Determination of Alternative Fuels Combustion Products: Phase I Report

Kevin A. Whitney
Southwest Research Institute

NREL Technical Monitors: Brent Bailey and Chris Colucci

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

National Renewable Energy Laboratory
1617 Cole Boulevard
Golden, Colorado 80401-3393
A national laboratory of the
U.S. Department of Energy
Managed by the Midwest Research Institute
For the U.S. Department of Energy
Under Contract No. DE-AC36-83CH10093

Prepared under Subcontract Number YAW-3-13253-01 September 1997

FOREWORD

This project was conducted for the National Renewable Energy Laboratory (NREL) by the Department of Emissions Research of Southwest Research Institute (SwRI). This program was authorized by NREL Subcontract No. YAW-3-13253-01. Operation and management of NREL is conducted by Midwest Research Institute for the United States Department of Energy under Prime Contract No. DE-AC36-83CH10093. This program was initiated on October 1, 1993, and testing was completed in October, 1994. This project was based on SwRI Proposal 08-14326 to NREL and was identified within SwRI as Project 08-6068. The NREL Technical Monitors for this program were Mr. Brent Bailey and Mr. Chris Colucci of NREL Alternative Fuels Division, Golden, Colorado. The SwRI Project Manager was Dr. Lawrence R. Smith, and the Project Leader was Mr. Kevin A. Whitney. Mr. Jimmie Chessher, Laboratory Supervisor, was responsible for emission testing.

ABSTRACT

This report describes the laboratory effort to identify and quantify organic exhaust species generated from alternative-fueled light-duty vehicles operating over the Federal Test Procedure on compressed natural gas, liquefied petroleum gas, methanol, ethanol, and reformulated gasoline. The exhaust species from these vehicles were identified and quantified for fuel/air equivalence ratios of 0.8, 1.0, and 1.2, nominally, and were analyzed with and without a vehicle catalyst in place to determine the influence of a catalytic converter on species formation.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

TABLE OF CONTENTS

		<u>Pa</u>	<u>age</u>
TIOT	OF FIG	UIDEG	
L12.1	OF FIG	URES	V
LIST	OF TA	BLES	. v
ACR	ONYMS	S AND ABBREVIATIONS	vi
I.	INTE	RODUCTION	1
	A.	Objective	. 1
	B.	Scope	
	C.	Test Vehicles	
	D.	Test Fuels	. 2
	E.	Test Procedures	. 2
	F.	Emissions Measurement Procedures	. 2
П.	GEN	ERAL EQUIPMENT, INSTRUMENTS, PREPARATIONS,	
		PROCEDURES	. 2
	A.	Description of Test Vehicles	. 2
	В.	Description of Fuel	
	C.	Dynamometer and Constant Volume Sampling System	. 4
	D.	Emissions Test and Sampling Procedures	. 5
	E.	Exhaust Emissions Analyses Procedures	. 6
III.	VEH	ICLE TESTING	10
	A.	Baseline Testing with Gasoline	10
	B.	Testing with LPG	
	C.	Testing with CNG	11
	D.	Testing with Reformulated Gasoline	
	E.	Testing with Ethanol	
	F.	Testing with Methanol	14
	G.	Fuel/Air Equivalence Ratios Achieved During Testing	
IV.	TEST	T RESULTS AND DISCUSSION	15
	A.	Regulated Exhaust Emissions	16
	В.	Toxic Exhaust Emissions	
	C.	Potential Ozone Formation	21

iii

REPORT 08-6068

TABLE OF CONTENTS (Cont'd).

		<u>Page</u>
	D. E. F.	Reactivity Adjustment Factors
V.	SUMI	MARYAND CONCLUSIONS
VI.	RECO	DMMENDATIONS
VII.	REFE	RENCES
APPE	NDICE	S
	A.	COMPUTER PRINTOUT OF EMISSIONS DATA FROM "CHECK-OUT" FTP OF CHEVROLET LUMINA
	В.	COMPUTER PRINTOUTS OF EMISSIONS DATA FROM REFORMULATED GASOLINE BASELINE FTPs OF CHEVROLET LUMINA
	C.	COMPUTER PRINTOUTS OF EMISSIONS DATA FROM FTPs WITH LPG
	D.	COMPUTER PRINTOUTS OF EMISSIONS DATA FROM FTPs WITH CNG
	E.	COMPUTER PRINTOUTS OF EMISSIONS DATA WITH REFORMULATED GASOLINE
	F.	COMPUTER PRINTOUTS OF EMISSIONS DATA WITH ETHANOL
	G.	COMPUTER PRINTOUTS OF EMISSIONS DATA WITH METHANOL
	H.	MAXIMUM INCREMENTAL REACTIVITY ADJUSTMENT FACTORS (MIRs)
	I.	AVERAGE SPECIATED EMISSIONS RESULTS FROM FTPs WITH LPG
	J.	AVERAGE SPECIATED EMISSIONS RESULTS FROM FTPs WITH CNG
	K.	AVERAGE SPECIATED EMISSIONS RESULTS FROM FTPs WITH REFORMULATED GASOLINE
	L.	AVERAGE SPECIATED EMISSIONS RESULTS FROM FTPs WITH ETHANOL
	M.	AVERAGE SPECIATED EMISSIONS RESULTS FROM FTPs WITH METHANOL

LIST OF FIGURES

<u>Figure</u>	<u>Pag</u>	<u>e</u>
1	FTP Driving Schedule Showing Test Segments	5
2	Schematic of Mass Spectral Analyses Sampling System	9
	LIST OF TABLES	
<u>Table</u>	<u>Pag</u>	 <u>e</u>
1	Test Vehicle Descriptions	3
2	Gaseous Fuels Composition	4
3	Properties of the Liquid Fuels	4
4	Chassis Dynamometer Settings	5
5	Test Repeatability Criteria	6
6	Exhaust Species Collection and Analysis Methods	6
7	Initial Lumina Test Results with Gasoline (U.S. FTP Cycle)	i 1
8	Lumina FTP Results Compared to Baseline	12
9	Initial Corsica Test Results with Ethanol (U.S. FTP Cycle)	13
10	FTP Results Before and After Fuel Pump Replacement	14
11	Test Fuel/Air Equivalence Ratios	15
12	Summary of Average FTP Emissions Without Catalyst	17
13	Summary of Average FTP Emissions With Catalyst	18
14	Average FTP Toxic Emissions Rates	20
15	Potential Ozone Formation (mg/mile)	21
16	Reactivity Adjustment Factors	22
17	Prominent Non-Methane Exhaust Species Identified by 24 Hydrocarbon Speciation	23
18	Speciated Compounds Conformed by GC-MS Analysis	24

ACRONYMS AND ABBREVIATIONS

CARB California Air Resources Board **CDM** Calibration/Display Module cfm cubic foot per minute **CFR** Code of Federal Regulations CNG Compressed Natural Gas CO Carbon Monoxide

 CO_2 Carbon Dioxide

Constant Volume Sampler **CVS** DNPH 2,4-dinitrophenylhydrazine

85% denatured ethanol and 15% gasoline E85

E100 100% ethanol

ECM Engine Control Module EGO Exhaust Gas Oxygen

EPA Environmental Protection Agency

EtOH Ethanol

FID Flame Ionization Detector FTP Federal Test Procedure GC Gas Chromatograph

GC/FID Gas Chromatograph/Flame Ionization Detector

Gas Chromatograph/Mass Spectrometry GC/MS

horsepower hp HC Hydrocarbons **IAC** Idle Air Control

1b pound

L/min liters per minute

LPG Liquefied Petroleum Gas

85% methanol and 15% gasoline M85

MEOH methanol mg milligram

Maximum Incremental Reactivity **MIR**

mph miles per hour MS Mass Spectrometer

MTBE methyl tertiary-butyl ether **NDIR** nondispersive infrared **NMOG** Non-Methane Organic Gas

Oxides of Nitrogen NO_{x}

OD Overdrive

OEM Original Equipment Manufacturer

ppb parts per billion

RAF Reactivity Adjustment Factor RFG Reformulated Gasoline

RVP Reid Vapor Pressure

Society of Automotive Engineers SAE scfm standard cubic feet per minute SwRI Southwest Research Institute

THC Total Hydrocarbons THC/FID Total Hydrocarbons as determined by a Flame Ionization Detector

THC/GC Total Hydrocarbons as determined by a Gas Chromatograph

TLEV Transitional Low Emission Vehicle
UDDS Urban Dynamometer Driving Schedule

UEGO Universal Exhaust Gas Oxygen

uv ultraviolet

VIN Vehicle Identification Number

I. INTRODUCTION

In recent years, both government and industry have increased their efforts to develop and advance technology that allows an effective use of alternative transportation fuels, including LPG, CNG, ethanol, and methanol. However, concerns continue over the potential impact of these fuels on air pollution, and on the actual air quality benefits of alternative fuels. For alternative fuels to be viable candidates to replace conventional fuels, it must be demonstrated that their impact on air quality will be no worse than that of existing fuels, and preferably should show characteristics that will improve air quality. To make this determination, it is necessary to identify the engine exhaust species that may be generated from alternative fuels and compare them to those from conventional fuels.

