SERI/RR-641-615

.

July 1981

Optical Transparency of Inexpensive Salt Solutions for Construction of Density-Gradient Solar Ponds

John D. Webb

C.3

Solar Energy Research Institute A Division of Midwest Research Institute

1617 Cole Boulevard Golden, Colorado 80401

Operated for the U.S. Department of Energy under Contract No. EG-77-C-01-4042

PROPERTY OF

SERI/RR-641-615 UC CATEGORY: 59c

Solar Energy Information Center

OCT 28 1981

GOLDEN, COLORADO 80401

OPTICAL TRANSPARENCY OF INEXPENSIVE SALT SOLUTIONS FOR CONSTRUCTION OF DENSITY-GRADIENT PONDS

JOHN D. WEBB

JULY 1981

PREPARED UNDER TASK No. 1089.00

Solar Energy Research Institute

A Division of Midwest Research Institute

1617 Cole Boulevard Golden, Colorado 80401

Prepared for the U.S. Department of Energy Contract No. EG-77-C-01-4042

SERIrepart

.

•

÷

PREFACE

This report outlines the progress that has been made to date in evaluating inexpensive salts for optical performance in densitygradient solar ponds. Work was carried out under the New Concepts Development Task (3141.99, FY 1980) in the Research Division of the Solar Energy Research Institute (SERI).

Helpful support and guidance given by Keith Masterson and David Benson during the development of a solar transmittance model used in this paper, and by Michael Edesess in developing the equations for pond design, is gratefully acknowledged. The author also thanks Mark Harris of the Monsanto Moundsville Laboratory and Navin D. Shah of the Electric Power Research Institute for providing the salt samples tested.

An Webb John Webb

Materials Research Branch

Approved for

SOLAR ENERGY RESEARCH INSTITUTE

Gordon Gross, Chief Materials Research Branch

Barry

Barry Buller, Manager General Research Division

SUMMARY

A major barrier to the commercialization of density-gradient solar ponds is the high cost of the salt used to produce the gradient. This cost is a function of purchase and transportation prices. Recently, new sources of salts, available in bulk as industrial waste, have been found near sites proposed for solar ponds. Before these salts can be accepted for use in solar ponds, their environmental impact, ability to create a stable gradient, and solar energy transmission when placed in solution must be investigated.

The purpose of this work was to establish a rapid laboratory measurement procedure to evaluate the solar transmittance of solutions of candidate salts and to estimate the solar transmittance of a given density gradient constructed using the candidate salt. This estimate is then used to calculate the necessary pond size to meet a given set of thermal demands. If the pond were to be constructed using the salt under evaluation, construction costs associated with the size estimates could then be balanced against the acquisition cost of the salt to select an optimum candidate.

One set of estimates for the performance of a flue gas desulfurization (FGD) by-product containing mainly sodium sulfate is presented. An error analysis of the measurement protocol, and an analysis of the effect of some trace contaminants on the transmittance of the salt solutions, are also presented. Suggestions to improve the accuracy of the measurement procedure, are included. The particular salt under study was found to be too low in transmittance as received to be useful, but several options exist for improving the performance of the salt solution in situ.

v

i

S=?| 🐞

D

ł

ļ

TABLE OF CONTENTS

		Page
1.0	Introduction	. Î
2.0	Apparatus	. 3
3.0	Procedure	. 5
	 3.1 Samples 3.2 Gravimetric and Chemical Analyses of Samples 3.3 Measurement of Optical Absorbance of Sample Solutions 3.4 An Attempt to Quantify Optical Measurement Errors 	5 5 5 6
4.0	Prediction of Solar Energy Penetration into a Saline Concentration Gradient	. 7
	 4.1 Absorption of Light in a Homogenous Solution: An Ideal Case 4.2 Actual Transmittance of Light in a Solar Pond 4.3 Solar Energy Penetration at Normal Incidence into a 	7 7
	Nonscattering Gradient Pond 4.4 Effect of Salt Solution Transparency on Pond Design: A Basis for Determining Economic Acceptability of Alternate Salts	, 8 , 10
5.0	Results and Discussion	13
	 5.1 Gravimetric and Chemical Analyses	13
	5.4 Comparison of Energy Penetration in an Actual Pond to that Predicted for a Similar Gradient Constructed from a	. 15
	Candidate Salt	. 16
	Sizing	. 18 . 20
6.0	Error Analysis	27
7.0	Conclusions	35
8.0	Work in Progress	37
9.0	References	. 39
Арре	ndix A: Program PON Output Listings	4.1

SERI 🐞

3

L

Page

LIST OF FIGURES

5-1	Energy Penetration Profiles for Pure Water and for an FGD Salt Concentration Gradient Predicted Using Program PON	19
5-2	Dependence of Design Radius of a Typical Solar Pond on Average Energy Penetration	21
5-3	Transmittance and Absorbance Spectra of Miamisburg Pond Solution Sampled at 0.3-M Depth	23
5-4	Transmittance and Absorbance Spectra of Miamisburg Pond Solution Sampled at 1.2-M Depth	24
5-5	Transmittance and Absorbance Spectra of Miamisburg Pond Solution Sampled at 3.0-M Depth	25
6-1	Spectra of Boiled, Deionized Water and Air-Saturated, Deionized Water vs. Boiled, Deionized Water as a Reference	28

SERI 🐞

LIST OF TABLES

Pa	ge
----	----

4-1	Solar Irradiance and Water Extinction Coefficients Data Used in the PON Program	11
5 - 1	Samples Received for Analysis	13
5-2	Results of Gravimetric Analyses	13
5-3	Results of Chemical Analyses	14
5-4	Gram Extinction Coefficients (Base e) Measured for Cu^{+2} and Fe^{+3} at pH of 4.0, in L/g-cm	15
5-5	Gram Extinction Coefficients (Base e) Measured for Candidate Solar Pond Salts, in $L/g-cm \times 10^4$	17
5-6	Concentration Profile of Evaporating Pond Salt Assumed for Energy Penetration Comparison to OSU Pond	18
5-7	Concentration Profile of Evaporating Pond Salt Assumed for Pond Design Analysis	20
6-1	Selected Constraints for Error Analysis Utilizing Eq. 6-8	31
6-2	Error in Spectral Intensity, I ₁ , Predicted at a Depth of One Meter for a Pond Having the EPS Concentration Gradient Given in Table 5-6	32
6-3	Sensitivity of Predicted Solar Energy Transmitted to the Storage Layer of an EPS Solar Pond to a 1% Error in Laboratory-Measured Solution Transmittance	33
6-4	Error Boundaries on Program PON Predictions	34

NOMENCLATURE

FGD	flue gas desulfurization
A(λ,l,c)	total optical absorption by n species in a homogeneous solution with optical path length $\textbf{l},$ at wavelength $\lambda,$ as a function of the concentration c of each species
λ	wavelength, microns
r	optical path length, cm
c _n	concentration of the nth species in solution, g/L
ε _n	gram extinction coefficient for the nth species in solution, $L/g-cm$
^I o(λ)	incident irradiance, $W/m^2 - \mu m$
^Ι (λ)	irradiance passing through a sample of optical path length $\mathtt{l},\mathtt{W/m^2-\mu m}$
$I_{a(\lambda)}$	irradiance absorbed in a sample of path length 1, W/m $^2-\mu$ m
đ	depth in solar pond, cm
θ ₂	angle from vertical of light passing through solar pond, degrees
θ	angle from vertical of light incident on pond, degrees
n ₁	refractive index of air at pond surface
ⁿ 2 ·	refractive index of solution at pond surface
∆dj	jth finite pond depth element for incremental analysis, cm
Eo	total available solar flux, W/m ²
^I j(λ)	irradiance penetrating j depth increments, W/m^2
Eaj	solar flux absorbed in j depth increments, W/m ²
Ea	total solar flux absorbed in j depth increments, $ extsf{W/m}^2$
P _t	percentage of available solar energy absorbed in j depth increments
r	design radius of solar pond necessary to meet a given thermal demand, m
ΔΤ	year-round average difference required between pond storage layer and ambient temperatures, °C
ī	year-round average thermal demand to be met, W
Ēp	year-round average solar energy penetrating to the pond storage layer, W/m ²
Ēo	year-round average insolation available at pond surface, W/m^2
f	year-round average surface reflection loss fraction computed for the latitude of the pond

RR-615

NOMENCLATURE (concluded)

GEC gram extinction coefficient EPS evaporating pond salt transmittance fraction predicted for species n at a given Tn wavelength concentration of species n in solution, g/L csn ۱ sn effective path length of sample containing species n, cm ΔI error in irradiance predicted to penetrate to depth Δd_1 in a pond, a function of assumed pond and measured sample parameters and sample measurement errors, $W/m^2-\mu m$ ΔT_n estimated error in spectrophotometrically measured transmission fraction of pond solution species n $\Delta E_{T_n}(1)$ error in energy predicted to penetrate to depth Δd_1 in a pond, caused by errors in measuring the transmittance of all n species $\Delta E_{max}(1)$ maximum error in energy predicted to penetrate to depth Δd_1 in a pond, caused by errors in measuring the transmittance of all n species $\Delta E_{prob}(1)$ most probable error in energy predicted to penetrate to depth Δd_1 in a pond, caused by errors in measuring the transmittance of all n species

SERI

SECTION 1.0

INTRODUCTION

Salts for use in producing density gradients to stabilize solar ponds must meet four basic criteria:

- Solubility in water must increase with temperature;
- Salt must be readily available in bulk;
- Cost must be low; and
- Optical transparency of aqueous solutions of the salt must be high, particularly in the visible region of the solar spectrum.

Edesess et al. (1979) have identified salts that may satisfy the first three criteria listed above. These salts are available as waste from industrial processes such as ocean water desalination and flue gas desulfurization (FGD). The major components of such wastes are chlorides and sulfates of sodium and magnesium.

Current models for predicting solar pond performance use only the solar absorbance spectrum of pure water to determine energy penetration to the storage layer of the hypothetical pond. However, the hydrated salt ions may absorb solar radiation to some extent, and even purified salts may contain small percentages of transition metal ions, insoluble fines, or organic matter. Industrial waste salts may contain significant levels of these impurities, and further contamination may be present in the water used to fill the pond. All of these factors will act in concert to reduce energy penetration to the storage layer of a pond through absorption or scattering of solar radiation passing through the density gradient of the pond. If the losses are significant, the pond must be designed with a greater surface area to meet thermal demand while maintaining the design temperature in the storage layer.

The purpose of this work was to establish a laboratory procedure for evaluating the optical performance of candidate salts for use in solar ponds, including ponds planned to be built at the permanent SERI field testing site. Optical extinction coefficients for such salts were obtained at discrete wavelengths spanning the solar ultraviolet, visible, and nearinfrared spectra. A simple digital model was constructed, which made use of these data to predict solar energy penetration into a hypothetical pond having a given concentration profile of the salt under study. To determine the effect of salt type on the radius of a pond designed to meet a given set of thermal load requirements, results of this analysis, expressed as energy deposition rate per square unit as a function of depth, were input to a solar pond design equation developed by Edesess et al. (1979). Results of this analysis are presented in Sec. 5.5.

SERI*

Ì

SERI

SECTION 2.0

APPARATUS

Beckman Model DK-2 (wavelength range 270-2800 nm) and Perkin-Elmer Model 340 (190-2500 nm) spectrophotometers were used to make the absorbance measurements. The sample and reference solutions were contained in quartz single-pass cells having path lengths of 1, 5, and 10 cm.

The sulfate content of the FGD salts was determined with a Hach colorimetric chemical analyzer. Trace elemental analysis of the samples was performed using a Perkin-Elmer Model 303 atomic absorption spectrophotometer.

Analyses for density, percent solids, and percent volatiles were carried out using a Mettler analytical balance with a precision of 0.1 mg, and a Blue M drying oven set at $100^{\circ}C$.

SERI

522

SECTION 3.0

PROCEDURE

3.1 SAMPLES

Four samples of FGD salts and salt solutions were received from KVB Engineering Company through the Electric Power Research Institute (EPRI). The sample materials were by-products from an experimental dry scrubber at a coalfired electric generating plant in Utah. Additional liquid samples, taken from 0.3-, 1.2-, and 3-m levels of a stratified solar pond at Miamisburg, Ohio, were received at SERI. The salinity gradient of the pond was established using USP grade sodium chloride dissolved in local water.

3.2 GRAVIMETRIC AND CHEMICAL ANALYSES OF SAMPLES

The two solid samples of FGD salts received were analyzed for percent volatiles by baking at 100°C for 24 h. To remove the fly ash, which appeared to constitute much of the solid samples, 22.853-g portions of each sample were dispersed in 100 mL of deionized water, and the resultant slurries were vacuum filtered through fast, preweighed filter paper dishes. The residues were washed with small amounts of deionized water totaling 100 mL. The papers and filtrate were dried as described above and weighed to estimate the percentage of insoluble matter in the solid samples.

The supernatant solutions and the two sample solutions of dissolved salt were analyzed for percent solids by drying weighed portions for 24 h in a drying oven set at 100°C. Liquid sample density was determined by weighing pipetted volumes of 2 mL of sample to a precision of 0.1 mg at 25°C. The four FGD solutions, as well as the three Miamisburg pond samples, were retained for spectrophotometric and chemical analyses.

The samples of FGD effluent and evaporating pond solutions were tested for sulfate content using a Hach colorimetric chemical analyzer. These samples were also tested for iron and copper content using a Perkin-Elmer Model 303 atomic absorption spectrophotometer.

Sodium chloride content of the Miamisburg samples was determined by correlating specific gravity measurements taken at Miamisburg with literature values (Weast 1969) for sodium chloride solutions. The Miamisburg samples were also analyzed for iron, copper, and magnesium content by means of atomic absorption spectrophotometry.

