CALC, GENTORQ, and GAUSS. Subroutine TRANS 

calculates the coordinate transformations given in Eq. (2.3.12). Subroutine CALC determines the 

aerodynamic normal and tangential forces, Eq. (2.4.15), based on the method in section 2.4. Subroutine 

CALC calls subroutine WIND, which calculates the wind shear and tower shadow contributions described 

in section 2. 7. Subroutine CALC calls subroutine AERO, which has the lift and drag airfoil characteristics 

as a function of angle of attack and airfoil thickness. Subroutine GENTORQ supplies the generator 

restraining torque based on a model from section 2.6. Subroutine GAUSS inverts the matrix Eq. (2.5.1 O) 

for solution in subroutine SOLVER. If turbulence is desired, the turbulent wind values are read by 

subroutine RTHS for every time increment. The main program checks after every new set of values are 

calculated to see if it should be writing loads to the output file and to see if it has completed the run. 

The various loads, blade bending moments, rotor thrust, rotor torque, and the generator output power 

are calculated in subroutine RTHS. 
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3. MODEL VALIDATION 

The model was validated using two methods. The results from the model were compared to 

results from simple models where analytical solutions could be found. Additionally, comparisons 

between model load predictions and experimental loads were also made. The experimental loads were 

taken from an ESI-80 wind turbine, which is documented in the DRT user's guide [42]. Loads that were 

compared were blade root bending moments, rotor torque, and rotor thrust for both mean and cyclic 

loads. 

3.1 Simple Beam 

In order to validate the static deflections and natural frequencies of the rotor blades, a simple 

beam, together with linear aerodynamics, was implemented in the code. The blade properties of chord, 

twist, mass, and stiffness were assumed to be constant over the length of the blade. Undersling, delta-3, 

the elastic bending axis rotation, and coning were set at zero, and the variable speed and teeter degrees 

of freedom were turned off. Lift was assumed to vary linearly with the angle of attack, CL = 21tsina. 

The induced velocity was assumed to be constant over the blade given by the relation for the induction 

factor as: 

a =  _E_Q_ 
2 v .. 

Ignoring the cyclic effect of gravity, a relation for the static tip deflection can be written as: 

where, 
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(3. 1 .3) 

and, 

(3. 1 .4) 

which can be written as: 

c 0 ) 
2 V  

(3. 1 .5) 

The numerator of Eq. (3. 1 .2} can be expressed as: 

p 1t C n V ( 1 - � � ) fo R 
r <1>1 dr (3. 1 .6) 

Letting the shape function be that from Eq. (2.2.9), with a value of b=O, p = 1  kgjm3, c= .25 m, 

0 =60 rpm, V = 1 0  mjs, R = 1 0  m, El = 5,000,000 N-m2, and IJ- = 1 0  kgjm, gives a static deflection of 

0.07747 meters. Implementing the linear lift and the induction factor given in Eq. (3. 1 . 1 ) ,  the code gives 

a static deflection within a half of a percentage point of the analytical value when the integration step 

size is one-hundredth of the blade length. 

Using the same conditions, a relation for the blade flapping natural frequency can be written as: 

W2 - f. R 
El ( � r dr + f. R (f: ll2�fd� ( -i-r dr 

n -
(3. 1 .7) 

This gives a value for the natural frequency of 4. 1 65 Hertz. The code predicted a value within a 

half of a percentage point, when the integration step size was set at one hundredth of the blade length. 

3.2 Linearized Teeter Motion with Delta-3 

A analytical expression can be obtained for the teeter motion through simplification and lineariza-

tion of the teeter equation (r= 3  in section 2.6) . The analytical expression can be used for validation of 
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the teeter motion in the code. Letting the blade displacements and motions be zero, setting the rotor 

speed constant, and ignoring higher order terms, the teeter equation can be written as: 

2 
L foR 

(fnrcos&3 - �gsinq3sinC4rcos&3) dr 
j=1 

(3.2. 1 )  

where coning, the elastic bending axis rotation, and the undersling have been set to zero. Linearizing 

the teeter angle q3 and assuming the two blade mass distributions are the same, Eq. {3.2. 1 )  can be 

written as: 