A. Objective

The objective of this program was to identify volatile organic exhaust species generated from alternative-fueled light-duty vehicles operating over the FTP on CNG, LPG, methanol, ethanol, and RFG. The exhaust species from these vehicles were identified and quantified for fuel/air equivalence ratios of 0.8, 1.0, and 1.2, nominally, and were analyzed with and without a catalyst in place to determine the influence of a catalytic converter on species formation.

B. Scope

A total of five fuels were evaluated under this program (LPG, CNG, methanol, ethanol, and RFG). Each fuel was evaluated on one of two vehicles at nominal fuel/air equivalence ratios of 0.8, 1.0, and 1.2. Duplicate FTP tests were conducted at each equivalence ratio, with and without the catalyst in place, for a total of 12 FTPs per fuel (3 equivalence ratios × 2 sampling configurations [with and without catalyst] × duplicate tests) — a total of 60 FTP tests for the 5 fuels.

THC, CO, NO_x , and CO_2 emissions were quantified, using proportional exhaust gas samples collected in Tedlar bags, in a manner consistent with EPA protocols for light-duty emissions testing. Analytical procedures for conducting hydrocarbon speciation (C_1 to C_{12} hydrocarbons, aldehydes and ketones) were similar to the CRC Auto/Oil Phase II methods. Using the results of speciation, a limited comparison of the ozone-forming potential of each vehicle/fuel combination was undertaken based on the MIR scale as used by CARB for individual exhaust species. Mass spectral analyses were also conducted on exhaust samples to determine exhaust hydrocarbons not identified by other speciation methods.

C. <u>Test Vehicles</u>

Two test vehicles were used in this program. A 1993 Chevrolet Lumina equipped with a 3.1-liter V-6 engine was used for the evaluation of LPG, CNG, and RFG combustion products. This vehicle was obtained from a local leasing company and was equipped with appropriate aftermarket conversion kits for operation on CNG and LPG. A 1988 Chevrolet Corsica, obtained from the University of Tennessee, was employed for testing with ethanol and methanol. This vehicle was originally provided to the University by General Motors for participation in the SAE Methanol Marathon. This vehicle was equipped with a CDM which allowed for modification of fuel control system calibrations. Separate calibrations were provided by the University of Tennessee for operation on ethanol and methanol. A more detailed description of the test vehicles is given in Section II.A.

D. Test Fuels

This program used five different test fuels in the FTP evaluations: commercially available LPG, CNG blended by SwRI to reflect average gas composition available in the United States, ⁽²⁾ a fuel blended by Phillips Petroleum to represent California Phase 2 RFG, chemical grade ethanol (>99% pure), and chemical grade methanol (>99%pure). A more detailed description of the test fuels is given in Section II.B.

E. Test Procedures

Exhaust emissions were evaluated using the chassis dynamometer portion of the light-duty Federal Test Procedure as described in the CFR, Title 40, Part 86, Subpart B. A more detailed description of the test procedures is given in Section II.C.

F. Emissions Measurement Procedures

Analyses of exhaust samples included determination of regulated exhaust emissions by CFR methods, hydrocarbon speciation and analyses of aldehyde and ketone according to Auto/Oil Phase II methods, and the determination of trace exhaust species by mass spectral analysis methods. A more detailed description of the emissions measurement procedures is given in Section II.D.

II. GENERAL EQUIPMENT, INSTRUMENTS, PREPARATIONS, AND PROCEDURES

This section describes the test vehicles, test fuels, testing and analytical procedures, and general instrumentation used throughout this project.

A. Description of Test Vehicles

A 1993 Chevrolet Lumina was used to evaluate the LPG, CNG, and RFG fuels while a 1988 Chevrolet Corsica was used to evaluate the ethanol and methanol fuels. Using two different vehicles for these evaluations provided adequate qualitative information concerning exhaust emissions; however, quantitative comparisons of exhaust emissions between the two vehicles has limited value.

The 1993 Chevrolet Lumina used to evaluate LPG, CNG, and RFG was equipped with an appropriate conversion kit for each of the gaseous fuels. Both kits were Mogas ECOLO-Feedback carbureted systems. These kits used feedback from the OEM EGO sensor to regulate a fuel control valve to maintain fuel/air stoichiometry. The kits were installed and tuned by SwRI according to the manufacturer's instructions.

The 1988 Chevrolet Corsica, used to evaluate the ethanol and methanol, originally operated on gasoline and was converted to M85 operation by the University of Tennessee as part of the SAE Methanol Marathon. The vehicle came equipped with a CDM which allows the user to modify the vehicle's fuel injection and ignition timing calibrations. The University has maintained the vehicle as a research tool and leased the vehicle to SwRI for this program. As provided, the vehicle was calibrated to operate on ethanol. A separate calibration for operation on methanol was also provided. Descriptions of both test vehicles are provided in Table 1.

TABLE 1. TEST VEHICLE DESCRIPTIONS

Item	Desc	Description		
Vehicle	Lumina	Corsica		
Vehicle Body Style	2-door Euro sedan	4-door sedan		
VIN	2G1WN14TXP9261375	1G1LT51W8JY667124		
Vehicle Odometer	5,685 miles (as received)	14,705 miles (as received)		
Engine Family	P1G3.4V8XGZ5/PBO-1K	NA (special waiver)		
Engine Type	3.1-liter V-6	2.8-liter V-6		
Transmissions	4-speed automatic OD	5-speed manual		
Fuel System	multi-point fuel injection	multi-point fuel injection		
Tires	P205/70R15	195/70-R14		

To force the vehicles to operate at fuel/air equivalence ratios other than stoichiometry, each vehicle's switching EGO sensor was replaced with a UEGO sensor. The UEGO sensor was capable of operating throughout the range of fuel/air equivalence ratios required by this program. The UEGO signal was passed through a comparator circuit to generate a switching output similar to that of an EGO sensor. The comparator output was connected to the EGO sensor input of each vehicle's fuel control system. By using a comparator switchpoint that was tunable by the operator, the closed loop system was adjusted to control to equivalence ratios other than stoichiometry.

During tests conducted on LPG, CNG, ethanol, and methanol, each vehicle was fitted with a 3-way catalyst designed for application on alcohol-fueled Luminas. According to engineers at GM, this catalyst was more suited for use with CNG and LPG than the OEM gasoline catalyst on the Lumina. In addition, this catalyst was also installed on the Corsica to replace a damaged catalyst that was provided with the vehicle. The performance of the new catalyst was stabilized, using a 24-hour break-in period on an engine dynamometer, before the catalyst was installed on the first test vehicle. Although the break-in period was not meant to simulate any specific vehicle driving schedule, the break-in can generally be considered equivalent to 4,000 miles of in-use driving. The OEM gasoline catalyst, as received on the Lumina, was used during all testing with reformulated gasoline.

B. <u>Description of Fuel</u>

This program used five different test fuels in emissions evaluations: commercially available LPG, CNG blended by SwRI to reflect average gas composition available in the United States, ⁽²⁾ a fuel blended by Phillips Petroleum to be representative of California Phase 2 RFG, ethanol of >99% purity, and methanol with >99% purity. Compositions of the gaseous fuels are given in Table 2. Note that the LPG used in this program did not meet the HD-5 specification for propylene content, which is 5% maximum. However, this fuel was represented by the supplier as a motor grade fuel. With the approval of the NREL Technical Monitor, this fuel was used as a representative sample of commercially available LPG. Selected properties for reformulated gasoline and the alcohol fuels are given in Table 3.

TABLE 2. GASEOUS FUELS COMPOSITION

	Fuel Composition (volume percent)		
Fuel Component	LPG ^a	CNG⁵	
Methane	0.1	92.7	
Ethane	2.0	3.4	
Propylene	6.1	0.0	
Propane	91.4	1.3	
Butane and higher	0.4	0.0	
Nitrogen	0.0	2.6	

^{*} Average of duplicate analyses from each of two LPG cylinders (4 samples total) using ASTM Method D2163

TABLE 3. PROPERTIES OF THE LIQUID FUELS

Fuel Properties	Phase 2 RFG	Ethanol	Methanol
RVP, psi	6.9	2.6	5.0
Sulfur, ppm	33	<0.01	<0.01
Benzene, vol %	0.84	0.0	0.0
Aromatics	27.1	0.0	0.0
Olefins, vol %	4.6	0.0	0.0
Distillation, °F 50% 90%	210 294	169 169	146 146
Oxygenate, vol %	11.2% MTBE	100% Ethanol	99% Methanol
Carbon, wt %	84.1	52.3	37.5
Hydrogen, wt %	13.9	13.1	12.3
Oxygen, wt%	2.0	34.6	50.2

C. <u>Dynamometer and Constant Volume Sampling System</u>

A Clayton, Model ECE-50 passenger car chassis dynamometer with a direct-drive variable inertia flywheel system was used for all testing. The inertia weight simulates equivalent weights of vehicles from 1,000 lb to 8,875 lb in 125-lb increments. Dynamometer settings used for this test program are given in Table 4. A positive displacement-type constant volume sampling system with a nominal flow capacity of 565 scfm was used to dilute the vehicle's exhaust. A cooling fan of 5,000 cfm capacity was used in front of the test vehicle

^b Average of duplicate analyses from each of two CNG batches (4 samples total) using ASTM Method D1945

during all emissions test driving cycles. In addition, the hood of each test vehicle was fully open during all driving cycles. The cooling fan was off and the hood was closed during soak periods.