3.3 MEASUREMENT OF OPTICAL ABSORBANCE OF SAMPLE SOLUTIONS

The four FGD sample solutions were analyzed for spectral absorbance under a contract to the Denver Research Institute. Quartz cells of 10-, 5-, and 1-cm path lengths were used to contain the sample solutions. For the 5- and 10-cm sample cells, a 1-cm cell containing boiled, deionized water was used as a

reference standard. For the 1-cm sample cell, a 1-cm reference cell containing spectrophotometric grade carbon tetrachloride was used.

Three sets of plots of absorbance versus wavelength, corresponding to each of the three sample cell lengths, were generated for each of the FGD samples. Each set contained six absorbance plots, one for each of the samples, plus one plot taken with both cells empty and another taken with the cells filled with boiled, deionized water. For the 1-cm sample cell, a baseline scan was run using water in the sample cell and carbon tetrachloride in the reference cell.

The Miamisburg salt solutions were analyzed for spectral absorbance at SERI using a Perkin-Elmer Model 340 spectrophotometer covering a range of 190-2500 nm. Ten-cm quartz samples and reference cells were used. The reference cell contained boiled, deionized water. Solutions containing 100-ppm magnesium, 50-ppm copper, and 5-ppm iron were also analyzed in this fashion.

3.4 AN ATTEMPT TO QUANTIFY OPTICAL MEASUREMENT ERRORS

To determine the effect of dissolved air on the spectrophotometric analysis, deionized water saturated with air by bubbling for 10 min, was analyzed on the Perkin-Elmer instrument. The cell containing air-saturated water was agitated ultrasonically to coalesce the remaining air bubbles. Miamisburg samples from 0.3 and 1.2 m were also boiled for spectral analysis in this manner. An absorbance plot for the 0.3 m sample was obtained. A white precipitate formed when the 1.2 m sample was boiled, precluding any spectral analysis.

To determine the effect of possible errors in sample cell positioning on measured transmittance, two 10-cm cells containing deaerated water were placed into the cell holder in the spectrophotometer sample compartment. With the reference cell fixed, the sample cell was manually rotated about its long axis as far as the cell holder would permit (about 45°), with the instrument grating set to 550 nm. The variations in the indicated transmittance fraction introduced by these variations in sample cell position were recorded. Results of the procedures appear in the section on error analysis, Sec. 6.0.

SECTION 4.0

PREDICTION OF SOLAR ENERGY PENETRATION INTO A SALINE CONCENTRATION GRADIENT

4.1 ABSORPTION OF LIGHT IN A HOMOGENOUS SOLUTION: AN IDEAL CASE

Absorption of light by any species in a homogenous solution is a function of wavelength λ , optical path length λ , and species concentration c. When n light-absorbing species are present in a solution, an expression for the total absorption of the solution can be written as follows:

$$A(\lambda, l, c) = A_1(\lambda, l, c_1) + A_2(\lambda, l, c_2) + \dots + A_n(\lambda, l, c_n) , \qquad (4-1)$$

The Lambert-Beer expression for absorbance may be used to reduce the right-hand portion of Eq. 4-1:

$$A(\lambda, \ell, c) = \varepsilon_1(\lambda)\ell c_1 + \varepsilon_2(\lambda)\ell c_2 + \dots + \varepsilon_n(\lambda)\ell c_n$$
$$= \ell(\varepsilon_1c_1 + \varepsilon_2c_2 + \dots + \varepsilon_nc_n) , \qquad (4-2)$$

where $\varepsilon_n(\lambda)$ is the extinction coefficient for species n, which exists at concentration c_n in the solution. If these variables are known for all n species at a given wavelength, the total absorbance at that wavelength can be calculated. If all light attenuation observed in the sample is caused by absorption, i.e., no scattering or other nonlinear light attenuation occurs, the total absorbance can be related to the ratio of incident and exiting irradiance, $[I_0(\lambda)/I(\lambda)]$, passing through a sample having an optical path length ℓ , as follows:

$$\ln \left[I_{0}(\lambda)/I(\lambda) \right] = A(\lambda, \ell, c) , \qquad (4-3)$$

or

$$I(\lambda) = I_0(\lambda) \exp \left[-A(\lambda, \ell, c)\right] . \tag{4-4}$$

Defining the absorbed irradiance $I_a(\lambda)$ to equal $I_o(\lambda) - I(\lambda)$, the following equation for irradiance absorbed at a given wavelenth can be written:

$$I_{a(\lambda)} = I_{o(\lambda)} \left(1 - \exp[-A(\lambda, \ell, c)] \right) .$$
(4-5)

4.2 ACTUAL TRANSMITTANCE OF LIGHT IN A SOLAR POND

Equation 4-5 may be modified to include the effect of a concentration gradient by making the c_n in Eq. 4-2 functions of &. However, it is difficult to use Eq. 4-5 to predict light transmission in an actual solar pond for several

SERI 🕷

reasons. One problem is that the direction and length of the optical path in a pond is difficult to define. Path length & is related to depth d by the ratio:

$$\frac{d}{\cos \theta_2} = \ell \quad , \tag{4-6}$$

where θ_2 is the angle that light passing through the pond makes with the vertical. θ_2 is in turn related to θ_1 , the angle of light incident on the pond, by Snell's law:

$$\frac{n_1}{n_2} = \frac{\sin \theta_2}{\sin \theta_1} , \qquad (4-7)$$

where, in this case, n_1 and n_2 are the refractive indices of air and of the pond solution, respectively. Since these indices depend on wavelength, the path of light through the pond, as defined by θ_2 and d, also varies with the wavelength of the incident light. For example, Querry et al. (1977) have shown that refractive indices for pure and saline water may vary from 1.15 to 1.55 over the range of 2-20 microns, resulting in a variation of up to 15° in θ_2 over this range for an incidence angle θ_1 of 45°. Another complication is that I₀ in Eq. 4-5 is always less than the intensity of light as measured above the pond surface because of losses from surface reflection. Reflective losses are also wavelength-dependent, and they become significant at high angles of incidence. Finally, θ varies because of waves on the pond surface. For these reasons, mathematical analysis of light penetration into an actual solar pond would present a complex problem, even if the effects of light scattering were not considered.

4.3 SOLAR ENERGY PENETRATION AT NORMAL INCIDENCE INTO A NONSCATTERING GRADIENT POND

To circumvent the complicating difficulties discussed in Sec. 4.2, a simple algorithm was developed for comparing the effects of light absorption by candidate solar pond solutes on the optical performance of an idealized pond. In the model, normal incidence of light onto the pond ($\theta_1 = 0$) was assumed. In this case, Eq. 4-6 reduces to $d = \ell$, θ_2 becomes zero, and reflective losses are minimized. Under these conditions, Eq. 4-5 may be written in terms of a finite depth element Δd , chosen so that the concentrations of the absorbing species do not change significantly over the length of the element:

$$I_{j(\lambda)} = I_{j-1}(\lambda) \exp \left[-\Delta d_j \left(\varepsilon_1(\lambda) c_1(d) + \varepsilon_2(\lambda) c_2(d) \dots + \varepsilon_n(\lambda) c_n(d) \right) \right]$$

$$(4-8)$$

To obtain the total energy ${\rm E}_{\rm O}$ available from the incident sunlight, the following relation

$$E_{o} = \int_{\lambda_{1}}^{\lambda_{2}} I_{o(\lambda)} d\lambda \quad . \tag{4-9}$$

may be employed, assuming that reflective losses are negligible for the normal incidence case.

The limits λ_1 and λ_2 were chosen as 0.3 and 2.5 microns, respectively, to encompass about 99% of the available solar flux.

The energy absorbed in the jth depth increment can be obtained by a similar integration of Eq. 4-8:

$$E_{aj} = \int_{\lambda_1}^{\lambda_2} (I_{j-1}(\lambda) - I_j(\lambda)) d\lambda \qquad (4-10)$$

The cumulative energy absorbed in j depth intervals, or through a depth equal to

can be expressed as:

$$E_a = \sum_{j=1}^{J} E_{aj} \cdot (4-11)$$

For convenience in evaluating Eq. 4-11 numerically, depth increment Δd_j in Eq. 4-8 may be varied as a step function of pond depth d. The depth increments used should be minimized until E_a (total) converges to within acceptable levels. For improved accuracy, $C_1 \cdots C_n$ can be taken at the midpoint of the Δd_j .

The percentage of the total available solar energy absorbed in j depth increments can now be calculated:

$$P_{t} = 100 E_{a}/E_{0}$$
 (4-12)

A software routine (PON), was developed to evaluate Eqs. 4-9, 4-11, and 4-12 for the case of normal incidence of sunlight on a pond with a known salt concentration gradient. It was assumed that the concentration of all absorbing species in the pond was directly proportional to either the concentration of the dissolved salt or to that of the solvent water. By making this assumption, Eq. 4-1 is truncated at n = 2. $I_0(\lambda)$ was approximated by 88 ordered pairs (λ, I_0) taken from an Air Mass 1.5 solar spectrum developed at NASA-Lewis (Brandhorst et al. 1977). Thirty-one ordered pairs (λ, ε_2) of data taken both at SERI and from the International Critical Tables (Washburn 1929) were used

SERI 🕷

to approximate $\varepsilon_2(\lambda)$ for water. Measurements on water made at SERI showed good agreement with the ICT values, but the range of the data collected was limited by the extreme variations in the $\varepsilon_2(\lambda)$ for water. Both sets of data were stored externally to the program, and are reproduced in Table 4-1. The interactive program was written to accept user inputs of salt extinction coefficient versus wavelength, and of salt and water concentrations versus depth. A subroutine was written to perform a linear interpolation yielding the appropriate independent variable when values of wavelength or depth falling between the points supplied were encountered during compilation. Depth increment Δd could be reset at a depth d specified by the user.

An inspection of the extinction coefficient versus wavelength data revealed that the major contributor to solution absorbance at wavelengths greater than 800 nm is water, since even in a saturated salt solution the concentration of Above 1100 nm. water will be several times greater than that of the salt. data acquisition became impossible because of the strong absorbance of water in this region. An assumption was made that the salt extinction coefficient $\epsilon_1(\lambda)$ remains constant, and that it was small compared to that of water, throughout the interval 1100-2500 nm. This enabled integration to extend over this interval, making use of literature values for the extinction coefficients of water, and eliminating the need to measure extinction coefficients for the salts in this region. Solutions to Eq. 4-12 were approximated numerically The wavelength range for integration was using the trapezoidal method. determined by a software scan of $^{\sf W}$ the optical data entered. The integration interval is selected by the user. Intervals of 10 nm were standard for integration between 300 and 2500 nm. A complete program listing is available on request.

4.4 EFFECT OF SALT SOLUTION TRANSPARENCY ON POND DESIGN: A BASIS FOR DETERMINING ECONOMIC ACCEPTABILITY OF ALTERNATE SALTS

To determine the effect of gradient transparency upon the design of a typical pond, the sizing equations developed by Edesess et al. (1979) were used. Optical transparency of the upper layers of the pond will determine the surface area of a pond designed to meet a given thermal demand.

The sizing equation for the radius r of the circular pond under the specific conditions set forth in the work referenced above is:

$$\mathbf{r} = \frac{2.2 \ \Delta T + \left[4.84 \ \Delta T^2 + \overline{L} \ \left(0.3183 \ \overline{E}_p - 0.1592 \ \Delta T\right)\right]^{1/2}}{\overline{E}_p - 0.5 \ \Delta T} , \qquad (4-13)$$

where ΔT is the average difference required between the pond storage layer and ambient temperatures (°C), L is the average thermal demand to be met, and \overline{E}_p is the average solar energy penetrating to the pond storage layer (r in meters, \overline{L} in watts, and \overline{E}_p in watts per square meter). This equation was developed assuming surface heat losses of 0.4 W/m²-°C, edge losses of 2.2 W/°C per meter of pond perimeter, and bottom heat losses of 0.1 W/m²-°C.