(3.2.2) - foR fn r COSoa dr J blade 2 

Assuming l inear l ift, an induced velocity as given in Eq. {3. 1 . 1 )  and a linear wind shear Eq. (3.1 .4) can be 

written as: 

f0 = p 1t c r a (V(1 -a)) ± (Osino3 q3 + q3 coso3) r 

( - blade 1 )  ( + blade 2) 

Combining Eqs. {3.2.2) and {3.2.3) and integrating along the blade gives: 

q3 + B cos&3 0 q3 + (B sin&3 + 1) 02 q3 

where, 

with a change of variables: 

= B C (Vtop-Vbottom) sin(Ot + o3) 2 R  

B = P 1t R4 c 0 
2 I cos2&3 
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Eq. (3.2.4) can be written as: 

� = � dq4 = 
dt dq4 dt 

qf + B coso3 q� + (Bsino3 + 1 )q3 

= 
- B N - V ) '�tope hub sin (� + oa) 

Looking for a steady-state solution of the form: 

results in the analytical solution: 

(3.2.6) 

(3.2.7) 

(3.2.8) 

(3.2.9) 

Using the same parameters as in section 3.1 and implementing the linear lift, the induction factor 

from Eq. (3.1 . 1 ) ,  and a differenr.e of 2 meters per second for (Vtop - Vhub) ,  the analytical solution is 

compared to the code prediction for three values of delta-3 in Figure 3.1 . The code accurately predicts 

the analytical solution for all three cases. Note that the relation for the teeter angle in Eq. (3.2.9) is 

independent of blade mass and inertia. 

3.3 Mean Loads 

The ESI-80 was used for comparisons of mean loads. The data for both the mean and cyclic 

loads were digitized from the report by Musial et al. [46] . The measured mean loads were determined 

by averaging the values in 1 -mile-per-hour divisions. Data was taken at 5 Hertz from 1 5  to 30 minutes. 

Some data were taken on different days when the atmospheric conditions were different. This can be 

seen on Figure 3.2, which shows a staircase effect on the bending moment. Atmospheric conditions 

were not reported. The code was run using only the teeter option. The variable speed and turbulence 

options were not used. 

33 



1 +....... ... ... ... ... ... ...... •"': · · · · · · ·"\'� [�RT 
-;OD�-J 

... ... ... ... ... .� · ._. t· · · · · · · ... ... ... . .,. 
0.8 

·--
.� · · ....... 

+ 
... ... 

,. 
• • + ... + • 4 

� 4-: ... 
4- . .. . . + 

0.6t ... �.
� . . ......... .. 

� .... . 
ANA LYT ICAL .... .... . ... 

+
. � ... . 

. '; � 
0.4 :.. + .;. , 

.... +, ... w 
_I ,-... (.!) (/') 0.2 Z w 

. ... ... 
. ... . <( w  .... 

... + ---------
. .. 

. ... ... 
•+ .+ .. 

. .. 
... · · ... 

0:: 0:: 0 
w (.!)  1- w  
we -0.2 w 

.
.... 45 90.., 1 35 +' 1 80 .... 225 .�70 3 1 5 +, 

.... 
1-

-0.4 

... 
.... 

+ . . .... 
+ ' .... 

. . 
+ "  • + 

' t  + � · ;  .. ..., +, 
"

+
. /· 't ... . ... + .  .. t' 

... 4o I ' + + I .... ... 
'-t .

... ' + + .
. 

.+ .,.. 

+ + .
·

... + . + ... 

... .... 

... . 

... ... 

-0.61 -0.8 
.... r: .. ... :-E ... .... • • • ' e  .... D �="LT � 3 -... . . .

.. .... 
.. ... . . . • .\. ... _ , :-.. 

-
-= 30 ++-.;��·�...... ... 

� ... � ....... ., ... ,., ... ...... ... ·:.:.� ...... 
-1 

50000 

40000 

E' 3oooo 

I j� 20000 
L..... 

...... 
1- Z  1 0000 
o w  
O :::::E 

DELTA-3 
D ELTA-3 = 0 . 

ROTOR POSITION (DEGREES) 

Figure 3. 1 .  Comparison of Analytical and Code Teeter Angle 

O O  00 0 

o o 0 

" 
_n oo o o oo o 

o D D  00 u-

... . 