TABLE 4. CHASSIS DYNAMOMETER SETTINGS

FIGURE 1. FTP DRIVING SCHEDULE SHOWING TEST SEGMENTS

Item	Lumina	Corsica
Inertial Weight	4,000 lb	3,500 lb
Actual Road Load @ 50 mph	6.5 hp	4.5 hp

D. <u>Emissions Test and Sampling Procedures</u>

Exhaust emissions were evaluated using the light-duty FTP.⁽¹⁾ This procedure uses the UDDS, which is 1,372 seconds in duration. The UDDS is divided into two segments: the first consists of 505 seconds and the second consists of 867 seconds. An FTP is composed of a cold-transient 505 and a cold-stabilized 867 portion, followed by a 10-minute soak, and then a hot-transient 505. The FTP driving schedule with its cold- and hot-transient test segments is shown in Figure 1.

A repeat pair of valid FTPs were conducted at each test point, for a total of 12 FTPs per fuel (3 equivalence ratios × 2 sampling configurations [with and without catalyst] × duplicate tests). Test-to-test repeatability criteria, as developed under the Auto/Oil Air Quality Improvement Research Program, (3) were used for this program and are given in Table 5. Using this method, repeatability ratios were calculated for each repeat pair of valid tests. The repeatability ratio for each exhaust constituent is the ratio of the high and low values obtained from the duplicate tests. If one of the calculated ratios was greater than the criteria given in Table 5, a third FTP test was conducted and averaged with the results of the first two tests.

TABLE 5. TEST REPEATABILITY CRITERIA

Exhaust Constituent	Repeatability Ratio
THC	1.33
СО	1.70
NO _x	1.29

E. Exhaust Emissions Analyses Procedures

A summary of exhaust emissions sampling and analytical techniques used in this program is given in Table 6. A more detailed description of these techniques is listed below.

TABLE 6. EXHAUST SPECIES COLLECTION AND ANALYSIS METHODS

Compounds	Method of Collection	Method of Analysis
Total Hydrocarbons	Bag	FID
Carbon Monoxide	Bag	NDIR
Oxides of Nitrogen	Bag	Chemiluminescent analysis
Carbon Dioxide	Bag	NDIR
Hydrocarbon Speciation, C ₁ - C ₁₂	Bag	GC-FID
Aldehydes and Ketones	Impingers containing DNPH	HPLC-UV
Methanol and Ethanol	Impingers containing water	GC-FID
Unidentified compounds	Sorbant cartridge	Mass spectral analysis

1. Regulated Gaseous Emissions

THC or OMHCE, CO, NO_x, and CO₂ emissions were quantified in a manner consistent with EPA protocols for light-duty emissions testing as given in the Code of Federal Regulations, Title 40, Part 86, Subpart B. HC, CO, NO_x, and CO₂ were sampled using proportional exhaust gas samples collected in Tedlar bags. HC were measured using an FID. CO and CO₂ were determined using NDIR instruments. NO_x was measured using a chemiluminescent instrument. Wet absorption techniques were employed to collect methanol, ethanol, and aldehydes for the determination of OMHCE. These techniques are discussed in more detail below.

Methane levels were determined using proportional exhaust gas samples collected in Tedlar bags. A GC equipped with an FID was utilized in accordance with the SAE J1151 procedure to analyze the samples. The GC system was equipped with a packed column

to resolve methane from other hydrocarbons in the sample. Samples were introduced into a 5-mL sample loop via a diaphragm pump. For analysis, the valve was switched to the inject position and the helium carrier gas swept the sample from the loop toward the detector through a $61~\rm cm \times 0.3~cm$ Porapak N column in series with a $122~\rm cm \times 0.3~cm$ molecular sieve 13X column. As soon as the methane peak passed into the molecular sieve column, the helium flow was reversed through the Porapak N column to vent. Peak areas were compared to an external calibration standard.

2. Hydrocarbon Speciation Procedures

NMOG emissions were determined by hydrocarbon speciation. Analytical procedures for conducting the hydrocarbon speciation (C_1 to C_{12} hydrocarbons, aldehydes and ketones, and alcohols) were similar to the CRC Auto/Oil Phase II methods. With these methods, exhaust samples are analyzed for the presence of more than 190 different exhaust species. The sum of the masses of non-methane species is equivalent to the NMOG emissions rate. Three GC procedures and one HPLC procedure were used to identify and quantify specific compounds. A brief description of these procedures is given below.

a. C₁-C₄ Species

The first GC procedure allowed the separation and determination of exhaust concentrations of $\mathrm{C_1\text{-}C_4}$ individual hydrocarbon species, including methane; ethane; ethylene; acetylene; propane; propylene; propadiene; butane; trans-2-butene; 1-butene; 2-methylpropene; 2,2-dimethylpropane; propyne; 1,3-butadiene; 2-methylpropane; 1-butyne; and cis-2-butene. Bag samples were analyzed using a gas chromatograph equipped with an FID. The gas chromatograph system utilized a Hewlett-Packard Model 5890 Series II GC with an FID, two pneumatically operated and electrically controlled valves, and two analytical columns. The carrier gas was helium. An external multiple component standard in zero air was used to quantify the results. Detection limits for the procedure were on the order of 5 ppbC in dilute exhaust for all compounds.

b. C_5 - C_{12} Species

The second GC procedure provided separation and exhaust concentrations for more than $100~\rm C_5\text{-}C_{12}$ individual HC compounds. Bag samples were analyzed using a gas chromatograph equipped with an FID. The GC system utilized a Hewlett-Packard Model 5890 Series II GC with an FID, a pneumatically operated and electrically controlled valve, and an analytical column. The carrier gas was helium. An external multiple component standard in zero air was used to quantify the results. Detection limits for the procedure were on the order of 10 ppbC in dilute exhaust for all compounds.

c. Benzene and Toluene

The third GC procedure used a separate system configured similarly to those mentioned above to determine individual concentrations of benzene and toluene according to the CRC Auto/Oil Phase II Protocol.

7

REPORT 08-6068

d. Aldehydes and Ketones

An HPLC procedure was utilized for the analysis of aldehydes and ketones. Samples were collected by bubbling dilute exhaust at a nominal flowrate of 4 L/min through chilled glass impingers containing an acetonitrile solution of 2,4-DNPH and perchloric acid. For analysis, a portion of the acetonitrile solution was injected into a liquid chromatograph equipped with a UV detector. External standards of the aldehyde and ketone DNPH derivatives were used to quantify the results. The aldehydes and ketones measured were: formaldehyde, acetaldehyde, acrolein, acetone, propionaldehyde, crotonaldehyde, isobutyraldehyde/methylethylketone (not resolved from each other during normal operating conditions, and so reported together), benzaldehyde, and hexanaldehyde. Detection limits for this procedure were on the order of 0.005 ppm aldehyde or ketone in dilute exhaust.

3. Alcohols

The collection of methanol and ethanol in exhaust was accomplished by bubbling exhaust through glass impingers. Each impinger contained 25 mL of deionized water maintained at ice-bath temperature. Exhaust samples were collected continuously during test cycles at a nominal flow rate of 4 L/min through a Teflon sample line held at 102°C (215°F). For analysis, a 1-µL portion of the sample was injected into the GC equipped with an FID and an analytical column. The analytical column was a 0.53-mm × 30-m capillary column with a 1-µm film of DB-WAX as the stationary phase. The GC carrier gas was helium at a column head pressure of approximately 4 psi. The column oven temperature was maintained at 70°C for 1 min, then ramped to 110°C at 10°/min, and held at 110°C for 5 min. External standards in deionized water were used to quantify the results. Detection limits for this procedure were on the order of 0.06 ppm in dilute exhaust.

4. Mass Spectral Analyses

Mass spectral analyses were also conducted on exhaust samples in an effort to determine exhaust hydrocarbons not identified by the previously described speciation methods. Sample collection was accomplished by drawing CVS-diluted exhaust through two tubes in series, each packed with a solid sorbent material. Figure 2 is a schematic drawing of the sampling system.

8

REPORT 08-6068

FIGURE 2. SCHEMATIC OF MASS SPECTRAL ANALYSES SAMPLING SYSTEM

Exhaust samples were collected continuously during the test cycle. The temperature of the sampling system up to the sorbent tubes is maintained at 375°F. Before reaching the sorbent tubes, the sample passes through heated, flip-top filter holders fitted with glass fiber particulate filters. The sorbent tubes are borosilicate glass tubes packed with a proprietary sorbent material, which is held in place with small end plugs of silanized glass wool.

For analysis, the samples were thermally desorbed onto a GC column coupled to a quadruple MS and a FID. A thermal desorption autosampler is used to heat the sorbent tube to 300°C while helium, the inert carrier gas, purges the sample from the tube. The sample is subsequently caught on a cryogenically cooled trap maintained at -100°C. The tube is purged for 300 seconds. At this point the cryogenic trap is ballistically heated to 300°C, introducing the sample onto the GC column. A splitless period of 30 seconds is used. To help in resolving the lighter compounds, the GC is cryogenically cooled at the start of the analysis, then ramped to the final set point. During the sample analysis period, the autosampler switches modes to further clean and condition the sorbent tube for future sampling by continuing to heat and purge the tube.