	PON FILE NAM	Æ: "SOLS"		PON FILE NA	ME: "WATER"
Wavelength (nm)	Solar Irradiance ^a (W/m ² -µm)	Wavelength (nm)	Solar Irradiance (W/m ² -µm)	Wavelength (nm)	Extinction Coefficient (L/g-cm)
295.	0.	720.	1133.83	295.	0.200E-05
305.	1.32	728.	974.3	320.	0.160E-05
315.	20.96	730.	1110.93	330.	0.150E-05
325.	113.48	740.	1086.44	340.	0.120E-05
335.	182.43	750.	1070.44	350.	0 .930E-06
345.	234.43	762.	733.08	360.	0.640E-06
355.	286.01	770.	1036.01	380.	0.260E-06
365.	355.08	780.	1018.42	400.	0.130E-06
375.	386.8	790.	1003.58	450.	0.160E-06 ^b
385.	381.78	800.	988.11	500.	0.170E-06 ^b
395.	492.18	806.	860.28	550.	0.300E-06 ^b
406.	751.72	825.	932.74	570.	0.300E-06 ^b
415.	822.45	830.	923.87	580.	0.400E-06 ^b
425.	842.26.	847.	407.11	590.	0.780E-06 ^b
435.	890.55	860.	857.46	600.	0.150E-05 ^b
445.	1077.07	870.	843.02	700.	0.375E-05 ^b
455.	1162.43	875.	835.1	750.	0.240E-04 ^b
465.	1180.61	888	817.12	800.	$0.200E - 04^{b}$
475.	1212.72	900.	807.83	900	0.610E-04
485.	1180.43	908.	793.87	940.	0.168E-03
495.	1253.83	915.	778.97	980	0.583E-03
505	1242.28	925	217.12	1065	0-130E-03
515.	1211.01	930.	163.72	1100.	0.190E-03
525.	1244.87	940	249.12	1130.	$0.600E - 0.3^{b}$
535.	1299.51	950	231.3	1170.	$0.110E - 02^{b}$
545.	1273.47	955.	255.61	1210	$0.130E - 0.2^{b}$
555.	1276-14	965.	279.69	1281	$0.120E - 0.02^{b}$
565.	1277.74	975.	529.64	1400	$0.310 \text{F} - 02^{\text{b}}$
575.	1292.51	985.	496.64	1450	$0.200 \text{ F} - 01^{\text{b}}$
585	1284 55	1018	585 03	1500	$0.300 \text{ F} - 01^{\text{b}}$
595	1262.61	1082	486.2	1677	0.520E - 0.2b
605	1261.79	1094	460.2	1750	$0.750E - 02^{b}$
615	1255 43	1094.	440.74	1900	0.730E - 02
625	12/0 10	1101	500 57	1956	0.120E - 01
635	1240.19	1128	100.86	2000	0.700E-01b
645	1233 06	1103	424 85	2000.	0.200E-01
655	1192 22	1173.	444.0J 2/5 60	2237.	$0.200E - 01^{\circ}$
665	1220-52	1384	545.07 7 / 7	2400.	0.530E-01
675	1220.4	1304.	Z•4Z	2000.	0.530E-02-
685	1210.00	143/.	220 14		
605. 605	1191 3/	1967	220.40		
609 609	1101.24	1002.	2.01		
700	7/3.33 1173 31	2014.	00.01		
710	1152 7	• الالا	2.37	•	
110.	11360/				

Table 4-1. SOLAR IRRADIANCE AND WATER EXTINCTION COEFFICIENT DATA USED IN THE PON PROGRAM

aSolar irradiance data (Air Mass 1.5) were taken from Brandhorst et al. (1977).

bTaken from Washburn et al. (1929).

The remaining extinction coefficient data were generated at SERI.

SERI 🕷

Assuming that significant shifts in relative solar spectral intensities do not occur seasonally, \bar{E}_p may be approximated as follows, given E_0 and E_a (total):

$$\bar{E}_{p} = f\bar{E}_{0} \frac{\left[E_{0} - E_{a}(total)\right]}{E_{0}} , \qquad (4-14)$$

where \overline{E}_0 is the seasonally averaged available insolation (W/m²), and f is the seasonally averaged fraction of energy lost through reflection at the pond surface for the latitude of the pond.

A complete listing of terms is given in the Nomenclature at the beginning of this report.

ξ.

SECTION 5.0

RESULTS AND DISCUSSION

5.1 GRAVIMETRIC AND CHEMICAL ANALYSES

Descriptions of the solid and liquid samples of salt-containing material received for analysis, as well as the analytical results, are given in Tables 5-1, 5-2, and 5-3.

Sample Description	Sample Labels			
2 cans grey powder	Test #9 - Trona & Fly Ash Test #15 - Nahcolite & Fly Ash			
2 bottles clear liquid	Scrubber effluent pond Scrubber evaporating pond			
3 bottles clear liquid	Miamisburg - 0.3 m depth Miamisburg - 1.2 m depth Miamisburg - 3.0 m depth			

Table 5-1. SAMPLES RECEIVED FOR ANALYSIS

	(%) Volatiles at 100°C	(%) Insolubles at 25°C
Test #9 (powder)	0.94	67.9
Test #15 (powder)	1.06	66.5
	(%) Solids at 100°C	Density (g/mL) at 25°C
Test #9 Extract (liquid)	3.58	1.026
Test #15 Extract	3.75	1.023
Effluent Pond	3.58	1.025
Evap. Pond	9.96	1.088
Miamisburg 0.3 m	1.40	1.010
Miamisburg 1.2 m	4.50	1.032
Miamisburg 3 m	18.9	1.141

Table 5-2. RESULTS OF GRAVIMETRIC ANALYSES

5.2 DISCUSSION OF ANALYTICAL RESULTS

The FGD powder samples received were roughly two-thirds fly ash by weight. Filtration of extracts from these samples did not remove all of the insoluble ash, which contains considerable amounts of iron, very little of which would

Sample	[Cu ⁺²] (ppm)	[Fe ⁺³] (ppm)	[Mg ⁺²] (ppm)	SO_4^{-2} as Na ₂ SO ₄ (% dry wt.)	(pH) As Received
Test #9 Extract	0.04	0.00 ^a		— —	10.5
Test #15 Extract	0.12	0.13 ^a			10.9
Effluent Pond	0.16	1.26 ^a		96	8.6
Evap. Pond	0.15	0.00		92	4.1
Miamisburg 0.3 m	0.00	0.00	17.9		8.2
Miamisburg 1.2 m	0.30	0.00	32.2		8.3
Miamisburg 3 m	1.00	0.70	37.3		7.3

Table 5-3. RESULTS OF CHEMICAL ANALYSES

^aSolid residue in these extracts contained considerable amounts of iron. The results shown apply to the supernatant liquid.

RR-615

Siiz

be soluble at the pH levels observed for the extracts. The high pH measured for the extracts indicates the presence of unreacted sodium carbonate in the The effluent and evaporating pond solutes were nearly pure powder samples. Na₂SO₄ and contained small but measurable quantities of copper. The probable sources of the increasing concentrations of copper ions found in the lower layers of the Miamisburg pond were the copper salts that were added to the pond as a bacteriocide, and a copper heat exchanger, which rapidly corroded once in service. The concentration of iron in the lowest layer of the pond is probably enhanced by the decreasing pH gradient present in the pond, and by the high concentration of chloride ions in this layer, which would tend to complex the ferric ions. The iron found may have been introduced originally in the well water used to fill the pond, or in the salt used to construct the density gradient. It is uncertain whether the concentrations of iron and copper found represent ionic species or finely divided hydroxide precipitates in the sample solutions.

5.3 PREDICTED EFFECT OF SOME IONIC CONTAMINANTS ON ENERGY TRANSMITTANCE

Iron and copper ion concentrations were investigated, because the presence of these chromophores in significant quantity could reduce light transmittance through a solar pond. Spectra were collected as described in the previous section on dilute aqueous solutions of iron, copper, and magnesium ions. Magnesium ions at 100 ppm concentration show insignificant absorbance relative to that of water throughout the visible region. Iron and copper both show absorption in the blue and ultraviolet region, with copper also showing some absorption in the red and near infrared region. Extinction coefficients for iron and copper calculated from these spectra, covering a range of 300-850 nm, are given in Table 5-4.

 Cu	1 ⁺²	Fe ⁺³			
Wavelength	Extinction	Wavelength	Extinction		
(nm)	Coefficient	(nm)	Coefficient		
300	3.79	300	90+		
340	0.385	330	90+		
390	0.000	400	5.41		
610	0.000	420	1.38		
850	0.446	500	0.000		

Fable	5-4.	GRAM	EXTIN	CTION	COE	FFICI	ENTS	S (B	Base	e)	MEA	7-
		SURED	FOR	Cu ⁺²	AND	Fe+3	AT	pН	OF	4.0	, I	N
		L/g-cr	n									

To estimate the optical effect of various levels of these potential contaminants in solar ponds, the PON program was used to calculate the transmittance losses associated with introduction of small amounts of Cu^{+2} and Fe^{+3} into an SERI 🕷

element of pure water one meter in depth. In most stratified ponds, sunlight must penetrate at least to this depth to reach the storage zone. It was found that the presence of 5-ppm Cu^{+2} would reduce transmittance through a 1-meter path of otherwise pure water by 1%. A similar reduction would occur if as little as 0.1-ppm Fe⁺³ were present. These estimates are conservative because the results listed in Table 5-4 were taken in the absence of complexing ligands. In a pond made up of NaCl for example, one would expect to find more intense absorption, resulting from formation of the chloride coordination complexes of these transition metal ions, especially at low pH. Therefore, concentration of these and other transition metal ions in gradient ponds should be kept to a minimum. Several conclusions regarding the results of the chemical analyses reported in Table 5-3 can now be made. First, concentrations of iron and copper in the upper portion of the Miamisburg pond are insufficient to reduce pond performance significantly. The pH of the pond is high enough to drive these ions out of solution as hydroxides, and the low concentrations measured indicate that any resulting suspension has settled.

In the FGD salt solutions, significant amounts of iron were detected, but the pH of the solutions, with the exception of the evaporating pond solution, was also high enough that the iron could only exist as the hydroxide precipitate. The erratic atomic absorption measurements made on the alkaline samples support this hypothesis. The iron-containing residue had apparently settled out before reaching the evaporating pond; thus, no iron was found there. Finely divided ferric hydroxide in suspension has a yellowish tint, although it can be flocculated by boiling to give a red precipitate. The presence of such particulates may be a determining factor in the optical performance of the samples tested, and will be discussed in the Error Analysis, Sec. 6.0.

As noted in this section, boiling the Miamisburg samples taken at four and ten feet resulted in the formation of a white precipitate. This phenomenon, coupled with the high pH and magnesium levels observed for these samples (see Table 5-3), indicates that the well water used to make up the Miamisburg pond was high in bicarbonate hardness. Heating these samples evidently drove off carbon dioxide, raising the pH sufficiently to precipitate the magnesium as Mg(OH)₂. Solubility product calculations based on the original concentration of Mg⁺² and the original pH of the samples support this hypothesis.

5.4 COMPARISON OF ENERGY PENETRATION IN AN ACTUAL POND TO THAT PREDICTED FOR A SIMILAR GRADIENT CONSTRUCTED FROM A CANDIDATE SALT

In predicting the energy penetration through gradients of candidate salts, no attempt was made to break the total sample absorbances down into more than two components, i.e., water and solvated salt. By comparing the data in Tables 5-2 and 5-3 one can see that the concentration gradients of minor impurities roughly parallel the gradient measured for NaCl in the Miamisburg pond. Therefore, a gram (or overall) extinction coefficient (GEC), rather than the more commonly used molar coefficient, was developed to express the light-absorbing properties of solutions of the candidate salts. In Table 5-5 GEC coefficients are listed for the FGD salts, measured as described in the preceding section.

GRAM EXTI SOLAR PON	NCTION COEFI D SALTS, IN	FICIENTS (Base L/g-cm × 10 ⁴	e) MEA	ASURED	FOR (CANDIDATE

Wavelength (nm)	Pure Water	Evaporating Pond Salt	Effluent Pond Salt	Test ∦15 Salt	Test #9 Salt
300	0.019	20.0	<u> </u>		
320	0.016	14.0	24.0	47.0	120.0
330	0.015	11.0	17.0	34.0	89
340	0.012	9.6	13.0	32.0	75.0
350	0.0093	7.9	8.8	31.0	67.0
360	0.0064	7.1	7.0	30.0	59.0
380	0.0026	4.6	4.2	19.0	39.0
400	0.0013	3.0	3.2	9.7	25.0
450	0.0016 ^a	1.5	1.9	2.9	9.6
550	0.0030 ^a	0.52	1.3	0.42	0.88
700	0.038 ^a	0.18	0.59	b	Ь
750	0.24 ^a	0.11	0.29	Ъ	Ъ
800	0.20 ^a	0.12	0.36	Ъ	Ъ
900	0.61	0.00 .	0.00	0.00	0.00
940	1.7	0.00	0.00	0.00	0.00
1065	1.3	0.21	0.63	0.00	0.63
1100	1.9	0.00	0.00	0.00	0.00

^aValue taken from Washburn (1929).

Table 5-5. GRAM EXTINCTION COEFFICIENTS

^bNegative result.

A comparison of these data with those presented for copper and iron in Table 5-4 reveals that on a gram basis, the candidate salts are generally intermediate in ultraviolet light absorbance between pure water and these transition metal ions. However, there is no direct correlation between copper or iron content of the candidate salts and the measured extinction coefficients. The zero and negative results are an indication of the difficulty of obtaining meaningful measurements of very low extinction coefficients. These difficulties are discussed in Sec. 6.0.

The evaporating pond salt (EPS) solution appeared to be the most likely candidate for solar pond usage, with reference to the data presented in Table 5-5. Therefore, the PON program was used to evaluate the energy penetration into a hypothetical pond having a concentration profile of similar solute as shown in Table 5-6. This profile was measured by Nielsen (1976) at the Ohio State University experimental pond.

The results of the PON energy penetration analysis performed on this EPS gradient and on pure water appear as Fig. 5-1. For comparison, energy penetration measurements made by Nielson (1976) at the OSU pond using a submersible pyranometer are also plotted. It should be recalled that differences between program PON predictions and actual energy penetration measurements may arise from the assumptions made in developing the software routine, as well as from the sources of measurement error described by Nielsen. Also, the solar spectrum used by Nielsen in his analyses has less infrared content than does the NASA-Lewis spectrum used as input to PON.

	ORATING POND S ENERGY-PENETRAT TO OSU POND	ALT ASSUMED FOR ION COMPARISON
Depth (cm)	Salt Concentration (g/L)	Water Concentration (g/L)
0.0 43.0 100.0 230.0	25.5 25.5 171.1 197.3	995.5 995.5 969.5 963.4

Table 5-6. CONCENTRATION PROFILE OF EVAP-

The PON results indicate that a pond gradient constructed of EPS as shown in Table 5-6 would exhibit about 29% less energy penetration to the storage layer than did the OSU pond, and about 40% less energy penetration than would an equal depth of pure water. The effect of the increase in salt concentration at 43-cm depth can be clearly seen as an inflection point in the EPS curve presented in Fig. 5-1.

Output listings of the PON runs are reproduced in Appendix A.