360 

-
30 

o:: o 
w :::::E 
0 (.!)  

0 �-----1------ll;£--4------+------+------ -1 

j z - 1 0000 cn o z w en -20000 

-30000 

-40000 

0 o o o 

5 

0 
1 5  

WIND SPEED (m/s) 

20 

o TEST 
* DRT CODE 

Figure 3.2. Comparison of Mean Root Flap Bending Moments 

34 

25 i. 

t ! ! ' 

r , f 
i . � ; 

i 
'l ' 

' " 



l 
r 
I 

I 

I 

l 
I 
1 
t 
f 
t 

Figure 3.2 compares code predictions to test root bending moments. The code predictions match 

well within the standard deviation for the data, which is approximately 5000 N-m, except in the high­

wind-speed portion where the prediction is conservative. The mean root bending moment is the 

difference between two large moments, the aerodynamic moment, and the centrifugal moment. In the 

high-wind-speed case, where aerodynamic stall characteristics are not well known, a small error in either 

of these would be greatly exaggerated in their difference. Figure 3.3 shows the comparison of rotor 

thrust, and Figure 3.4 compares rotor torque. The code predictions for both of these loads matches the 

data well. 

3.4 Cyclic Loads 

The cyclic data used for comparison were recorded at 24 Hertz for 5- to 20-minute intervals and 

then averaged versus rotor position. This coarse data sampling rate combined with a rotor averaging 

increment of 1 5  degrees results in a fair amount of uncertainty with the cyclic data. The code was run 

using the teeter option. The variable-speed and turbulence options were not used. 

Figure 3.5 compares the teeter angle at 42 miles per hour. The code was run with a 3.6 degree 

interval. The prediction lags the data by approximately 30 degrees and underpredicts the amplitude. 

The ESI-80 has teeter dampers when teeter amplitudes of 2 degrees are reached, but that is not a 

concern for this case as neither the data nor the predictions exceed that value. Figure 3.6 compares the 

root bending moment at 22 miles per hour. The prediction follows the general trend of the data; 

however, the prediction shows more detail in the blade flapping response, especially in the tower 

shadow region where the blade passes through the wind deficit and then springs out of it. This occurs 

at a rotor position of approximately 90 degrees. The blade natural frequency of 2.5 Hertz also can be 

seen in this figure. Figure 3. 7 shows the comparison of cyclic rotor thrust. The effect of the blade 

entering the tower shadow can be seen at 90 degrees for blade one and 270 degrees for blade two. 

The prediction appears to have a phase lag of 90 degrees. Thrust measurements were taken at the 

base of the tower, so it is possible that tower motion caused this anomaly. Figure 3.8 shows cyclic rotor 

torque. The prediction shows the same trend with exaggerated tower shadow effects. The larger 
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amplitude for both the thrust and torque data suggests a yaw error. The yaw errors were unreported for 

these cases. 

3.5 Turbulence-Induced Loads 

Turbulence simulation for HAWT analysis codes that model only one blade on a rigid hub with a 

constant rotor rotation speed is well documented [37]. The turbulence simulation required by this code 

is complicated by the teeter mechanism and the variable-speed rotor. Coherent turbulence is needed on 

both blades because of blade interaction through the teeter motion. A variable-speed rotor requires 

simulation that does not depend on a constant rotor speed. The only turbulence model that meets 

these criteria is the code developed by Veers [36]. 

The Veers code was used to generate turbulence values for the following comparisons. Full-field 

turbulence was created for 72 rotor positions at one radial location for 1 024 points. The single radial 

location turbulence value was used for the entire blade in the analysis code. The 80% radius was 

chosen because this location more accurately predicts multiradial station turbulence; this was shown by 

Weber [47]. Two wind cases were used for comparison, these were 22 miles per hour and 40 miles per 

hour. Both had a turbulence intensity of 1 5% and a coherence decrement of 1 2. Three cases were run 

for each wind speed. The code was run using constant rotor speed with and without the teeter degree 

of freedom and with the induction generator model with teeter. Constant rotor speed corresponds to a 

synchronous generator. 