Hydrocarbons smaller than C_6 are not collected by the solid sorbent material. However, the C_1 to C_5 compounds are readily identified by the three GC speciation methods described in Section II.E.2.

III. VEHICLE TESTING

A. Baseline Testing with Gasoline

To establish a baseline on the Chevrolet Lumina, an initial "check-out" FTP was conducted using the unleaded gasoline present in the vehicle when it was delivered. The results of this test are given in Table 7. A detailed computer printout of the emissions data is presented in Appendix A. The results of this test showed the vehicle emitted an unexpectedly high amount of CO. Because of these results, the vehicle underwent a thorough diagnostic check. Although the "CHECK ENGINE" light was not illuminated, an error code was resident in the ECM memory. This code indicated an error in the operation of the IAC valve. The valve was inspected, appeared to be in proper working order, and was reinstalled.

The vehicle was refueled with RFG, the error code was cleared, and the vehicle was driven in urban traffic to ensure that the error code would not repeat. The vehicle was then driven over the UDDS three times as preconditioning for FTP testing. Throughout 15 miles of urban driving and 22.5 miles of operation on the chassis dynamometer, the IAC error code never reoccurred.

Duplicate FTPs were conducted on RFG to confirm proper vehicle operation and to establish baseline emissions levels for this program. Results of these tests are presented in Table 7. The repeatability of the two tests met the Auto/Oil program's test repeatability criteria. Detailed computer printouts of the emissions data are presented in Appendix B. For comparison purposes, FTP results from two other Luminas tested at SwRI (from NREL Report No. TP-421-5462) are also provided. Although the average CO emissions from these duplicate baseline tests were slightly above EPA standards, overall emissions seem to be representative

of this model vehicle. These baseline results were approved by the NREL Technical Monitor before the program proceeded.

TABLE 7. INITIAL LUMINA TEST RESULTS WITH GASOLINE (U.S. FTP CYCLE)

Test Vehicle	Test No.	Test Fuel	HC g/mile	CO g/mile	NO _x g/mile
'93 Lumina Checkout ^a	CHECK-OUT	unleaded gasoline (as received)	0.31	6.02	0.59
'93 Lumina Baselinea	L-PH2-REF-R1	Phase 2 RFG	0.21	3.34	0.36
'93 Lumina Baselinea	L-PH2-REF-R2	Phase 2 RFG	0.25	4.64	0.32
'91 Lumina Baseline ^b	average of 2 tests	Howell EEE	0.37	4.56	0.49
¹92 Lumina Baseline⁵	average of 3 tests	Howell EEE	0.32	4.25	0.40

^a This project

B. Testing with LPG

The LPG conversion kit was installed on the vehicle without difficulty. At the recommendation of GM, the catalytic converter was replaced with one designed for use in an alcohol-fueled Lumina. Prior to installation, this catalyst was stabilized in a test cell as described in Section II.A. In addition, the UEGO sensor and comparator circuit needed to control fuel/air equivalence ratio were installed. The vehicle operated satisfactorily over the FTP at stoichiometry. However, lean operation of the vehicle was limited by poor driveability. In addition, rich operation of the vehicle was limited to a 1.15 equivalence ratio. Settings richer than this led to uncontrolled operation of the conversion kit. The fuel control system was able to maintain fuel/air equivalence ratios around desired set points throughout most portions of the FTP. However, the system would not maintain adequate fuel control during heavy accelerations and decelerations. In addition, the conversion kit operated extremely rich during FTP idles (1.18~1.20 air-fuel equivalence ratio) in all states of adjustment. SwRI contacted the kit manufacturer concerning this situation; however, attempts to change the idle performance of the conversion kit were unsuccessful. Testing on LPG proceeded smoothly, and repeatability criteria were met at all test conditions. Detailed computer printouts of the emissions results for these tests are provided in Appendix C.

C. Testing with CNG

The CNG conversion kit for this program shared many of its parts with the LPG kit. To configure the vehicle to operate on CNG, the pressure regulator, feedback fuel control valve, and air/gas mixer from the LPG kit were replaced with components appropriate to operation on CNG. The vehicle operated satisfactorily over the FTP at stoichiometry and lean conditions. Rich operation of the vehicle was limited by poor driveability. The fuel control system was able to maintain fuel/air equivalence ratios around desired set points throughout most portions of the FTP. However, as was the case with LPG operation, the system would not maintain adequate fuel control during heavy accelerations and decelerations, and operated extremely rich at idle (1.18~1.20 air-fuel equivalence ratio) during FTP tests, even at stoichiometric and

^b From NREL Report No. TP-421-5462

lean calibrations. SwRI also contacted the kit manufacturer concerning this situation; however, as was the case with LPG, attempts to change the idle performance of the conversion kit were unsuccessful.

Testing with CNG was temporarily delayed after only three tests were conducted. The cause of the delay was to ensure worker safety during CNG testing. A safety concern arose as a result of fuel tank failures in California and Minnesota involving CNG-fueled pickup trucks equipped with aluminum/fiberglass composite fuel cylinders. SwRI was fueling the CNG test vehicle from aluminum/fiberglass composite cylinders and felt it was prudent to remove these cylinders from service. Steel cylinders were obtained for CNG storage, and testing proceeded after a 2-week delay.

The CNG that remained in the aluminum/fiberglass composite cylinders was transferred to the steel cylinders. The test matrix had been interrupted between duplicate test runs with the vehicle operating at a 1.0 fuel/air equivalence ratio without a catalyst. When the testing resumed, HC emissions results from the duplicate tests conducted before and after the delay differed significantly. A third test was conducted, and the results of the two tests conducted after the delay were within repeatability requirements for this program. There were no further test-to-test repeatability problems while operating the vehicle on CNG. Detailed computer printouts of the emissions results for these tests are provided in Appendix D.

D. <u>Testing with Reformulated Gasoline</u>

After the Lumina was restored to its original configuration, the UEGO sensor and comparator circuit used during testing on LPG and CNG were re-installed. Test L-PH2-1.0-CK2 was conducted for comparison to baseline results to ensure proper operation of the vehicle and fuel control system. Emissions results of Test L-PH2-1.0-CK2 are compared to average baseline emissions in Table 8 and represent tests conducted 5 months apart. Emissions results were similar enough to meet the test-to-test repeatability criteria for this program and they confirmed proper vehicle operation. The test vehicle operated satisfactorily over all operating conditions and maintained desired fuel/air equivalence ratios over most operating conditions; however, when testing at lean conditions, the vehicle would operate near stoichiometry during accelerations due to fuel enrichment compensation. Testing with reformulated gasoline proceeded smoothly, and repeatability criteria were met at all test conditions. Detailed computer printouts of the emissions results are provided in Appendix E.

TABLE 8. LUMINA FTP RESULTS COMPARED TO BASELINE

Test	Average of 2 baseline tests	L-PH2-1.0-CK2
FID HC ^a (g/mi)	0.23	0.25
CO (g/mi)	3.99	4.64
NO _x (g/mi)	0.34	0.32

Hydrocarbon as measured with flame ionization detector calibrated on propane

E. Testing with Ethanol

As received, the Chevrolet Corsica was calibrated to operate on ethanol. To prepare the vehicle for testing, an OEM 3-way catalyst designed for use in an alcohol-fueled Lumina was installed. This catalyst was the same one used in previous testing of LPG and CNG. In addition, a wide range oxygen sensor and the custom closed-loop fuel control system used in previous testing were installed on the vehicle. These systems appeared to operate properly when the test vehicle was driven over the UDDS. However, the vehicle did not start or idle well when the engine was at ambient temperature. An FTP test (C-ETH-1.0-CK1) was conducted to determine the extent of the driveability problems. Emissions results for this test are given in Table 9. Engine cranking was necessary for approximately 8 seconds before engine firing occurred. Cold-start idle was rough, and the engine stumbled and backfired during the first acceleration of the FTP. However, once the vehicle warmed up and entered closed-loop operation, driveability was satisfactory. This vehicle was originally calibrated to operate on M85, and E100 has a much lower volatility; therefore, it was necessary to modify the cold-start calibration to provide additional fuel during starting and warmup. Using the CDM on the vehicle, open-loop acceleration fuel enrichment was increased until the vehicle operated smoothly over the complete FTP cycle. The CDM is a dash-top computer that contains all the vehicle calibrations for ethanol and methanol operation. FTP emissions results with the final calibration (C-ETH-1.0-CK8) are also given in Table 9. Although the calibration modifications resulted in increased mass emissions from the vehicle, they were necessary to maintain satisfactory driveability over the FTP.

TABLE 9. INITIAL CORSICA TEST RESULTS WITH ETHANOL (U.S. FTP CYCLE)

Test Number	C-ETH-1.0-CK1	C-ETH-1.0-CK8
FID HC ^a (g/mi)	0.577	0.895
CO (g/mi)	1.761	4.288
NO _x (g/mi)	0.494	0.571
Fuel Economy (mpg)	11.38	11.36

^a Hydrocarbon as measured with flame ionization detector calibrated on propane; not corrected for differing response to alcohols.

Testing with ethanol was initiated; however, after the first test (C-ETH-1.0-C1), the fuel pump failed and had to be replaced. When the testing resumed, HC emissions results from the duplicate tests (C-ETH-1.0-C1 and C-ETH-1.0-C2) differed significantly. A third test (C-ETH-1.0-C3) was conducted and the results of that test and test C-ETH-1.0-C2 were within repeatability requirements for this program. These data are presented in Table 10. No further repeatability problems were encountered during testing with ethanol.