5.5 EFFECT OF THE SOLAR TRANSMITTANCE OF A SALT GRADIENT ON SIZING A POND

An estimate of the economic advantage to be gained by replacing pure salts with inexpensive alternates requires calculating the effect of differences in solar transmission on pond design. As mentioned in the Introduction, any significant reduction of energy reaching the storage area of a pond will require a greater surface area to meet the thermal demand, as well as a higher construction cost. Such costs must be balanced against the savings afforded by the use of the alternate salt.

The salt concentration profile given in Table 5-6 for the OSU pond does not correspond to the gradient zone thickness assumed by Edesess et al.(1979) in developing their design equations (i.e., Eq. 4-15). For analysis by program PON, a concentration profile of EPS that matches the zone thicknesses implied in Eq. 4-15 was assumed. Concentrations at the zone boundaries were the same as those used previously. The resulting profile is given in Table 5-7.

Program PON was run to estimate the fraction of available solar energy that would penetrate such a gradient. At the depth of the storage layer of the design pond (150 cm), the value of the ratio $[E_0 - E_a(total)]/E_0$ predicted by program PON was 0.17. This result can be substituted into Eq. 4-16, assuming a surface transmittance f of 0.97 and a seasonally averaged insolation E_0 of 206 W/m², to give an estimate for the seasonally averaged energy transmitted to the storage layer of the pond, \overline{E}_{p} , of 34 W/m². Similarly, if the dissolved salt added nothing to the optical absorbance of the solvent water, a solartransmittance fraction of 0.42 is predicted, resulting in an average energy

Figure 5-1. Energy Penetration Profiles for Pure Water and for an FGD Salt Concentration Gradient Predicted Using Program PON (Results obtained by Neilsen (5) are presented for comparison.)

19

RR-615

Depth (cm)	Salt Concentration (g/L)	Water Concentration (g/L)
0.0	25.5	995.5
30.0	25.5	995.5
150.0	171.1	969.5
230.0	197.3	963.4

Table	5-7.	CONCENTR	ATION	PROF1	OF	ΕV	AP-	
		ORATING	POND	SALT	ASS	SUME	D	FOR
		POND DES	IGN AN	JALYSI	S			

input of 84 W/m^2 to the storage layer. Edesess et al. (1979) assume an intermediate solar transmittance of 0.31 for a 150-cm deep gradient layer constructed of clean commercial salt, allowing an average energy penetration of 62 W/m^2 to the storage layer.

The design goals selected by Edesess et al. (1979) for their hypothetical pond consisted of maintaining a temperature difference (storage versus ambient), ΔT , of 60°C, while meeting an average thermal demand, L, of 2.8 × 10⁵ W. These constraints were substituted into Eq. 4-13, allowing the required pond radius r to be obtained as a function of the average energy penetration to the storage layer, \bar{E}_{p} . A plot of this relationship appears as Fig. 5-2. Note that at a certain energy penetration rate, 30 W/m² in this case, the required pond radius approaches infinity. Below this minimum rate, the pond is unable to maintain the required average difference between storage layer and ambient temperatures. The transmittance of the EPS solution (as tested) is low enough that a gradient pond constructed of such material to meet the given design constraints would of necessity be impractically large. However, modifications to the sample testing protocol, as well as modifications to the solutions to be used to construct the ponds, may result in more optimistic predictions of the utility of alternate salts (see Error Analysis, Sec. 6.0).

This discussion demonstrates that optical transmittance of the upper layers of a gradient pond has a very significant effect upon the thermal performance of the pond, limiting both the available thermal output and the storage layer temperature. Even given an initially clean salt, upper-layer transparency can decrease during pond operation for numerous reasons. Further study of these phenomena is clearly warranted to hasten the commercialization of salt gradient solar ponds.

5.6 SPECTRAL TRANSMITTANCE OF MIAMISBURG POND SOLUTION SAMPLES

Attempts to make similar predictions of energy penetration for the Miamisburg, Ohio, pond based on absorbance spectra from samples of the pond solution have failed to date because the absorbances measured for samples having different concentrations do not conform to Beer's law in the visible region. Measurement errors are believed to be responsible for the discrepancies (see Error SERI 🕷

Figure 5-2. Dependence of Design Radius of a Typical Solar Pond On Average Energy Penetration

Analysis, Sec. 6.0). Refinement of the measurement technique should make possible an interesting comparison between program PON predictions and energy penetration measurements currently being made at Miamisburg by Monsanto, Inc., using a submersible radiometer. However, a general statement that the solutions are quite transparent relative to the FGD solutions can be made based on the obtained spectra. The samples, taken at various depths in the pond, all showed transmissions of 95%-99% from 400-800 nm in the 10-cm cells. The spectra recorded for these samples (unboiled and unfiltered) are reproduced as Figs. 5-3, 5-4, and 5-5.

Figure 5-3. Transmittance and Absorbance Spectra of Miamisburg Pond Solution Sampled at 0.3-M Depth (NaCl Concentration + 1.40% (wt.), Optical Path Length = 10.0 cm (Sampled 5/79))

.

Siiz

\$

Wavelength (nm)

Figure 5-4. Transmittance and Absorbance Spectra of Miamisburg Pond Solution Sampled at 1.2-M Depth (NaCl Concentration = 4.50% (wt.), Optical Path Length = 10.0 cm (Sampled 5/79))

Figure 5-5. Transmittance and Absorbance Spectra of Miamisburg Pond Solution Sampled at 3.0-M Depth (NaCl Concentration = 18.9% (wt.), Optical Path Length = 10.0 cm (Sampled 5/79))

25

RR-615

SERI

SECTION 6.0

ERROR ANALYSIS

Three major sources of error in the spectral transmittance measurements taken to date have been identified. These are: the presence of dissolved air in the samples (molecular scattering), the presence of particulate matter in the samples (bulk scattering), and nonreproducible sample cell alignment. Estimates for the quantitative effect of molecular scattering and of cell alignment on the transmittance measurements have been made.

The effect of dissolved air will be considered first. In Fig. 6-1, dual-beam transmittance spectra taken on 10-cm cells containing deionized water are reproduced. The upper plot appearing in this figure represents the transmittance ratio of two cells containing boiled water. The lower plot resulted from substitution of air-saturated water for the boiled water in the sample cell. For the air-saturated sample, an increase of 0.02-0.05 transmittance units, relative to the boiled water sample, is observable between 850 and 340 nm. The gradual increase in the apparent absorption of the air-saturated water (from which bubbles had been removed ultrasonically) towards the blue end of the spectrum indicates that the absorbance measured for this sample is probably a spurious effect related to scattering of the sampling beam by dis-Any light scattered from the samples at an angle solved air molecules. greater than the acceptance angle of the spectrophotometer detector optics will appear as absorbance on the instrument readout. Predictions of energy penetration based on such measurements will generally be low, since light scattered in a forward direction can still penetrate to the storage layer of a pond.

The FGD and Miamisburg solute samples were probably not saturated with air. However, an increase in transmittance of up to 0.005 units in the visible region was observed. A Miamisburg sample (0.3-m depth) was boiled and remeasured, indicating the presence of sufficient dissolved air in the original sample to affect the measurement. The FGD salt solutions were not boiled before the transmission measurements were made. Therefore, the extinction coefficients reported for these salts in Table 5-5 may be spuriously high. The extinction coefficients measured for water will not include this error since the water was boiled before measurement. In summary, the effect of dissolved air in the samples will be to reduce the measured transmittance by as much as 0.05 units, although for the FGD salts, a reduction of 0.005 units is more likely.

A similar effect could have been caused by the presence of particulate matter in the samples tested. The only precaution taken to remove particulate matter from the samples was to let them stand for several days before withdrawing aliquots from the upper portion of the samples for measurement of transmittance. This procedure was probably inadequate to remove finely divided ferric hydroxide. No attempt to estimate the effect of particulate scattering on the FGD salt measurements was made.

In addition to the errors in transmittance caused by air particulates, random errors in the measurements are thought to have been introduced by

Wavelength (nm)

Figure 6-1. Spectra of Boiled, Deionized Water and Air-Saturated, Deionized Water vs. Boiled, Deionized Water as a Reference (Spectra Taken Using 10-cm Quartz Cells)

RR-615

SER 🏽

nonreproducible positioning of the sample and reference cells in their holders. This type of error is a possible explanation for the zero and negative absorbance values recorded for the FGD and Miamisburg salt solutions (see Table 5-5).

The cell holders used could be positioned reproducibly along the lateral and longitudinal axis, but rotation about the longitudinal axis of the cells can occur. Rotation of the sample cell by 45° produced variations in the percentage of light transmitted of ± 0.01 transmittance units at 550 nm.

Examination of the cells in a darkened room using a helium-neon laser revealed several low-angle ($\langle 2^{\circ} \rangle$) scattering centers on the faces of the cells. Rotation of the cells while in the sample compartment of the spectrophotometer evidently caused variations in the amount of light scattered away from the detector, resulting in fluctuations in apparent cell transmittance. Prior to sample measurements, the cells were routinely filled with deionized water and a baseline spectrum taken. The cell in the sample beam path was then removed, filled with the sample under study, and replaced. Any variation in cell position introduced at this time could result in a random error in the recorded sample absorbance.

These investigations indicate that the error in the measured salt and water transmittances is on the order of ± 0.01 transmittance units, a quantity which is greater than the instrumental reproducibility by a factor of ten. The effect of such errors on the energy penetration predictions may be estimated by expressing the predicted pond light transmission in terms of the measured sample transmittances, taking the partial derivative with respect to each measured transmittance, forming the total derivative, and integrating over the solar spectrum to obtain the perturbation in transmitted energy. Insufficient data are available to allow statistical analyses of variance. Equation 4-8 may be written:

$$I_1 = I_0 \exp \left[-\Delta d_1 (\varepsilon_1 c_1 + \varepsilon_2 c_2)\right]$$
(6-1)

for two light-absorbing species at concentrations c_1 and c_2 that are constant over a depth Δd_1 in the pond. To obtain this equation in terms of the transmittance actually observed in the spectrophotometer, the substitution

$$\varepsilon_{n} = -\ln \left(T_{n} / c_{sn} \ell_{sn} \right) \tag{6-2}$$

may be made, where T_n is the transmittance fraction obtained for species n at a given wavelength, c_{sn} is the concentration of species n in the sample, and l_{sn} is the effective path length of the sample. Equation 6-1 then becomes:

$$I_{1} = I_{0} \exp \Delta d \frac{\ln T_{1}c_{1}}{c_{s1}\ell_{s1}} + \frac{\ln T_{2}c_{2}}{c_{s2}\ell_{s2}} .$$
 (6-3)

The partial derivatives of 6-3 with respect to T_1 and T_2 are:

$$\left(\frac{\partial I_1}{\partial T_1}\right)_{T_2} = \frac{I_0 \Delta dc_1}{c_{s1} \ell_{s1} T_1} \exp \Delta d \frac{\ln T_1 c_1}{c_{s1} \ell_{s1}} + \frac{\ln T_2 c_2}{c_{s2} \ell_{s2}} , \qquad (6-4)$$

S=21 🕷

$$\left(\frac{\partial I_1}{\partial T_2}\right)_{T_1} = \frac{I_0 \Delta d c_2}{c_s 2^{\ell} s 2^{T_2}} \exp \Delta d \frac{\ln T_1 c_1}{c_s 1^{\ell} s 1} + \frac{\ln T_2 c_2}{C_s 2^{\ell} s 2} \quad . \tag{6-5}$$

For simplicity, Eqs. 6-4 and 6-5 may be written in terms of the extinction coefficients, again making use of Eq. 6-2:

$$\left(\frac{\partial I_1}{\partial T_1}\right)_{T_1} = \frac{-I_0 \Delta dc_1}{c_{s1} \ell_{s1}} \exp -(\Delta d\epsilon_1 c_1 + \Delta d\epsilon_2 c_2 + \ell_{s1} \epsilon_1 c_{s1}) , \qquad (6-6)$$

$$\left(\frac{\partial I_1}{\partial T_2}\right)_{T_2} = \frac{-I_0 \Delta dc_2}{c_s 2^{\ell} s^2} \exp \left(-\left(\Delta d\epsilon_1 c_1 + \Delta d\epsilon_2 c_2 + \ell_{s2} \epsilon_2 c_{s2}\right)\right)$$
(6-7)

The total differential dI_1 may be approximated, making use of Eq. 6-6 and 6-7, as follows:

$$\Delta I_1 \approx \left(\frac{\partial I_1}{\partial T_1}\right)_{T_2} \Delta T_1 + \left(\frac{\partial I_1}{\partial T_2}\right)_{T_1} \Delta T_2 \quad . \tag{6-8}$$

This equation can be solved at discrete wavelengths for a given set of pond and sample parameters to yield an estimate for the error ΔI_1 incurred in predicting light transmitted to pond depth Δd , resulting from sample transmittance measurement errors of ΔT_1 or ΔT_2 . However, some qualitative interpretations of Eqs. 6-6 and 6-7 will be made first. Holding other variables constant, the error of the predicted light penetration into the pond increases with solar spectral intensity, pond depth, and species concentration in the pond. Predictive errors will be reduced by increasing the sample species concentration and sample optical path length. The exponential portions of Eqs. 6-6 and 6-7 predict that error will be greatest at wavelengths where the species extinction coefficients are smallest, i.e., where the samples are most transparent.

To estimate the magnitude of the error in energy penetration predicted by program PON by thorough use of Eq. 6-8, representative parameters of the experimental conditions were chosen. Evaluation of the error at $\Delta d = 100$ cm will permit determination of the error in predicted energy input to the storage layer of the hypothetical pond having the profile measured at OSU. Depthweighted average values for the concentration of salt and water in the pond (c₁ and c₂) were used to approximate the salinity gradient over the 100-cm interval. Values for l_{s1} and l_{s2} representing the longest sample cell paths were chosen, although the extinction coefficients presented for the FGD salts represent averages taken over several cell path lengths. The values for ΔT_1 and ΔT_2 were taken as ± 0.01 transmittance units.