Figure 3.9 shows the power spectral density (psd) of the root bending moment as a function of 

frequency in Hertz for the synchronous generator cases with and with out teeter. The teeter case shows 

much less energy at 1 Hertz, which is the one-per-revolution component. This is expected because the 

teeter motion responds to the one-per-revolution bending moment component. Only minor differences 

are noted for the rest of the spectrum. Figure 3.1 0  compares the psd's of the synchronous and 

induction models with teeter. The induction model has less energy below 1 Hertz and a slight increase 

above relative to the synchronous model psd. The induction model has a mean rotor speed that is 

about 1 %  higher than the constant rotor speed. This is seen in the one period peak slightly above 
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1 Hertz. The average rotor speed increase also shifts the higher harmonics. The blade natural 

frequency at approximately 2.5 Hertz can be seen in both figures. The three-per-revolution harmonic 

has more energy for all three cases due to its proximity to the blade natural frequency. The mean 

values for root flap bending moment differed little, except for a slight increase with the induction model 

due to increased rotor speed. The standard deviations were also comparable. Figures 3. 1 1  and 3.1 2  

show the same cases as Figures 3.9 and 3.10, respectively, for the 22 mile-per-hour wind speed. The 

same trends are seen as in the 40 mile-per-hour wind speed case. The code prediction for the root flap 

bending moment with the induction generator model was azimuth averaged and compared to the same 

data used in Figure 3.6. This comparison can be seen in Figure 3 . 13. The blade response to the tower 

shadow is no longer as prevalent as previous comparisons, and the predictions show the same 

choppiness as the data due to azimuth averaging. 
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4. CLOSURE 

A four-degree-of-freedom time-domain computer model of a two-bladed, teetered HAWT with a 

variable-speed rotor has been developed and validated. Generator models for synchronous, induction, 

and variable-speed machines can be implemented in the code. Aerodynamic loading consists of 

deterministic effects and stochastic effects. 

4.1 Development 

The two turbine blades were modeled as flexible cantilevered beams, which are allowed to teeter 

about the low-speed shaft. The low-speed shaft is connected to a generator through a gearbox. 

Provisions are made for delta-3, twist, precone, undersling, tilt, yaw, and an angle between the elastic 

bending axis and the rotor plane. The aerodynamic loads are determined using axial momentum theory 

together with deterministic wind effects including wind shear, tower shadow, and stochastic wind effects 

from atmospheric turbulence. The equations of motion are solved using a predictor-corrector solving 

scheme. 

4.2 Validation 

Predictions from the model were compared to simple models with analytical solutions and to 

experimental loads. The following conclusions were reached: 

1 .  The model duplicates the flapwise static-tip deflection and blade natural frequency of 

a simple beam model. 

2. The model duplicates the teeter motion of a simple l inearized teeter model for a range 

of delta-3 values. 

3. The model determines the mean bending moment, thrust, and torque loads for the 

ESI-80 well within acceptable error limits. 

4. The model predicts the general trends of cyclic teeter angle, flap bending moment, 

torque, and thrust for the ESI-80. The cyclic ESI-80 data have a large uncertainty due 

to a coarse sampling rate. 
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5. A full-field turbulence model was implemented to test the synchronous and variable­

speed induction generator models. 

4.3 Future Work 

Future work consists of using the model as a tool for a variety of studies. These studies include: 

1 .  Parametric analysis of the effect of undersling, delta-3, the elastic bending axis 

rotation, and blade mass and twist differences. 

2. Start-up and shut-down schemes utilizing the variable-speed degree of freedom. 

Sequences include motorized or freewheeling startups and mechanical brake or blade 

feathering shutdowns. 

3. Control algorithms for variable-speed models can be assessed using the variable-

speed degree of freedom. 

A provision for elastic blade flapping to be perpendicular to each blade element's minimum 

moment of inertia, instead of the current flapping motion that is perpendicular to the entire blade's 

minimum moment of inertia, exists in the code. This will cause blade motion to have more effect in the 

torsional rotor loads. 

Another drive-train degree of freedom can be added to the model. The effect of gearbox and 

drive-train stiffness and damping on both rotor and generator loads can be examined. These effects are 

important when impact torques due to starting and stopping are applied. Variable-speed generator 

models that reduce drive-train resonances could also be explored. 
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