TABLE 10. FTP RESULTS BEFORE AND AFTER FUEL PUMP REPLACEMENT

		TEST		REPEATABILITY RATIO				
	C-ETH-1.0-C1	C-ETH-1.0-C2	C-ETH-1.0-C3	E1 to E2	E2 to E3	LIMIT		
TEST DATE	06/21/94	06/24/94	06/27/94					
ODOMETER (miles)	14,871	14,903	14,921					
FID HC ^a (g/mi)	1.009	0.702	0.861	1.44	1.23	1.33		
CO (g/mi)	4.134	3.284	3.719	1.26	1.13	1.70		
NO _x (g/mi)	0.479	0.557	0.542	1.16	1.03	1.29		

Total hydrocarbons as measured with flame ionization detector calibrated on propane; not corrected for differing response to alcohols.

After conducting tests at stoichiometry with and without the catalyst, the vehicle was tested at lean conditions. With the exception of poor vehicle driveability, no problems were encountered during the lean-operation tests. Following testing at lean conditions, preparations were made to test the vehicle under fuel-rich conditions. However, the CDM on this vehicle is apparently equipped with a fail-safe device that prohibits extremely rich operation. The SwRI custom fuel control system was not able to adjust the control system to force the vehicle to operate rich. In an effort to get the vehicle to operate at rich conditions, SwRI consulted with General Motors; however, no obvious solutions were found. In an effort to force the vehicle to operate fuel-rich, the coolant temperature sensor was bypassed with the signal from an identical sensor placed in ice water. This condition forced the vehicle to use a cold-temperature calibration that provided additional enrichment and to remain in open-loop operation longer. However, the resulting operation was only slightly richer than stoichiometry. In addition, vehicle driveability during open-loop operation was less than satisfactory. Idle was rough, and the engine would stumble and backfire during accelerations. However, the vehicle was able to meet repeatability criteria for all test conditions. Detailed computer printouts of the emissions results for individual tests are provided in Appendix F.

F. Testing with Methanol

After testing on ethanol, the fuel system was drained and flushed with methanol, and the vehicle's calibration was changed to the one specified by the University of Tennessee for operation on methanol. However, the vehicle did not start or idle well when the engine was at ambient temperatures, and the vehicle could not be driven satisfactorily over the FTP. Cold-start idle was rough, the engine stumbled and backfired, and the vehicle could not follow the FTP trace during heavy acceleration in the open-loop fuel-control mode. While attempting to correct the open-loop performance of the vehicle, the CDM malfunctioned, and the vehicle would not operate properly. After repairs were made, the open-loop calibration of the vehicle was adjusted. The vehicle operated smoothly over the FTP cycle, except during the first 60 seconds of Bag 1. In this case, the vehicle was in open-loop fuel control and would stumble and

Bepeatability ratio is ratio of the larger to the smaller value of the repeat pair. Repeatability ratio criteria per SAE Paper 920319.

sometimes backfire slightly during accelerations. Attempts to improve the open-loop fuel calibration of the vehicle were unsuccessful. After consulting with the NREL Project Officer, it was determined that further calibration of the vehicle was beyond the scope of this program.

As with operation on ethanol, the vehicle could not be adjusted to operate rich as planned. As was done during testing on ethanol, the coolant temperature sensor was bypassed with the signal from an identical sensor placed in ice water in an effort to make the vehicle operate fuel-rich. This condition forced the vehicle to use a cold-temperature calibration, which provided additional enrichment, and to remain in open-loop operation longer. However, as was the case with ethanol, the resulting operation was only slightly richer than stoichiometry and vehicle driveability during open-loop operation was less than satisfactory. Idle was rough, and the engine would stumble and backfire during accelerations. The vehicle was able to meet repeatability criteria for all test conditions. Detailed computer printouts of the emissions results for individual tests are included in Appendix G.

G. Fuel/Air Equivalence Ratios Achieved During Testing

For each fuel, the fuel control system was tuned to the desired fuel/air equivalence ratio set point by operating the vehicle on the chassis dynamometer at a steady-state condition of 50 mph. Actual road load was set at 6.5 hp for the Lumina and 4.5 hp for the Corsica. These road loads correspond to the dynamometer setting during FTP testing. The fuel/air equivalence ratio set points used during testing with each fuel are shown in Table 11. As previously noted, target equivalence ratios were not achieved for all test conditions. Lean operation on LPG, ethanol, and methanol was limited by poor driveability, as was rich operation on CNG. Rich operation on LPG, ethanol, and methanol was limited by the capabilities of the vehicles' fuel-control systems.

TABLE 11 - TEST FUEL/AIR EQUIVALENCE RATIOS

Fuel/Air Equivalence Ratio										
Desired	LPG	CNG	RFG	EtOH	MtOH					
0.8	0.83	0.80	0.81	0.86	0.90					
1.0	1.01	0.99	0.99	1.01	1.00					
1.2	1.15	1.10	1.20	1.05	1.05					

IV. TEST RESULTS AND DISCUSSION

This section includes the presentation and discussion of results of testing with all the fuels. Regulated exhaust emissions, toxic exhaust emissions, speciated exhaust emissions, potential ozone formation, and mass spectral analyses results are provided.

A. Regulated Exhaust Emissions

Tables 12 and 13 show NMOG, CO, and NO, exhaust emissions for each of the five fuels as a function of operating conditions without and with the vehicle catalyst in place, respectively. Also contained in Tables 12 and 13 are values for both the average THC mass emissions determined by hydrocarbon speciation (THC/GC) and by a flame ionization detector (THC/FID). The THC values were based on fuel density and fuel weight fractions of carbon, hydrogen, and oxygen, but did not take into consideration the FID response factors for MtOH or EtOH. Agreement between THC mass determined by the two methods was found to be good, with a maximum difference of 11.5% observed for a single test. Most tests showed differences of less than 5%. Although the Lumina did not meet CO tailpipe emissions standards with any fuel, emissions measured from the stock vehicle operating on reformulated gasoline are consistent with previously published emissions data for this model vehicle. (4) The Corsica was an experimental vehicle operating on neat alcohols and was not required to meet certification standards. Although CO and NO, emissions levels from the alcohol fuels were similar to those from other fuels, NMOG emissions were 3 to 5 times higher at stoichiometric conditions. In addition, none of the alternative fuel configurations were optimized to provide the lowest possible tailpipe emissions; therefore, fuel-to-fuel comparisons of absolute FTP results are inconclusive. However, trends between rich, stoichiometric, and lean operation are observable for all fuels.

At stoichiometric operation, catalyst efficiencies for THC, CO, and NO, were greater than 75% for all fuels except for the alcohols, where NO, efficiencies were less than 40%. While operating on LPG and reformulated gasoline at rich conditions without a catalyst, HC emissions were about twice as high and CO emissions were approximately 5 to 7 times as high as at stoichiometric operation without a catalyst. THC emissions during rich operation on CNG without a catalyst were about 4 times higher and CO emissions about 11 times higher than during stoichiometric operation. The high HC emissions indicate that severe engine misfiring occurred with CNG at rich conditions. While operating on ethanol and methanol, fuel-rich conditions were only slightly richer than at stoichiometric conditions. In addition, the method of obtaining rich operation used a calibration that was completely different from the stoichiometric conditions. As a result, THC emissions without a catalyst increased less than 10% from stoichiometric conditions while operating on ethanol and decreased by about 10% while operating on methanol. The slight decrease in THC emissions on methanol can be attributed to less stumbling and backfiring during rich operation than at the stoichiometric condition. CO emissions without a catalyst were about 40% and 20% higher during rich operation than at stoichiometric conditions with ethanol and methanol, respectively.

TABLE 12. SUMMARY OF AVERAGE FTP EMISSIONS WITHOUT CATALYST

OPERATING CONDITION			FUEL-LEAN	aminimaji e prostov nasas	anas a canana and a canana			
VEHICLE	. 11 sauce (s. 14 	LUMINA	English and a second	COR	SICA			
FUEL	LPG	CNG	RFG	EtOH	MtOH			
TEST EQUIVALENCE RATIO	0.83	0.80	0.81	0.86	0.90			
NMOG (grams/mile)	4.89	0.46	11.31	10.84	8.64			
CO (grams/mile)	11.17	9.63	9.27	9.03	9.28			
NO _x (grams/mile)	1.28	1.50	1.34	0.60	0.55			
THC/FID (grams/mile)	5.52	2.47	11.17	10.95	8.96			
THC/GC (grams/mile)	4.98	2.59	11.40	10.99	8.66			
OPERATING CONDITION	STOICHIOMETRIC							
VEHICLE		LUMINA		COR	SICA			
FUEL	LPG	CNG	RFG	EtOH	MtOH			
TEST EQUIVALENCE RATIO	1.01	0.99	0.99	1.01	1.00			
NMOG (grams/mile)	1.84	0.55	2.41	5.20	5.42			
CO (grams/mile)	20.96	14.53	17.30	15.67	14.30			
NO _x (grams/mile)	2.27	1.17	2.29	0.75	0.57			
THC/FID (grams/mile)	1.95	3.19	2.51	5.25	5.52			
THC/GC (grams/mile)	1.94	3.23	2.48	5.36	5.45			
OPERATING CONDITION	.7		FUEL-RICH					
VEHICLE		LUMINA		COR	SICA			
FUEL	LPG	CNG	RFG	EtOH	MtOH			
TEST EQUIVALENCE RATIO	1.15	1.10	1.20	1.05	1.05			
NMOG (grams/mile)	2.50	1.82	3.64	5.74	4.78			
CO (grams/mile)	100.1	103.2	124.4	21.50	17.49			
NO _x (grams/mile)	0.65	0.39	0.78	0.99	1.41			
THC/FID (grams/mile)	2.92	12.25	4.14	5.86	4.78			
THC/GC (grams/mile)	2.87	12.36	4.01	5.91	4.81			