These parameters, in addition to others, used in evaluating Eq. 6-8, are presented in Table 6-1.

RR-615

Table	6-1.	SELECTED	CONSTANTS	FOR	ERROR
		ANALYSIS	UTILIZING	EQ.	6-8

C1	H	989.7 g/L	c2	=	67.0	
c	=	997.0 g/L	c_{s2}	=	100.0	g/L
l	=	9.00 cm	l _{s2}	-	10.00	cm
Ă₫	=	100.0 cm	$\Delta \tilde{T}_1$	=	$\Delta T_2 =$	0.01

Equation 6-8 was evaluated at 0.100-micron intervals between 0.300 and 1.000 micron. At wavelengths longer than 1.000 micron, the intensity of light transmitted through one meter of solution becomes negligibly small. The results are summarized in Table 6-2.

To determine the error in the total energy transmitted to depth $\Delta d = 100$ cm resulting from errors in measured transmittance (ΔT_1 and ΔT_2) of ± 0.01 , the following integrals must be evaluated:

$$\Delta E_{T_1}(1) = \int_{\lambda_1}^{\lambda_2} \left(\frac{\partial I_1}{\partial T_1}\right)_{T_2} \Delta T_1 \ d\lambda \quad , \qquad (6-9)$$

$$\Delta E_{T_2}(1) = \int_{\lambda_1}^{\lambda_2} \left(\frac{\partial I}{\partial T_2}\right)_{T_1} \Delta T_2 \, d\lambda \quad . \tag{6-10}$$

The maximum predicted error in the transmitted energy can be determined by summing the individual errors:

$$\Delta E_{\max}(1) = \Delta E_{T_1}(1) + \Delta E_{T_2}(1) . \qquad (6-11)$$

However, if the transmittance errors are truly random (i.e., sample cell alignment errors predominate over scattering errors), the most probable predicted error is the rms error:

$$\Delta E_{\text{prob}}(1) = \pm \left[\left(\Delta E_{T_1}(1) \right)^2 + \left(\Delta E_{T_2}(1) \right)^2 \right]^{1/2} \quad . \tag{6-12}$$

These error boundaries may be expressed as percentages of either the transmitted or the incident energy. The latter approach is consistent with the mode of presentation of program PON results in Fig. 5-1. Approximate solutions to Eqs. 6-9 and 6-10 may be obtained by numerical integration using the trapezoidal method. If $\Delta\lambda$ is set equal to 100 nm, data from Table 6-2 may be used to evaluate the integrals. Virtually all of the energy transmitted is encompassed by the wavelength interval 300-1000 nm, making analysis over any broader limits unnecessary.

Table 6-3 is a summary of the results of error function integration over each 100-nm wavelength interval between 300 and 1000 nm. The incident and transmitted energies calculated from Table 9 data, and the transmitted energy and

λ	εl	ε2	Io	I1	$\left(\frac{\partial I_1}{\partial T_1}\right)_{T_2} \Delta T_1$	$\left(\frac{\partial I_1}{\partial T_2}\right)_{T_1} \Delta T_2$	ΔIl
(µm)	(L/g-cm)	(L/g-cm)	(W/m ² -µm)	(W/m ² - μ m)	$(W/m^2-\mu m)$	(W/m ² -µm)	(W/m ² -µm)
0.300	1.90×10^{-6}	2.00×10^{-3}	0.660	8.2×10^{-7}	$\mp 1.3 \times 10^{-7}$	$79. \times 10^{-8}$	$\mp 2.2 \times 10^{-7}$
0.400	1.30×10^{-7}	3.00×10^{-4}	621.9	8.2×10^{1}	$\mp 1.3 \times 10^{1}$	∓9. × 10°	$\mp 2.2 \times 10^1$
0.500	1.70×10^{-7}	1.01×10^{-4}	1248.0	6.2×10^2	$\mp 9.6 \times 10^{1}$	$\mp7. \times 10^{1}$	$\mp 1.7 \times 10^2$
0.600	1.50×10^{-6}	4.08×10^{-5}	1262.0	8.3×10^2	$\mp 1.3 \times 10^2$	$\mp 9. \times 10^{1}$	$\mp 2.2 \times 10^2$
0.700	3.75×10^{-6}	1.80×10^{-5}	1173.0	7.2×10^2	$\mp 1.1 \times 10^2$	$\mp 8. \times 10^1$	$\mp 1.9 \times 10^2$
0.800	2.00×10^{-5}	1.20×10^{-5}	988.1	1.3×10^2	$\mp 2 \cdot \times 10^{1}$	$\mp 1. \times 10^1$	$\mp 3. \times 10^1$
0.900	6.10×10^{-5}	0.00	807.8	1.9×10^{0}	$\mp 3. \times 10^{-1}$	1. $\times 10^{-1}$	$\mp 4. \times 10^{-1}$
1.000	4.76×10^{-4}	1.01×10^{-5}	536.8	1.7×10^{-18}	$\mp 3. \times 10^{-19}$	3. $\times 10^{-21}$	$73. \times 10^{-19}$

2

Table 6-2. ERROR IN SPECTRAL INTENSITY, I1, PREDICTED AT A DEPTH OF ONE METER FOR A POND HAVING THE EPS CONCENTRATION GRADIENT GIVEN IN TABLE 5-6

RR-615

N

Wavelength Interval $\lambda_1 \neq \lambda_2$		Incident Energy	Energy Transmitted to 100-cm Depth	Sensitivity to ΔT ₁ = ±0.01 (water)	Sensitivity to $\Delta T_2 = \pm 0.01$ (FGD Salt Solution)	Maximum Sensitivity	rms Sensitivity
		Eo	E _T (1)	ΔE _{T1} (1)	$\Delta E_{T_2}(1)$	$\Delta E_{max}(1)$	$\Delta E_{prob}(1)$
(μ	(μm) (W/m^2) (W/m^2) (W/m^2)		(W/m^2)	(W/m ²)	(W/m^2)	(W/m ²)	
0.300	0.400	31.0	4.1	Ŧ0 . 5	∓0.2	∓0.7	Ŧ0 . 5
0.400	0.500	94.0	35.0	∓4.0	∓2.9	∓6. 0	∓4.0
0.500	0.600	130.0	73.0	78. 0	∓5 •0	∓13. 0	∓9.0
0.600	0.700	120.0	77.0	∓8 .0	∓5 .0	∓13. 0	∓9. 0
0.700	0.800	110.0	42.0	∓4.0	∓3. 0	∓13. 0	÷ ∓5.0
0.800	0.900	90.0	6.4	Ŧ0 . 6	∓0 •4	∓ 1.0	∓0.7
0.900	1.000	67.0	0.10	∓0.01	∓0.01	∓0.02	Ŧ0 . 1
Total f 0.300-1	rom .000 μm	640.0	240.0	T25 0	T16 0	741.0	T 28 O

ω

Table 6-3. SENSITIVITY OF PREDICTED SOLAR ENERGY TRANSMITTED TO THE STORAGE LAYER OF AN EPS SOLAR POND TO A 1% ERROR IN LABORATORY-MEASURED SOLUTION TRANSMITTANCE

RR-615

error sums over the 300-1000 nm interval are also given. The result for total energy transmitted to 100 cm differs slightly from that shown in Fig. 5-1 for the EPS solution, since the dep.h-weighted concentration average used in evaluating Eq. 6-8 is not an accurate representation of the concentration gradient.

Some interesting conclusions may be drawn from the data presented in Table 6-3 (page 34). Over 95% of the energy transmitted to the storage layer of this hypothetical solar pond falls in the wavelength "window" between 0.4 and 0.8 microns. For this reason, the total energy penetration prediction is almost entirely insensitive to errors made outside the "window," and accurate measurement of sample transmittance within this range is of primary importance.

The error analysis also shows that when cell alignment is the major source of error in sample transmittance measurement, errors in measuring the transmittance of the pure water samples represent the controlling factor in the rms measurement error. However, if the salt solutions cause significant light scattering, the scattering error could easily dominate the analysis, and the maximum errors reported are likely to apply.

For the chosen conditions, the errors as percentages of incident and transmitted energy are reported in Table 6-4. The PON result for total incident energy from $0.300-2.500 \ \mu m$, 819 W/m², was used for E₀.

Table 6-4. ERROR BOUNDARIES ON PROGRAM PON PREDICTIONS

Program PON Prediction	Maximum Error	rms Error
Percentage of Incident Energy (E ₀) Transmitted	29% ∓5%	29% ∓3%
Transmitted Energy	240 W/m ² \mp 41 W/m ²	240 W/m ² ∓28 W/m ²

(Incident Energy Available Calculated from the A.M.-1.5 Solar Spectrum was 819 W/m²)

It is evident from an examination of Eqs. 6-6 and 6-7 that several other factors possibly contributing to error in this analysis were not considered. Differences in $I_{o}(\lambda)$, the tabulated solar spectral distribution, can cause significant shifts in the predicted energy penetration profile for a pond. Such differences occur as a result of daily and seasonal variations in sun angle and atmospheric conditions, or because of differences in measurement techniques. Errors in measured sample concentrations and optical path lengths were assumed to be insignificant. Finally, the estimates for ΔT_1 and ΔT_2 are open to some doubt. However, the primary purpose of this error analysis was to determine the feasibility of predicting the optical performance of a solar pond based on laboratory measurements of solution transmittance. Recommendations for improving the accuracy of such predictions, based on the results of this analysis, appear in the following two sections.

SECTION 7.0

522

CONCLUSIONS

- Visible light transmittance of the upper layers of a gradient pond is a key parameter controlling performance.
- Although preliminary results indicate that the FGD salts, as tested, would be inferior in optical performance to commercially available salt for pond gradient construction, these analyses suggest that the salts may be useable if some relatively simple precautions are taken. For example, a series of FGD salt processing ponds similar to the one at the Utah plant, with a high pH effluent-settling pond interconnected to an evaporating pond, should produce salt that is virtually iron-free. Additional measures such as heating or ultrasonic agitation could be taken to ensure complete flocculation of precipitates in the effluent pond. For dry FGD residues, which contain fly ash as well as soluble salt, such treatment could be undertaken in the solar pond itself, since a gradient-stabilized pond affords an excellent environment for settling of dense solids.
- In general, the pH of gradient-stabilized ponds should be kept high to allow transition metal ions to precipitate. Levels of only a few parts per million of iron or copper ion, dissolved in the upper layers of a pond, are sufficient to reduce significantly the energy transmitted to the storage layer of the pond.
- The Miamisburg pond samples were only slightly less transparent than pure water in the visible region of the solar spectrum.
- An error analysis indicates that the results predicted for energy penetration to a pond storage layer, using an FGD salt gradient, were accurate to about ±12% (rms, absolute), if no scattering occurred during the sample transmittance measurements. Several options exist for improving the accuracy of the analytical procedure used to determine the salt extinction coefficients. Salt solutions to be analyzed should be nearly saturated. Before spectral analysis, the salt solution should be boiled to drive off dissolved air and to flocculate any The liquid samples should then be cooled to room precipitates. temperature anaerobically and tested for pH. Any adjustments to the pH made at this point should duplicate those to be done in the actual pond. The sample then should be hydraulically pressure-filtered using a 0.25 micron (or smaller) micropore filter to simulate the eventual settling of precipitates in the pond. Sample cell holders permitting reproducible cell alignment must be used. The critical wavelength salt range for the measurement of extinction coefficients is 400-800 nm; the minimum usable optical pathlength for measurements in this range is 10 cm.

The procedure should be repeated several times for each sample, and the results should be analyzed for mean and variance.

SER 🕷

SECTION 8.0

522

WORK IN PROGRESS

- To decrease the effect of cell alignment errors, a frosted quartz scatter plate has been placed in front of the photomultiplier detector in the Perkin-Elmer Model 340 spectrophotometer. If this approach proves ineffective, an integrating sphere (recently completed) may be used in conjunction with the cells.
- Dish pressure filters with syringe pumps for removing particles above 0.25 microns in diameter have been obtained. These will be used to prefilter samples for analysis.
- Fresh samples of FGD salts and salt solutions sampled from operating gradient ponds will be obtained and subjected to analysis with the proposed improvements. If variance of these results is unacceptably high, an attempt to design and build a 100-cm liquid cell will be made.
- After a number of salts have been screened in this manner, a promising candidate will be selected to establish a gradient in one of the 3-m outdoor testing tanks erected at the SERI Mangone Testing Facility. Measurements of incident energy and energy penetration profiles into the tank will be carried out using the Gamma Scientific Model DR-2 spectroradiometer recently purchased. An immersible fiber-optic probe three meters in length is now being constructed and calibrated for this purpose. The outdoor measurements will include the effects of surface reflectance, sun angle, and particulates, as well as those of soluble contaminants. These measurements will constitute final acceptance tests for salts to be used in constructing gradient ponds at the SERI permanent field testing site.

SERI*

SECTION 9.0

SER

REFERENCES

- Brandhorst, Jr., H. W. et al. 1977. <u>Terrestrial Photovoltaic Measurement</u> <u>Procedures</u>. NASA TM 73702; ERDA/NASA/1022-77/16. Cleveland, OH: NASA-Lewis Research Center.
- Edesess, M.; Henderson, J.; Jayadev, T. S. 1979 (Dec.). <u>A Simple Design Tool</u> for Sizing Solar Ponds. SERI/RR-351-347. Golden, CO: Solar Energy Research Institute.
- Nielsen, C. 1976. "Experience with a Prototype Solar Pond for Space Heating." Winnipeg Conference Proceedings. Vol. 5: pp. 169-182.
- Querry, M. R. et al. 1977 (Mar. 20). "Relative Reflectance and Complex Refractive Index in the Infrared for Saline Environmental Waters." Journal of Geophysical Research. Vol. 3 (No. 9): pp. 1425-33.
- Washburn, E. W. (Ed.). 1929. <u>International Critical Tables of Numerical</u> <u>Data, Physics, Chemistry, and Technology</u>. Vol. 5. NY: McGraw-Hill; p. 269.
- Weast, Robert C. (Ed.). 1969. <u>Handbook of Chemistry and Physics</u>. 49th ed., p. D-177; Chemical Rubber Company.

SER!*

SERI 🏶

APPENDIX A

PROGRAM PON OUTPUT LISTINGS

Reproduced here are outputs of the PON solar energy penetration analyses as performed on pure water, standard solutions containing Cu^{+2} and Fe⁺³, and two EPS solutions having different concentration profiles.

CONTENTS:

PON Analysis

Section

Pure water, 1-m depth, $\Delta d = 1$ cm.	B-1
Cu^{+2} , 1-m depth, $\Delta d = 1$ cm.	B-2
Fe^{+3} , 1-m depth, $\Delta d = 1 \text{ cm}$.	B-3
Pure water, 2.3-m depth, $\Delta d = 1 \text{ cm}$, 5 cm.	B-4
EPS, OSU profile, 2.3-m depth, $\Delta d = 1$ cm, 5 cm.	B−5
EPS, Edesess' profile, 2.3-m depth, $\Delta d = 1 \text{ cm}$, 5 cm.	B-6

5221	÷.
	(Sec.)

RR-615

t	2	3	4	5	6	7	1	2	3	4	5	é	7
t.000	0.000	997.000	160.517	19.607	160.517	19.607	1.000	5.000	997.000	161.115	19.631	161.115	19.681
2.000	0.000	997.000 997.000	36.389 21.737	4.445	196.906 218.643	24.052 26.703	2.000	5.000	997.000 997.000	35.329 22.117	4.479 2.702	197.944 220.060	24.179 25.391
4.000	0.000	997.000	15.553	1.900	234.196	23.608	4.000 • 000	5.000	991.000	15.896	1.942	235.956	28.323
5.000	0.000	997.000	t0.265	1.254	256.754	30.109 31.363	5.000	5.000	997.000 997.000	12.605	1.289	245.061 259.117	31.652
7.000	0.000	997.000	3.366	1.083	265.620	32.445	7,000	5.000	997.000	9.136	1.116	268.253	32.763
3.000 9.000	0.000	997.000 997.000	7.042	.957 .360	280,497	33.403 34.263	9.000	5.000	997.000 997.000	7.230	.935	205.341 283.621	33. 75 34.645
10.000	0.000	997.000	6.413	.783	286.910	35.047	10.000	5.000	997.000	6.637	. 311	290.259	35.456
12.000	0.000	997.000	5.474	.669	292.310 293.234	35.436	12.000	5.000	997.000 997.000	5.375	.693	302.045	36.395
13.000	0.000	997.000	5.114	.625	303.399	37.061	13.000	5.000	997.000	5.305	.649	307.350	37.544
15.000	0.000	997.000	4.505	.554	312.739	38.202	14.000	5.000	997.000 997.000	4.708	.575	317.044	38.728
15.000	0.000	997.000 997.000	4.299	.525	317.038	33.227	15.000	5.000	997.000 997.000	4.463	.545	321.507	39.273 54 744
18.000	0.000	997.000	3.399	475	325.024	39.702	18.000	5.000	997.000	4.048	494	329,799	40.236
19.000 20.000	0.000	997.000 997.000	3.728	. 455	328.252 333 334	40.153 40.594	19.000	5.000	997,000 997,000	3,370	. 473	333.664	40.758
21.000	0.000	997.000	3.430	419	335.754	41.013	21.000	5.000	997.000	3.560	.435	340.437	41.646
22.000 23.000	0.000 0.000	997.000 997.000	3.299	.403	339.053 Rap 220	41.416	32.000	5.000 5.000	997.000 997.000	3.423 3.394	.419	344.359 847 656	42.064 42.487
24.000	0.000	997.000	3.065	.374	345.295	42.179	24.000	5.000	997.000	3.179	.388	350.835	42.355
25.000 26.000	0.000 0.000	997.000 997.000	2.960	.362 350	348.255 351 119	42.540 42.290	25.000 26.000	5.000	997.000 997.000	3.069 2.944	.375 342	353.904 354 970	43.230 12 592
27.000	0.000	997.000	2.770	. 338	353.838	43.228	27.000	5.000	997.000	2.370	. 351	359.740	43.943
23.000 29.000	0.000 0.000	997.000 997.000	2.684	.329	356.572 359.174	43.556 43.974	28.000 29.000	5.000	997.000 997.000	2.780 2.494	.340 .329	362.520 365.214	44.283 44.612
30.000	0.000	997.000	2.525	.308	361.699	44.182	30.000	5.000	997.000	2.613	. 319	367.327	44.931
31.000 32.000	0.000 0.000	997.000 997.000	2.452 2.393	.300	364.151 366.534	44,482	31.000 32.000	5.000 5.000	997.000 997.000	2.537 2.464	.310	370.364	45.241 45.542
33.000	0.000	997.000	2.317	.283	368.850	45.055	33.000	5.000	997.000	2.395	.293	375.223	45.834
34.000 35.000	9.000 9.000	997.000 997.000	2.254 2.194	.275 .268	371.105 373.299	45.331 45.549	34.000 35.000	5.000 5.000	997.000 997.000	2.329 2.267	.285 .277	377.553 379.819	46.119 46.396
36.000	0.000	997.000	2.137	.261	375.436	45.360	36.000	5.000	997.000	2.207	270	382.026	46.665
37.000 33.000	0.000 0.000	997.000 997.000	2.033	.254	377.519 379.550	46.115 46.363	37.000 38.000	5.000	997.000 997.000	2,150 2.095	.263	384.176 386.271	46.928 47.184
39.000	0.000	997.000	1.980	.242	381.530	46.605	39.000	5.000	997.000	2.043	.250	388.314	47.433
40.000	0.000 0.000	997.000	1.9%2	.236	383.463 385.349	46.841 47.071	40.000 41.000	5.000	997.000 997.000	1.992	.243	390.306 392.250	47.677
42.000	0.000	997.000	1.842	.225	397.191	47.296	42.000	5.000	997.000	1.393	.232	394.148	48.146
43.000	0.000	997.000 997.000	1.800	.220	388.991 390.749	47.516 47.731	43.000	5.000	997.000 997.000	1.853	.226	396.002 397.812	48.372 48.594
45.000	0.000	997.000	1.719	.210	392.463	47.941	45.000	5.000	997.000	1.769	.216	399.582	48.310
47.000	0.000	997.000	1.644	.205	395.794	48.347	45.000	5.000	997.000 997.000	1.692	.207	401.311 403.003	49.229
43.000	0.000	997.000 007.000	1.609	.197	397.403	48.544	48.000	5.000	997.000	1.655	.202	404.658	49.430 40.200
50.000	0.000	997.000	1,542	.175	373.7/3 400.520	48.924	49.000 50.000	5.000	997.000 997.000	1.585	.194	407.362	49.821
51.000	0.000	997.000 997.000	1.510	.134	402.030	49.109	51.000	5.000	997.000	1.552	.190	409.413	50.011 #0.194
-53.000	0.000	997.000	1.450	.177	404.959	49.290	53,000	5.000	997.000 997.000	1.439	.132	412.422	50.378
54.000 55.000	0.000 0.000	997.000 997.000	1.421	.174	406.330	49.640	54.000 #5.000	5.000	997.000 997.000	1.459	.178	413.880 415.210	50.556 50.721
56.000	0.000	997.000	1.366	147	409.139	49.977	55.000	5.000	997.000	1.402	171	416.712	50.902
57.000 52.000	0.000	997.000 997.000	1.340	.164	410.479	50.141 50.201	57.000 53.000	5.000 5.000	997.000 997.000	t.375 1 240	.168	418.087 419 425	51.020 51.225
59.000	0.000	997.000	1.290	159	413.083	50.45P	59.000	5.000	997.000	1.323	.162	420,758	51.397
50.000 ∉1 000	0.000	997.000 997.000	1.266	.155	414.350	50.514 So 744	60.000 61.000	5.000 5.000	997.000 997.000	1.293	.159	422.057 423 331	51.555
62.000	0.000	997.000	1.221	.14-	416.314	50,915	62,000	5.000	997.000	1.251	.153	424.582	51,364
53.000 54.000	0.000 0.000	997.000 997.000	1.129	.146	418.013	51.061 51.205	63.000 64.000	5.000 5.000	997.000 997.000	1.229 1.207	.150	425.311 427.018	52.014 52.161
65.000	0.000	992.000	1.157	.141	420.348	51.346	65.000	5.000	997.000	1.186	.145	423.204	52.306
66.000 67.000	0.000	997,000 997,000	1.139	139	421.485	51.435 51.422	66.000 67.000	5.000	997.000 997.000	1.165	.14≧ .140	429.369 430.515	52.448 52.533
68.000	0.000	997.000	1.099	.134	423.703	51.756	63.000	5.000	997.000	1.126	.133	431.641	52.726
20.000	0.000	997.000	1.031	.132 .130	424.784 435.847	51.333 52.013	57.000 70.000	5.000	997.000 997.000	1.107	.135	432.748 433.837	52,994
71.000 72.000	0.000 0.000	997.000 997.000	1.045	.129	425, 394	52.146 ED 070	71.000	5.000 5.000	997.000 997.000	1.071	.131	434.903 425 545	53.125
73,000	0.000	997.000	1.013	.125	428.935	78.278 52.395	73.000	5,000	997.000	1.034	.127	436.999	53.380
74.000 75.000	0.000	997.000 997.000	997	.122	429.933 420.014	52.517 .	74.000 75.000	5.000 5.000	997.000 997.000	1.021 1.005	.125	438.019 439.024	53.505 53 420
76.000	0.000	997.000	.966	.113	431.381	52.755	76.000	5.000	997.000	.939	.121	440.013	53,749
77.000	0.000	997.000 997.000	.952	.116	432.833	52.971	77.000	5.000	997.000 997.000	.974	.119	440.987	53.368 ლი აბლ
79.000	0.000	997,000	.924	.113	434.694	53.099	79.000	5.000	997.000	.945	.115	442.392	54.100
30.000 31 000	0.000	997.000 997.000	.910	.111	435.604 424 501	53.210 52 220	30.000	5.000	997.000 997.000	.931	.114	443.823 444 741	54.214 54.324
32.000	0.000	997.000	.334	.103	437.385	53.428	32.000	5.000	997.000	.905	.110	445.646	54.437
83.000 34.000	0.000	997.000 997.000	.871 .959	.105	438.256 439.115	53.534 53 439	83.000 34.000	5.000 5.000	997.000 997.000	.892 .879	.109 .107	446.537 447.416	54.546 54.653
35.000	0.000	997.000	.347	.103	439,968	53.742	35.000	5.000	997.000	367	106	448.283	54.759
36.000 37.000	$0.000 \\ 0.000$	997.000 997.000	.335 .324	.102	440.793 441.822	53.344 53.945	36.000 37.000	5.000 5.000	997.000 997.000	.855 .843	.104	449.138 449.991	54.363 54.966
39.000	0.000	997.000	.913	.099	442,435	54.044	39.000	5.000	997.000	.932	.102	450.813	55.068
39.000 90.000	0.000	997.000 997.000	.902 .792	.098 .097	443.237 444.099	54.142 51 229	39.000 90.000	5.000 5.000	997.000 997.000	.821	.100	451.634 452.444	55.163 55.267
91,000	0.000	997.000	.781	095	444.310	54.335	91.000	5.000	997.000	.300	.043	453.244	55.365
93.000 93.000	0.000 0.000	997.000 997.000	.771	.094 .093	445.581 446.349	54.429 54.522	92.000 93.000	5.000 5.000	997.000 997.000	739	.096	454.033 454.812	55.461 55.556
94.000	0.000	997.000	.752	.092	447.094	54.614	94.000	5.000	997.000	.769	.094	455.582	55.650
75.000 95.000	0.000 0.000	997.000 997.000	.742	,091 ,090	447.336 448.570	54.704 54.794	95.000 95.000	5.000 5.000	997.000 997.000	.760 .750	.093	456.342 457.092	55.743 55.835
97.000	0.000	997.000	724	. 088	449.294	54.382	97.000	5.000	997.000	.741	.091	457.833	55.925
48.000 99.000	0.000 0.000	997.000 997.000	.715	.087 .084	450.009 450.014	54.970 55.056	98.000 99.000	5.000 5.000	997.000 997.000	.732 .724	.089 .088	453.566 459.239	56.015 56.103
100.000	0.000	997.000		085	451.414	55.141	100.000	5.000	997.000	•715	.037	460.005	56.191