TABLE 13. SUMMARY OF AVERAGE FTP EMISSIONS WITH CATALYST

OPERATING CONDITION	1		FUEL-LEAN				
VEHICLE 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		LUMINA	Taggicy grappings associations	COR	SICA		
FUEL	LPG	CNG	RFG	EtOH	MtOH		
TEST EQUIVALENCE RATIO	0.83	0.80	0.81	0.86	0.90		
NMOG (grams/mile)	0.49	0.07	0.19	0.98	0.65		
CO (grams/mile)	2.41	1.16	4.24	2.67	1.86		
NO _x (grams/mile)	1.36	1.11	1.03	0.57	0.38		
THC/FID (grams/mile)	0.56	1.01	0.24	1.00	0.65		
THC/GC (grams/mile)	0.56	1.03	0.25	1.03	0.66		
OPERATING CONDITION	STOICHIOMETRIC						
VEHICLE		LUMINA		COR	SICA		
FUEL	LPG	CNG	RFG	EtOH	MtOH		
TEST EQUIVALENCE RATIO	1.01	0.99	0.99	1.01	1.00		
NMOG (grams/mile)	0.17	0.05	0.19	0.93	0.63		
CO (grams/mile)	4.48	3.59	4.20	3.50	2.35		
NO _x (grams/mile)	0.60	0.20	0.34	0.55	0.36		
THC/FID (grams/mile)	0.29	0.84	0.25	0.96	0.65		
THC/GC (grams/mile)	0.29	0.86	0.22	1.00	0.65		
OPERATING CONDITION			FUEL-RICH				
VEHICLE		LUMINA		COR	SICA		
FUEL	LPG	CNG	RFG	EtOH	MtOH		
TEST EQUIVALENCE RATIO	1.15	1.10	1.20	1.05	1.05		
NMOG (grams/mile)	1.78	0.45	3.59	1.16	0.79		
CO (grams/mile)	94.75	39.12	124.57	4.75	3.35		
NO _x (grams/mile)	0.03	0.02	0.36	0.40	0.83		
THC/FID (grams/mile)	2.33	9.15	4.04	1.30	0.80		
THC/GC (grams/mile)	2.33	9.27	3.59	1.28	0.81		

For fuel-rich conditions operating on the gaseous fuels and on reformulated gasoline, NO_x emissions without a catalyst were reduced by more than half from stoichiometric levels. The high levels of CO in the exhaust (greater than 100 g/mi for all fuels) during rich operation allowed for nearly all the NO_x to be reduced across the catalyst; however, the lack of excess oxygen in the exhaust resulted in generally poor catalyst efficiencies for THC and CO with LPG and RFG. Because the achievable fuel-rich equivalence ratio was limited to 1.10 while operating on CNG, THC and CO catalyst efficiencies were slightly better than LPG and RFG. Given the unusual calibration of the Corsica while operating at rich conditions on the alcohol fuels, engine-out NO_x emissions were 1.3 times higher while operating on ethanol and were nearly 2.5 times higher while operating on methanol than at stoichiometric conditions. Catalyst efficiencies during rich operation of the Corsica were better than at stoichiometric operation, with greater than 80% efficiency for THC and CO and about 50% reduction of NO_x on both alcohol fuels.

At lean conditions without a catalyst, CO emissions from LPG, RFG, ethanol, and methanol fuels were approximately half of those produced during stoichiometric operation. However, due to lean misfire on these fuels, THC emissions were about 2 to 4 times higher at lean conditions than at stoichiometric conditions. Lean NO_x emissions were nearly half of stoichiometric levels during operation on LPG and RFG and were almost 20% lower than at stoichiometric conditions while operating on the alcohol fuels. While operating on CNG, combustion appeared stable at lean conditions. This resulted in lower THC and CO emissions without a catalyst compared to stoichiometric operation, and in slightly elevated NO_x levels. The abundance of excess oxygen in the exhaust stream at lean conditions allowed for good conversion of THC and CO in the catalyst while operating on all fuels. However, excess oxygen also resulted in poor catalytic control of NO_x . Lean operation on LPG gave a slight increase in average NO_x emissions across the catalyst.

B. Toxic Exhaust Emissions

Emissions of air toxics are presented in Table 14 for all three fuel/air equivalence ratios investigated. There was speculation that the high level of toxic emissions from the alcohol fuels might have been due to the poor operation of the Corsica during open-loop operation in Bags 1 and 3 of the FTP. Since the Corsica operated satisfactorily during hot stabilized operation, toxic emissions measured in Bag 2 are also presented in Table 14 for comparison.

In general, formaldehyde accounted for 65% to 80% of toxic mass emissions while operating on LPG and CNG at stoichiometric and fuel-lean conditions. Under the same conditions, acetaldehyde accounted for about 25% of toxic emissions from LPG. However, at fuel-rich conditions a large portion of tailpipe toxic emissions from the gaseous fuels unexpectedly consisted of benzene, which accounted for 54% and 36% of toxic emissions from LPG and CNG, respectively. The origin of the benzene emissions is currently unknown. Toxic emissions from reformulated gasoline consisted primarily of benzene (~65%), formaldehyde (~20%), and 1,3-butadiene (~10%). About 90% of after-catalyst toxic emissions from ethanol were acetaldehyde and 10% were formaldehyde. Nearly all of the toxic emissions from operation on methanol were from formaldehyde.

TABLE 14 - AVERAGE FTP TOXIC EMISSIONS RATES

					-TP						
Operating		-	With	out Cata	alyst			Wit	h Cata	lyst	
Condition	Compound	LPG	CNG	RFG	EtOH	MtOH	LPG	CNG	RFG	EtOH	MtOH
Lean	Formaldehyde	199.8	92.3	485.0	318.2	736.1	2.4	1.2	2.7	6.1	23.9
	Acetaldehyde	38.9	4.2	82.4	1131.2	6.3	0.7	0.1	0.9	52.5	0.1
	Benzene	0.7	0.5	168.5	1.8	1.4	0.0	0.1	7.2	0.6	0.1
	1,3-Butadiene	3.1	0.8	61.7	1.0	0.6	0.1	<0.1	1.2	0.2	<0.1
	Total Toxics	242.5	97.8	797.6	1452.2	744.4	3.2	1.5	11.9	59.3	24.2
Stoich.	Formaldehyde	53.1	70.4	97.3	166.1	409.3	1.0	0.9	2.7	5.3	24.4
	Acetaldehyde	17.7	3.7	18.3	478.1	8.7	0.4	0.1	0.8	66.2	0.9
	Benzene	0.6	0.5	63.4	1.6	1.4	0.1	0.2	7.9	0.7	0.1
	1,3-Butadiene	1.8	0.6	21.3	0.7	0.1	0.1	0.1	1.1	0.1	<0.1
	Total Toxics	73.2	75.2	200.3	646.5	419.5	1.5	1.3	12.4	72.4	25.3
Rich	Formaldehyde	52.7	137.0	53.8	172.4	343.8	1.6	1.5	20.5	7.2	29.7
	Acetaldehyde	10.3	7.9	9.3	458.4	1.9	1.2	0.3	20.4	63.4	0.1
	Benzene	0.7	0.8	120.0	1.6	1.6	3.5	1.0	126.3	1.0	0.2
	1,3-Butadiene	1.6	0.4	18.2	0.6	0.4	0.3	<0.1	18.7	0.3	<0.1
	Total Toxics	65.2	146.1	201.3	633.1	347.7	6.5	2.8	185.9	71.8	30.1
				В	ag 2						
			With	out Cat	alyst			Wit	th Cata	lyst	
Operating Condition	Compound	LPG	CNG	RFG	EtOH	MtOH	LPG	CNG	RFG	EtOH	MtOH
Lean	Formaldehyde	226.0	110.9	641.3	383.1	887.6	0.2	0.4	0.4	0.5	1.8
	Acetaldehyde	42.7	4.9	97.7	1465.2	7.7	<0.1	0.1	0.3	0.7	0.1
	Benzene	0.9	0.3	210.7	1.6	1.4	<0.1	0.2	1.2	<0.1	<0.1
	1,3-Butadiene	3.6	0.7	73.9	0.8	0.5	<0.1	<0.1	<0.1	<0.1	<0.1
	Total Toxics	273.1	116.9	1023.7	1850.7	897.2	0.2	0.7	1.9	1.2	1.8
Stoich.	Formaldehyde	41.7	88.1	110.5	175.3	393.8	0.2	0.2	<0.1	0.5	1.8
	Acetaldehyde	20.5	4.6	20.3	510.5	9.0	0.1	<0.1	0.1	0.7	<0.1
	Benzene	0.6	0.5	67.3	1.4	1.4	0.1	0.2	<0.1	0.4	<0.1
	1,3-Butadiene	2.0	0.5	22.5	0.5	<0.1	<0.1	0.1	<0.1	<0.1	<0.1
	Total Toxics	64.8	93.7	220.6	687.7	404.1	0.4	0.5	0.1	1.5	1.9
Rich	Formaldehyde	56.4	161.4	58.5	162.3	326.4	0.1	0.1	17.6	0.2	1.7
	Acetaldehyde	11.1	9.1	9.8	441.6	1.7	0.3	0.1	24.3	0.6	<0.1
	Benzene	0.5	0.9	136.1	1.3	1.7	3.9	1.1	144.1	0.3	0.1
	1,3-Butadiene	1.7	0.4	20.0	0.4	1	0.3	<0.1	21.0	<0.1	<0.1
	Total Toxics	69.7	171.7	224.4	605.6	330.1	4.5	1.3	207.0	1.1	1.8