COLUMN 1 = POND DEPTH (CM) COLUMN 2 = SALT CONCENTRATION (S/L) AT MIDPOINT OF PRECEDING DEPTH INTERVAL COLUMN 3 = WATER CONCENTRATION (S/L) AT MIDPOINT OF PRECEDING DEPTH INTERVAL COLUMN 3 = WATER CONCENTRATION (S/L) AT MIDPOINT OF PRECEDING DEPTH INTERVAL COLUMN 4 = ENERGY (W/M2) ABSORED IN PRECEDING DEPTH INTERVAL COLUMN 5 = PER (ENT OF 40AIL, ENERGY ABSORED IN PRECEDING DEPTH INTERVAL COLUMN 5 = PER (ENT OF 40AIL, ENERGY ABSORED IN PRECEDING DEPTH INTERVAL COLUMN 5 = PER (ENT OF 40AIL, ENERGY ABSORED IN PRECEDING DEPTH INTERVAL COLUMN 5 = PER (ENT OF 40AIL, ENERGY ABSORED IN PRECEDING DEPTH INTERVAL COLUMN 7 = CUMULATIVE ENERGY (W/M2) ABSORED AT DEPTH INTERVAL COLUMN 7 = CUMULATIVE ENERGY (W/M2) ABSORED AT DEPTH INTERVAL COLUMN 7 = CUMULATIVE ENERGY (W/M2) ABSORED AT DEPTH INTERVAL COLUMN 7 = CUMULATIVE ENERGY (W/M2) ABSORED AT DEPTH INTERVAL COLUMN 7 = CUMULATIVE ENERGY (W/M2) ABSORED AT DEPTH INTERVAL COLUMN 7 = CUMULATIVE ENERGY (W/M2) ABSORED AT DEPTH INTERVAL COLUMN 7 = CUMULATIVE ENERGY (W/M2) ABSORED AT DEPTH INTERVAL COLUMN 7 = CUMULATIVE ENERGY (W/M2) ABSORED AT DEPTH 1

B-2. Cu^{+2} , 1-m depth, $\Delta d = 1$ cm

B-1. Pure water, 1-m depth, $\Delta d = 1$ cm

COLUMN 1 = POND DEPTH (CM) COLUMN 2 = CALL CONCENTRATION (SAL) AT MIDPOINT OF PRECEDING DEPTH INTERVAL COLUMN 3 = WATER CONCENTRATION (SAL) AT MIDPOINT OF PRECEDING DEPTH INTERVAL COLUMN 4 = ENERGY (WAR2) ABSORBED IN PRECEDING DEPTH INTERVAL COLUMN 5 = PER CENT OF AVAIL, ENERGY ABSORBED IN PRECEDING DEPTH INTERVAL COLUMN 5 = COMMUNITIVE ENERGY (WAR2) ABSORBED IN PRECEDING DEPTH INTERVAL COLUMN 7 = COMMUNITIVE ENERGY (WAR2) ABSORBED TO EPTH 1 COLUMN 7 = COMMUNITIVE PERFORMENT OF AVAIL, ENERGY ABSORBED

.092

100,000

.100

19.621 24.079 26.747 28.660 30.175 19.6581 2.6583 1.517 1.5266 .973817 .6593 .73837 .6593 .539
 437, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 347, 000

 <t $\begin{array}{c} 160, 526\\ 36, 498\\ 21, 849\\ 15, 660\\ 12, 398\\ 10, 371\\ 3, 971\\ 7, 939\\ 6, 515\\ 6, 002\\ 5, 575\\ 4, 904\\ \end{array}$ 160.626 197.124 213.963 234.629 247.029 266.029 266.029 287.1863 287.1863 287.453 287.453 287.453 287.453 287.453 287.453 287.453 287.454 299.545 301.655 4.000 .100 5.000 .100 30,175 31,442 32,533 33,507 34,330 35,909 35,909 37,229 37,392 37,392 33,392 37,392 39,392 30 5.000 6.000 7.000 3.000 9.000 10.000 11.000 .100 .100 .100 .100 .100 .100 .100 12.000 .100 .100 13.000 14.000 15.000 15.000 17.000 13.000 19.000 1100 .599 .566 .537 .511 .488 .467 .449 .449 .430 .410 .100 .100 .100 .100 4.634 4.396 38.929 39.440 39.928 40.395 40.395 40.843 41.274 41.685 +.375 4.185 3.995 3.923 .100 2.567 3.522 3.522 3.277 3.277 3.277 2.379 2.379 2.279 3.279 3.279 3.279 3.279 3.279 3.279 3.791 20.000 .100 20.000 21.000 22.000 23.000 24.000 25.000 26.000 27.000 28.000 29.000 .100 .100 341.231 .100 .100 .100 .100 .100 .100 .100 .400 .386 .373 244.5504 347.704 35504 3553.5704 3553.5754.3335 3564.592.4453 3667.4.590 3667.24.456 3667.24.456 3667.24.456 3667.24.456 3667.24.456 3667.24.255 3773.1256 3375.223 3385.223 3385.223 3385.223 3385.223 3385.223 42.039 .373 .361 .349 .339 .329 2.091 2.613 2.540 2.470 2.403 2.230 2.230 2.232 2.114 2.065 2.114 30.000 .100 .319 100 .310 31.000 32.000 33.000 34.000 35.000 36.000 37.000 38.000 39.000 40.000 .100 .100 .100 .100 .100 .100 .100 . 305 .302 .294 .286 .279 .271 .265 .258 .258 .100 100 100 2.015 .246 47.305 40.000 41.000 42.000 43.000 44.000 45.000 45.000 46.000 .246 .240 .235 .235 .225 .220 .215 .210 .206 47.305 47.546 47.781 48.010 48.235 48.455 48.670 48.890 .100 $\begin{array}{c} 1.963\\ 1.963\\ 1.8398\\ 1.760\\ 1.729\\ 1.7697\\ 1.7697\\ 1.6535\\ 1.5555\\ 1.5955\\ 1.497\\ 1.497\end{array}$ 339.235 391.153 393.038 394.376 396.675 398.435 400.157 .100 .100 .100 400.157 401.844 403.496 405.115 406.701 403.256 409.781 411.276 412.743 414.274 49,086 .100 .100 .100 .100 .100 .190 .100 1.467 1.439 1.413 1.382 1.383 1.314 1.269 1.247 $\begin{array}{c} +445, +155, +155, +145, +155,$ $\frac{1}{22}$,000 $\frac{1}{23}$,00 .199 1.247 1.226 1.206 1.186 1.186 1.167 1.148 1.130 1.112 1.095 1.078 52.040 52.133 52.333 52.475 52.475 52.475 52.475 53.155 53.023 53.155 53.155 53.234 .100 .100 1.062 436.212 437.258 1.046 $\begin{array}{c} 53. 563. 573. 573. 573. 573. 573. 573. 574. 0240 \\ 554. 0240 \\ 554. 0240 \\ 554. 0240 \\ 554. 0240 \\ 554. 0240 \\ 554. 0240 \\ 555. 024$ $\begin{array}{c} +33, \\ +39, \\ +39, \\ +39, \\ +39, \\ +39, \\ +39, \\ +39, \\ +39, \\ +39, \\ +39, \\ +44, \\ +22, \\ +29, \\ +44, \\ +29, \\ +34, \\ +44, \\ +44, \\ +44, \\ +44, \\ +44, \\ +44, \\ +44, \\ +44, \\ +44, \\ +44, \\ +44, \\ +52, \\ +52, \\ +52, \\ +52, \\ +55, \\ +5$.126 .124 .122 .120 .119 .117 .115 .114 .112 .114 .109 .103 .106 .105 .100 33.000 39.000 91.000 92.000 93.000 94.000 95.000 95.000 95.000 95.000 95.000 95.000 95.000 .100 .360 .349 .100 .104 .100 .100 .100 .100 .100 .100 .100 . 339 .102 .839 .828 .818 .798 .799 .779 .779 .779 .7751 .751 .102 .101 .100 .099 .098 .095 .095 .100 .093

S=?| 4

ı

1.000 2.000 3.000

2

.100 .100 .100

3

4

5

÷

7

RR-615

SERI 🏶

z

1	5	3	4	5	6	7
1.000	0.000	997.000	160.517	19.607	160.517	19.607
2.000	0.000	997.000	36.389	4.445	196.906	24.052
3.000	0.000	997.000	21.737	2.655	218.643	26.708
4.000	0.000	997.000	15.553	1.900	234.196	28.608
5.000	0.000	997.000	12.292	1.502	246.488	30.109
6.000	0.000	997.000	10.265	1.204	205.704	31.303
7.000	0.000	997.000 997.000	0.000 7 005	1.003	203.020	32.443
9.000	0.000	997.000	7.033	.201	280.497	34.263
10.000	0.000	997.000	6.413	.783	286.910	35.047
15.000	0.000	997.000	25.829	3.155	312.739	38.202
20.000	0.000	997.000	19.585	2.392	332.324	40.594
25.000	0.000	997.000	15.931	1.946	348.255	42.540
30.000	0.000	997.000	13.443	1.642	361.699	44.182
35.000	0.000	997.000	11.600	1.417	373.299	45.599
40.000	0.000	997.000	10.163	1.241	383.463	46.841
45.000	0.000	997.000	9.006	1.100	392.468	47.941
50.000	0.000	997.000	8.052	.984	400.520	48.924
55.000	0.000	997.000	7.253	.886	407.773	49.810
60.000 (5.000	0.000	997.000	5.377	.803	414.330	00.614 51 044
53.000	0.000	997.000	J.778 5 500	.700 470	420.340	52 010
70.000	0.000	997.000	5.000	.orc 619	420.047	52.010
80 000	0.000	997.000	4 689	573	435.604	53.210
85.000	0.000	997.000	4.358	.532	439.962	53.742
90.000	0.000	997.000	4.066	. 497	444.029	54.239
95.000	0.000	997.000	3.808	465	447.836	54.704
100.000	0.000	997.000	3.578	.437	451.414	55.141
105.000	0.000	997.000	3.373	.412	454.788	55.553
110.000	0.000	997.000	3.189	.390	457.977	55.943
115.000	0.000	997.000	3.024	.369	461.001	56.312
120.000	0.000	997.000	2.876	.351	463.877	56.664
125.000	0.000	997.000	2.741	.335	466.619	56.999
130.000	0.000	997.000	2.619	.320	469.238	57.318
135.000	0.000	997.000	2.008	.305	471.745 474 154	57.623 57 419
140.000	0.000	997.000 997.000	2.407	.274	474.134 176 169	07.717 50 000
143.000	0.000	997.000 997.000	5 530	.203	478 699	58.474
155.000	0.000	997.000	2.152	.263	480.851	58.737
160.000	0.000	997.000	2.081	.254	482.932	58.991
165.000	0.000	997.000	2.014	.246	484.946	59.237
170.000	0.000	997.000	1.953	.239	486.899	59.476
175.000	0.000	997.000	1.896	.232	488.795	59.707
180.000	0.000	997.000	1.843	.225	490.638	59.933
185.000	0.000	997.000	1.794	.219	492.432	60.152
190.000	0.000	997.000	1.748	.214	494.180	60.365
195.000	0.000	997.000	1.705	.208	495.885	60.573
200.000	0.000	997.000	1.664	.203	497.549	50.777 40 075
203.000	0.000	997.000 997.000	1.525	.179	477.173 500 744	60.770 141 170
210.000	0.000	777.000 997 000	1.370	.174	JUU.100 502 222	61.17U 61 360
220.000	0.000	997,000	1.525	.196	502.323	61.546
225.000	0.000	997.000	1.494	.183	505.342	61.729
230.000	0.000	997.000	1.466	.179	506.807	61.908

COLUMN 1 = POND DEPTH (CM) COLUMN 2 = SALT CONCENTRATION (G/L) AT MIDPOINT OF PRECEDING DEPTH INTERVAL COLUMN 3 = WATER CONCENTRATION (G/L) AT MIDPOINT OF PRECEDING DEPTH INTERVAL COLUMN 4 = ENERGY (0/M2) ABSORBED IN PRECEDING DEPTH INTERVAL COLUMN 4 - ENERGY (W/ME/ HESORBED IN FRECEDING DEFINITION OF THE AND COLUMN 5 = PER CENT OF AVAIL. ENERGY ABSORBED IN PRECEDING DEPTH INTERVAL COLUMN 6 = CUMULATIVE ENERGY (W/M2) ABSORBED AT DEPTH 1 COLUMN 7 = CUMULATIVE PER CENT OF AVAIL. ENERGY ABSORBED

B-4. Pure water, 2.3-m depth, $\Delta d = 1$ cm, 5 cm

RR-615

522I 🏶

-

1	2	3	4	5	6	7
1.000	25,500	995.500	161.620	19,742	161,620	19,742
2 000	25 500	995 500	37 542	4,596	199.161	24.328
3 000	25.500	995.500	22.877	2,794	222.038	27,122
4.000	25,500	995.500	16.677	2,037	238.715	29,160
5 000	25 500	995.500	13.401	1.637	252,116	30.797
6 000	25.500	995.500	11.362	1.388	263.478	32,184
7 000	25.500	995.500	9,950	1.215	273,428	33,400
8,000	25.500	995.500	8,908	1.088	282.336	34.488
9,000	25.500	995.500	8,103	. 990	290.439	35.478
10.000	25.500	995.500	7.463	.912	297.901	36.389
15,000	25.500	995.500	30.923	3.777	328.824	40.167
20.000	25.500	995.500	24.436	2,985	353.260	43.152
25.000	25.500	995.500	20.562	2.512	373.822	45.663
30.000	25.500	995.500	17.871	2.183	391.693	47.846
35.000	25.500	995.500	15.841	1.935	407.534	49.781
40.000	25.500	995.500	14.231	1.738	421.765	51.520
45.000	25.500	995.500	12.913	1.577	434.678	53.097
50.000	36.995	993.447	13.536	1.653	448.214	54.750
55.000	49.767	991.167	14.277	1.744	462.491	56.494
60.000	62.539	988.886	14.872	1.817	477.363	58.311
65.000	75.311	986.605	15.297	1.869	492.660	60.179
70.000	88.082	984.325	15.549	1.899	508.209	62.079
75.000	100.854	982.044	15.642	1.911	523.851	63.990
80.000	113.626	979.763	15.594	1.905	539.444	65.894
85.000	126.398	977.482	15.424	1.884	554.868	67.778
90.000	139.170	975.202	15.151	1.851	570.019	69.629
95.000	151.942	972.921	14.792	1.807	584.811	71.436
100.000	164.714	970.640	14.363	1.755	599.175	73.191
105.000	171.604	969.383	13.530	1.653	612.704	74.843
110.000	172.612	969.148	12.429	1.518	625.134	76.361
115.000	173.619	968.913	11.457	1.400	636.591	77.761
120.000	174.627	968.679	10.592	1.294	647.183	79.055
125.000	175.635	968.444	9.817	1.199	657.001	80.254
130.000	176.642	968.210	9.120	1.114	666.121	81.368
135.000	177.650	967.975	8.490	1.037	674.611	82.405
140.000	178.658	967.740	7.917	.967	682.528	83.372
145.000	179.665	967.506	7.396	.903	689.924	84.276
150.000	180.673	967.271	6.920	.845	696.844	85.121
155.000	181.681	967.037	6.483	.792	703.327	85.913
160.000	182.688	966.802	6.082	.743	709.409	86.636
165.000	183.696	966.567	5.712	.698	715.121	87.304
170.000	184.704	966.333	5.371	.636	720.492	88.010
175.000	185.712	966.098	5.056	.618	725.548	88.627
180.000	186.719	965.863	4.763	.582	730.311	89.209
185.000	187.727	965.629	4.491	.349	734.803	89.738
190.000	188.735	963.374 045 140	4.237	.518	737.041	70.270
195.000	189.742	763.16U 044 03E	4.003	.407	743.043	90.703
200.000	170.730	794.72J 064 200	J.(83 9 570	.402	(40.050 750 404	91.CET
203.000	171.(38	704.07U 064 454	3.3/8	• 437 414	752 799	92 077
210.000	176.(83	704.430 044 331	3.300		756 999	92.011
213.000	104 701	704.CCI 040 007	3.200	371	760 035	92.840
225 000	195 700	703.707 963 759	2 979	252	762,912	93.192
220 000	194 794	963.732	2 729	.335	765,642	93.525
LJ0.000	1201120	2001011			1001046	