During rich operation on reformulated gasoline and the gaseous fuels, more benzene emissions were observed with the catalyst than without it. Although the origin of the additional benzene is unknown, it is speculated that thermal cracking and recombination of hydrocarbons within the catalyst is responsible for the increase. However, additional research is needed in this matter. When operating on RFG at rich conditions, an increase in acetaldehyde emissions across the catalyst was also observed, while at the same time formaldehyde emissions were lower. This situation could possibly be the result of partial oxidation in the oxygen-lean exhaust; however, the formation mechanism responsible for a net increase in acetaldehyde and a net decrease in formaldehyde across the catalyst is unknown.

C. Potential Ozone Formation

In order to allow for a comparison of emissions on the basis of ozone-forming potential, CARB has published a list of MIRs for a number of VOCs, defined as grams of ozone per gram of specific VOC emitted. These MIRs are given in Appendix H⁽⁵⁾, and were either estimated by CARB or derived from smog chamber experiments based on a Los Angeles atmospheric mix at VOC-limited ozone conditions. Following CARB methodology, a comparison of the ozone-forming potential on a gram per mile basis for each fuel is achieved by multiplying the MIR for each VOC by the emission rate of that VOC. The summation of these products yields the ozone-

forming potential for a specific fuel [i.e., $g O_3/mi = \sum (VOC_i \times MIR_i)$]. (5)

Presented in Table 15 is the potential mass of ozone formed by hydrocarbon emissions from each fuel for the entire FTP and for the Bag 2 segment of the FTP. During stoichiometric operation with a catalyst, the mass of potential ozone formed from CNG was 90% less, from LPG 68% less, and from methanol 23% less than from reformulated gasoline. FTP ozone forming potential of ethanol during stoichiometric operation with a catalyst was 150% more than with RFG, primarily because of unburned ethanol and ethylene in the exhaust during Bag 1 open-loop operation. Although the catalyst-out potential ozone formation of the alcohol fuels was higher than the gaseous fuels and RFG, the data are not directly comparable due to the cold-start calibration difficulties encountered with the Corsica. However, during hot, stabilized running (Bag 2), where the Corsica operated properly, the data show that the four alternative fuels have similar levels of ozone-forming potential with the vehicle catalyst in place.

TABLE 15 - POTENTIAL OZONE FORMATION (MG/MILE)

	Operating		Witho	Without Catalyst			With Catalyst					
	Condition	LPG	CNG	RFG	ETH	мтн	LPG	CNG	RFG	ETH	мтн	
FTP	Lean	11,947	1,777	41,943	23,947	9,885	435	68	731	1,743	538	
	Stoich.	5,326	1,614	9,855	11,780	5,904	223	71	695	1,739	532	
	Rich	6,532	4,793	12,851	12,279	5,061	3,435	602	14,300	2,074	653	
Bag 2	Lean	13,960	2,125	54,206	29,916	11,113	125	47	93	91	29	
	Stoich.	5,942	1,894	10,710	10,969	5,385	30	32	11	24	24	
L	Rich	7.104	5.497	14.377	10.577	4.320	3.487	533	16,259	19	30	

D. Reactivity Adjustment Factors

Average reactivity adjustment factors (RAFs) for each vehicle-fuel combination at all three operating conditions are presented in Table 16. RAFs were calculated as the ratio of the specific reactivities determined in these tests (g ozone/g NMOG) and the specific reactivity determined by CARB for a group of TLEV vehicles tested with RF-A fuel (3.42 g ozone/g NMOG). RAFs of post-catalyst exhaust during stoichiometric operation were 0.38, 0.37, 1.07, 0.54, and 0.25 for LPG, CNG, RFG, ethanol, and methanol, respectively. At lean conditions, the reactivity of post-catalyst emissions was similar to stoichiometry. At fuel-rich conditions, the high concentrations of unburned fuel in the post-catalyst exhaust caused the RAFs for LPG and RFG to increase, whereas an increase in less reactive unburned fuel caused the reactivities of CNG, ethanol, and methanol to drop. The increase in RAF for LPG is most likely because of unburned propylene from the fuel and exhaust-formed ethylene passing through the catalyst. RAFs from LPG and CNG with the catalyst in place were about half the value of RAFs without the catalyst. This was due primarily to large reductions in ethylene, propylene, and formaldehyde concentrations across the catalyst. The catalyst appeared to have little influence on RAFs while operating on RFG. RAFs from ethanol and methanol with the catalyst in place were about 20% less than without the catalyst.

Without Catalyst With Catalyst Operating **LPG CNG RFG LPG CNG RFG** Condition **ETH MTH** ETH **MTH** 1.08 0.65 0.33 0.38 0.37 0.54 0.25 0.71 1.12 1.07 Lean Stoich. 0.84 0.84 1.20 0.66 0.32 0.38 0.37 1.07 0.54 0.25 0.76 0.75 1.03 0.62 0.31 0.56 0.31 1.16 0.52 0.24 Rich

TABLE 16. REACTIVITY ADJUSTMENT FACTORS

E. Speciated Exhaust Emissions/Prevalent Species

Prevalent exhaust species detected by GC-FID analysis are compiled in Appendices I through M. These species represent more than 95% of all measured NMOG mass detected by GC-FID at all operating conditions. The most prominent of these constituents observed for each fuel are listed in Table 17. These compounds account for more than 95% of all measured NMOG from the alternative fuels and more than 60% from reformulated gasoline. The predominant constituents of LPG and CNG exhaust were $\rm C_1\text{-}C_3$ compounds. The most prevalent species in exhaust from reformulated gasoline were mostly $\rm C_4\text{-}C_8$ compounds. Ethanol and methanol exhaust constituents were mostly $\rm C_1$ and $\rm C_2$ compounds.

TABLE 17 - PROMINENT NON-METHANE EXHAUST SPECIES IDENTIFIED BY HYDROCARBON SPECIATION

Fuel	LPG	CNG	RFG	Ethanol	Methanol
Prominent Species	ethane ethylene propane propylene acetylene formaldehyde acetaldehyde	ethane ethylene propane propylene acetylene formaldehyde acetaldehyde	ethylene propylene acetylene isobutylene isopentane MTBE benzene 2,3-dimethylpentane 2,2,4-trimethylpentane toluene ethylbenzene m- & p-xylene o-xylene formaldehyde	ethane ethylene acetylene ethanol formaldehyde acetaldehyde	ethylene acetylene methanol toluene formaldehyde
NMOG wt%	>95%	>95%	_>60%	>97%	>98%

F. Mass Spectral Analyses

In addition to the GC-FID analyses, GC/MS analyses were conducted on all exhaust samples. A number of compounds identified by GC-FID speciation were confirmed by GC/MS analysis. These compounds are listed in Table 18. Normally, hydrocarbons smaller than C_6 were not adsorbed in the sorbent traps used in this study, and their identification by GC-FID speciation methods could not be confirmed by GC/MS analysis. Compounds that were not present at levels that could be detected by Auto/Oil speciation methods, but were identified by GC/MS analysis, are also listed in Table 18. Additional compounds identified by GC/MS analysis that were not identified by other analytical methods are listed in Table 19. Virtually all of the compounds identified were observed in exhaust sampled without a catalyst in place, or during fuel-rich operation on reformulated gasoline. Notable combustion products from all the fuels identified by GC/MS analysis included a number of nitrogen-containing compounds such as nitromethane, nitroethane, nitropropane, and nitropropane. In addition, a number of higher-molecular-weight compounds were observed in all exhaust samples. It is speculated that these compounds originated from the lubricating oil.