COLUMN 1 = POND DEPTH (CM) COLUMN 2 = SALT CONCENTRATION (G/L) AT MIDPOINT OF PRECEDING DEPTH INTERVAL COLUMN 3 = WATER CONCENTRATION (G/L) AT MIDPOINT OF PRECEDING DEPTH INTERVAL COLUMN 4 = ENERGY (W/M2) ABSORBED IN PRECEDING DEPTH INTERVAL COLUMN 5 = PER CENT OF AVAIL. ENERGY ABSORBED IN PRECEDING DEPTH INTERVAL COLUMN 6 = CUMULATIVE ENERGY (W/M2) ABSORBED AT DEPTH 1 COLUMN 7 = CUMULATIVE PER CENT OF AVAIL. ENERGY ABSORBED

B-5. EPS, OSU profile, 2.3-m depth, $\Delta d = 1$ cm, 5 cm

522I 🛞

1	يتر	3	વ	5	6	7
-	n a .	-		-		I
1.000	25.500	995.5AQ	161.620	19.742	161.620	19.742
2.000	25,500	995.500	37.542	4.586	199.161	24.328
3.000	25.500	995.500	32.377	8.794	222.039	27.122
4.000	25.500	995 . 500	16.677	2.037	233.715	29.160
5.000	25.500	995 . 500	13,401	1.637	252.116	30.797
6.000	25.500	995.500	11.362	1.388	263.478	32.184
7.000 N 000	25.500	995.500 225.500	7.950 5.505	1.215	273.428	33.400
3.000	20,000 NE 666	995.500 555 655	월 - 코린코 21 - 4 4 5	1.033	ಷ್ಠೇಷ.ವಿಚೇಶ ಎಸ್.ಎ. ಕರ್ಶ	34.488
7.000 10.000	20.000 25.600	220.000 445 566	3.1V2 7.143	.270	200.430	30.478 07 300
15 000	25.500		· · · · · · · · · · · · · · · · · · ·	- 714 2 777	276.701 303 204	20.207
20.000	25.500	995 500	Pa 434	2	253.260 353.260	40.107
25.000	25.500	448,560	20.562	2.512	373.922	45.663
30.000	25.500	995,500	17.971	2.183	391.693	47.846
35.000	29.533	494,959	16.348	1.997	408.041	49.843
40.000	34.600	993.875	15.671	1.914	423.713	51,757
45.000	40.657	993.793	15.163	1.358	439.975	53.610
50.000	46.733	991.709	14.749	1.802	453.624	55.411
55.000	52.300	990.635	14.389	1.757	468.012	57.169
50.000	53.367	999.948	14.053	1.717	482.065	58.985
55.000	54.933 74 000	- 1993,455 335 - 375	13 732	1.577	495.797	60,553 25.504
70.000	71.000 77 647	736.360 442 343	13.414	1.537	207.211 #32 067	56.201 23 004
20.000	00.000 00.100	2004222 909 202	13.075	1.500	012.00/ 535 000	60.001 65 961
35.000	39.30U	994.125	12.447	1.520	547.528	66.932
90.000	95.267	933.04 <i>2</i>	12.115	1.480	559.643	68.362
95.000	101.333	991.959	11.777	1.439	571.420	69.800
180.000	107.400	990.375	11.434	1.397	582.854	71.197
105.000	113.467	979.795	11.036	1.354	593.940	72.551
110.000	119.533	978.703	10.735	1.311	604.675	73.862
115.000	125.600	977.625	10.380	1.268	615.055	75.130
120.000 125 000	131.557	976.042	10.034	1.224	625.078	76.355
120.000	142 364	ライン・サンク コマオーシマニ	7.556 3.544	1.131	504.(40 244 ABA	77.03D 70.370
130.000 185 000	142.000	ారు లు చెర్చి మొౌట్ పాడుస	7.211 9 956	1.100	644.005 652.012	(0.0/0 79 747
40:000	199,000	979.20S	2000 2000	1.051	661.612	20.313
145.000	162.000	971.125	3.259	1.009	569.876	81.887
150.000	168.067	970.042	7.917	.967	677.793	82.794
155.000	171.919	959.309	7.507	.917	635.300	83.711
160.000	173.556	963.933	7.051	. 361	692.350	84.572
165.000	175.194	363,547	6.630	.310	699.930	35.382
170.000	176.831	966.166	5.240	.762	205.220	86.144
175.090	178.457	957.754 517.400	5.330	.718	711.100	86.862 37 5.0
130.000 135.000	180.105	757.493 327 000	0.040 e 204	•577 200	716.640 701 070	87.040 99.179
190.000 190.000	101.744	200.0000 944 441	1.234 J.234	• つつマ られな	(21.0(7 724 922	00.1/7
195.000	195.019	946.P599	4.673	.571	731.496	89,354
200.000	186,656	965.378	4.420	540	735.916	89.894
205.000	198.294	965.497	4.193	.511	740.099	90.405
210.000	199.931	965.116	3.961	.494	744.060	90.889
215.000	191.569	964.734	3.753	.458	747.912	91.347
220.000	193.206	964.353	3.557	.434	751.369	91.781
115.000 370 000	194.844	963.972 1040 501	3.373	.412	754.742	98.193
230.000	175.481	753.D71	3.199	.371	707.941	93.584

COLUMN 1 = POND DEPTH (CM). COLUMN 2 = SALT CONCENTRATION (G/L) AT MIDPOINT OF PRECEDING DEPTH INTERVAL COLUMN 3 = WATER CONCENTRATION (G/L) AT MIDPOINT OF PRECEDING DEPTH INTERVAL COLUMN 4 = ENERGY (W/M2) ARSORRED IN PRECEDING DEPTH INTERVAL COLUMN 5 = PER CENT OF AVAIL. ENERGY ARSORRED IN PRECEDING DEPTH INTERVAL COLUMN 6 = CUMULATIVE ENERGY (W/M2) ARSORRED AT DEPTH 1 COLUMN 7 = CUMULATIVE PER CENT OF AVAIL. ENERGY ARSORRED

B-6. EPS, Edesess' profile, 2.3-m depth, $\Delta d = 1$ cm, 5 cm

RR-615

Document Control	1. SERI Report No.	2. NTIS Accession No.	3. Recipient's Accession No.		
Page	RR-641-615				
Title and Subtitle			5. Publication Date		
Optical Transpa	rency of Inexpens	ive Salt Solutions	July 1981		
for Construction	n of Density-Grad	ient Solar Ponds	6.		
Author(s)	<u> </u>	···· · · · · · · · · · · · · · · · · ·	8. Performing Organization Rept. No.		
John D. Webb		2	· · · · · · · · · · · · · · · · · · ·		
. Performing Organization	Name and Address		10. Project/Task/Work Unit No. 1089 .00		
Solar Energy Re	search Institute		11. Contract (C) or Grant (G) No.		
1617 Cole Blvd			(C)		
Golden, Colorad	o 80401		(G)		
2. Sponsoring Organization	Name and Address	· · · · · · · · · · · · · · · · · · ·	13. Type of Report & Period Covered		
			Research Report		
			14.		
5. Supplementary Notes					
16. Abstract (Limit: 200 wor	ds)		*********		
A laboratory te	sting protocol ha	as been developed that	will permit a comparative		
evaluation of t	he optical perfor	mance of candidate sa	ilts for use in stablilizing		
solar ponds. E	xtinction coeffic	clents measured for th	e salts and for water in		
dual-beam spect	that convolutor	ed with 10-cm quartz	sample cells were input to		
a digital model	iont cimilar to f	a solar spectrum with	i an assumed salt/water con-		
model determine	d the fraction of	available colar ener	ov transmitted to the nond		
storage laver.	This information	a was used to estimate	the size of the pond needed		
to meet a given	set of thermal of	lemands if the candida	ate salt were to be used.		
One candidate s	alt, a by-product	from a flue-gas desu	ulfurization process, was		
tested accordin	g to this protoco	ol. Results indicated	I that this salt would perform		
poorly in compa	rison to commerci	ially available sodium	chloride; however, a		
sensitivity ana	lysis revealed so	ources of error in the	spectrophotometric measure-		
ment procedure,	which may have !	led to an unduly pessi	mistic prediction of per-		
iormance. Ines	to further evaluation		and other conditions 1		
will be subject	LO IUILNEI EVAIN	ng corrected, and this nation for use in pond	and other candidate salts to be constructed on-site.		
Will be subject		ng corrected, and this lation for use in pond	and other candidate salts ls to be constructed on-site.		
Will be subject		ng corrected, and this nation for use in pond	and other candidate salts s to be constructed on-site.		
will be subject 17 Document Analysis a. Descriptors abs sol	corption ; copper ar ponds	ng corrected, and this nation for use in pond ; iron ; magnesium ;	and other candidate salts s to be constructed on-site. salts ; sodium chloride ;		
will be subject 17. Document Analysis a. Descriptors abs Sol b. Identifiers/Open-Ende	corption ; copper ar ponds ad Terms flue-gas	ng corrected, and this nation for use in pond ; iron ; magnesium ; desulfurization salts	and other candidate salts to be constructed on-site. salts ; sodium chloride ; ; light transmittance		
WIII be subject 17. Document Analysis a. Descriptors abs sol b. Identifiers/Open-Ende	orption ; copper ar ponds ad Terms flue-gas	ng corrected, and this nation for use in pond ; iron ; magnesium ; desulfurization salts	and other candidate salts ls to be constructed on-site. salts ; sodium chloride ; ; light transmittance		
Will be subject 17. Document Analysis a. Descriptors abs sol b. Identifiers/Open-Ende c. UC Categories 62a	corption ; copper ar ponds ad Terms flue-gas	ng corrected, and this nation for use in pond ; iron ; magnesium ; desulfurization salts	and other candidate salts ls to be constructed on-site. salts ; sodium chloride ; ; light transmittance		
will be subject 17. Document Analysis a. Descriptors abs sol b. Identifiers/Open-Ende c. UC Categories 62a	corption ; copper ar ponds ed Terms flue-gas , b, e	ng corrected, and this nation for use in pond ; iron ; magnesium ; desulfurization salts	and other candidate salts s to be constructed on-site. salts ; sodium chloride ; ; light transmittance		
WIII be subject 17. Document Analysis a. Descriptors abs sol b. Identifiers/Open-Ende c. UC Categories 62a 18. Availability Statement	corption ; copper ar ponds ed Terms flue-gas , b, e	ng corrected, and this nation for use in pond ; iron ; magnesium ; desulfurization salts	s and other candidate salts ls to be constructed on-site. salts ; sodium chloride ; ; light transmittance		
 will be subject 17. Document Analysis a. Descriptors a. Sol b. Identifiers/Open-Ender c. UC Categories 62a 18. Availability Statement National Techni 	cal Information	ng corrected, and this nation for use in pond ; iron ; magnesium ; desulfurization salts Gervice	s and other candidate salts ls to be constructed on-site. salts ; sodium chloride ; ; light transmittance		
 will be subject 17 Document Analysis a. Descriptors a. Descriptors a. Descriptors a. Descriptors b. Identifiers/Open-Ender c. UC Categories 62a 18 Availability Statement National Techni U.S. Department 	cal Information S of Commerce	ng corrected, and this nation for use in pond ; iron ; magnesium ; desulfurization salts	s and other candidate salts ls to be constructed on-site. salts ; sodium chloride ; ; light transmittance		
 will be subject Document Analysis Descriptors abs Sol b. Identifiers/Open-Ender c. UC Categories 62a 18 Availability Statement National Techni U.S. Department 5285 Port Royal 	corption ; copper ar ponds ar flue-gas , b, e cal Information S of Commerce Road	ng corrected, and this nation for use in pond ; iron ; magnesium ; desulfurization salts Service	and other candidate salts ls to be constructed on-site. salts ; sodium chloride ; ; light transmittance 19 No. of Pages 50 20. Price \$4,50		

د..

•