TABLE 18. SPECIATED COMPOUNDS CONFIRMED BY GC-MS ANALYSIS

Exhaust Configuration	Wit	hout Catal	/st	w	ith Catalys	t
Fuel\Air Equivalence Ratio	0.8	1.0	1.2	0.8	1.0	1.2
Methanol	LPG ^b CNG ^b RFG ^b MtOH ^a	LPG ^b CNG ^b RFG ^b MtOH ^a	LPG ^b CNG ^b RFG ^b EtOH ^c MtOH ^a	LPG ^b CNG ^b MtOH ^b	LPG ^b CNG ^b MtOH ^a	LPG ^b CNG ^b RFG ^b MtOH ^b
Ethanol	EtOH ^a MtOH ^c	EtOHª MtOH°	EtOH ^a	EtOH ^a	EtOH ^a	EtOH ^b
Methylpropylbenzene	CNG ^b RFG ^a EtOH ^b	CNG⁵ RFGª	CNG ^b RFG ^a EtOH ^b	RFG⁵	CNG ^b RFG ^b EtOH ^b	RFG ^a EtOH ^b
Ethylbenzene	LPG ^b CNG ^b RFG ^b EtOH ^a	LPG° CNG° RFG° EtOH°	LPG ^b CNG ^b RFG ^b EtOH ^b	LPG ^b CNG ^b RFG ^b EtOH ^b	LPG° CNG° RFG° EtOH°	LPG° CNG° RFG° EtOH°
Benzene	LPG ^b CNG ^b RFG ^b EtOH ^a MtOH ^b	LPG ^a CNG ^b RFG ^b EtOH ^b MtOH ^b	LPG ^b CNG ^a RFG ^b EtOH ^b MtOH ^b	CNG ^b RFG ^b EtOH ^b MtOH ^b	LPG ^b CNG ^b RFG ^b EtOH ^b MtOH ^a	LPG ^a CNG ^b RFG ^b EtOH ^b MtOH ^b
Diethylbenzene	CNG ^b RFG ^a EtOH ^c	CNG ^b RFG ^a	LPG ^b RFG ^a	RFG ^a EtOH ^c	CNG ^b RFG ^a EtOH ^c	LPG ^b CNG ^b RFG ^a
Dimethybenzene	CNG ^b RFG ^a	CNG ^b RFG ^a	RFG ^a	RFG⁵	RFG⁵	RFG ^a
Methylethylbenzene	LPG ^b CNG ^b RFG ^a EtOH ^a MtOH ^c	LPG ^a CNG ^b RFG ^a EtOH ^b	CNG ^b RFG ^a EtOH ^b	LPG ^b CNG ^b RFG ^b EtOH ^b	CNG ^b RFG ^b EtOH ^b	CNG ^b RFG ^a EtOH ^a MtOH ^a
Naphthalene	RFGª	RFGª	RFG ^a	RFG°	RFG°	RFG ^a EtOH ^c
Propylbenzene	RFGª	RFG ^a	RFG ^a MtOH ^c	RFG⁵	CNG ^b RFG ^b MtOH ^a	RFG ^a EtOH ^a MtOH ^c
Tetramethylbenzene	CNG⁵ RFGª	RFGª	CNG ^b RFG ^a	LPG ^b CNG ^b RFG ^a	RFGª	RFGª

TABLE 18 (Cont'd). SPECIATED COMPOUNDS CONFIRMED BY GC-MS ANALYSIS

Exhaust Configuration	Wit	hout Catal	yst	W	ith Catalys	st
Fuel\Air Equivalence Ratio	0.8	1.0	1.2	0.8	1.0	1.2
Trimethylbenzene	LPG ^b CNG ^b RFG ^a EtOH ^a MtOH ^b	LPG ^a CNG ^b RFG ^a EtOH ^b MtOH ^b	LPG ^b CNG ^b RFG ^a EtOH ^a MtOH ^b	LPG ^b CNG ^b RFG ^a EtOH ^b MtOH ^b	LPG ^b CNG ^b RFG ^a EtOH ^b MtOH ^a	LPG ^b CNG ^b RFG ^a EtOH ^a MtOH ^a
Methylpentane	LPG ^b CNG ^b RFG ^a EtOH ^b MtOH ^a	LPG ^b CNG ^b RFG ^a EtOH ^a MtOH ^b	LPG ^b CNG ^b RFG ^a EtOH ^b MtOH ^b	LPG ^b CNG ^b RFG ^a EtOH ^b MtOH ^a	LPG ^b CNG ^a RFG ^b EtOH ^b MtOH ^b	LPG ^b CNG ^b RFG ^a EtOH ^b MtOH ^a
Dimethylpentane	LPG ^b CNG ^b RFG ^b EtOH ^b MtOH ^b	LPG ^b CNG ^b RFG ^b EtOH ^b MtOH ^a	LPG ^b CNG ^b RFG ^b EtOH ^b MtOH ^b			
Dimethylbutene	RFG⁵	RFG ^b EtOH°	RFG ^b MtOH ^b		·	RFG⁵
Methylcyclopentane	LPG ^b RFG ^b	LPG ^b CNG ^b RFG ^b	LPG ^b RFG ^b	LPG ^b CNG ^b RFG ^b	RFG ^b EtOH ^c	RFG⁵
Propylcyclohexane						MtOH ^c
Dodecane	CNG⁵ RFG⁵	LPG ^b CNG ^a RFG ^b	LPG ^b CNG ^b RFG ^b	CNG⁵ RFG⁵	LPG ^b CNG ^b RFG ^b	CNG ^b RFG ^b EtOH ^b
Heptane	LPG ^b CNG ^b RFG ² EtOH ² MtOH ^b	LPG ^b CNG ^b RFG ^a EtOH ^a MtOH ^b	LPG ^b CNG ^b RFG ^a EtOH ^b MtOH ^b	LPG ^b CNG ^b RFG ^b EtOH ^b MtOH ^b	LPG ^b CNG ^b RFG ^b EtOH ^b MtOH ^b	LPG ^b CNG ^b RFG ^b EtOH ^a MtOH ^a
1-Heptene	EtOH° MtOH°					
Hexane	LPG ^b CNG ^b RFG ^a EtOH ^b MtOH ^a	LPG ^b CNG ^b RFG ^a EtOH ^a MtOH ^b	LPG ^b CNG ^b RFG ^a EtOH ^b MtOH ^b	LPG ^b CNG ^b RFG ^a EtOH ^a MtOH ^a	LPG ^b CNG ^b RFG ^a EtOH ^a MtOH ^b	LPG ^b CNG ^b RFG ^a EtOH ^b MtOH ^b
Methylpropane	LPG ^b CNG ^b RFG ^b EtOH ^b	LPG ^b CNG ^b RFG ^b EtOH ^b MtOH ^b	LPG ^a CNG ^b RFG ^b MtOH ^b	LPG ^b CNG ^b RFG ^b EtOH ^b	LPG ^b CNG ^b RFG ^b EtOH ^b	LPG ^b CNG ^b RFG ^b EtOH ^b MtOH ^b

TABLE 18 (Cont'd). SPECIATED COMPOUNDS CONFIRMED BY GC-MS ANALYSIS

Exhaust Configuration	Wit	hout Cataly	yst	W	ith Catalys	t
Fuel\Air Equivalence Ratio	0.8	1.0	1.2	0.8	1.0	1.2
Methylheptane	LPG⁵ RFG³	LPG ^b CNG ^b RFG ^a	LPG ^b CNG ^b RFG ^a MtOH ^b	LPG ^b RFG ^b EtOH ^a MtOH ^b	LPG ^b CNG ^b RFG ^b	LPG ^b CNG ^b RFG ^b EtOH ^b
Methylhexane	LPG ^b CNG ^b RFG ^a EtOH ^a MtOH ^b	LPG ^b CNG ^b RFG ^a EtOH ^a MtOH ^b	LPG ^b CNG ^b RFG ^a EtOH ^b MtOH ^b	LPG ^b CNG ^b RFG ^a EtOH ^b MtOH ^b	LPG ^b CNG ^b RFG ^a EtOH ^b MtOH ^b	LPG ^b CNG ^b RFG ^b EtOH ^b MtOH ^c
Methylpentene	LPG ^b CNG ^b RFG ^a EtOH ^b MtOH ^b	LPG ^b CNG ^b RFG ^a EtOH ^b MtOH ^b	LPG ^b CNG ^b RFG ^a EtOH ^b MtOH ^b	LPG ^b CNG ^b RFG ^b EtOH ^b MtOH ^b	LPG ^b CNG ^b RFG ^b EtOH ^b MtOH ^a	LPG° CNG° RFG° EtOH° MtOH°
Octane	RFG⁵	RFG ^b EtOH ^a	RFG ^b MtOH ^b	RFG⁵	LPG ^b CNG ^b RFG ^b	LPG ^b CNG ^b RFG ^b EtOH ^b
Methyloctane	RFG⁵ EtOH°	CNG ^b RFG ^b EtOH ^b	RFG⁵	RFG⁵	LPG ^b RFG ^b	RFG ^b EtOH ^b
Dimethyloctane	LPG ^b CNG ^b RFG ^b	LPG ^b CNG ^b RFG ^b	LPG ^b CNG ^b RFG ^b MtOH ^b	CNG ^b RFG ^b EtOH ^b	LPG ^b CNG ^b RFG ^b	LPG ^b CNG ^b RFG ^b EtOH ^b MtOH ^c
Undecane	CNG ^b RFG ^b MtOH ^b	LPG ^b CNG ^a RFG ^b MtOH ^b	LPG ^b CNG ^b RFG ^b MtOH ^b	CNG ^b RFG ^b EtOH ^b	LPG ^b CNG ^a RFG ^b MtOH ^b	LPG° CNG° RFG° EtOH°
Methhylethylketone	RFG ^a	RFG ^a	RFG ^a EtOH ^b	RFG ^a EtOH ^b MtOH ^b	RFG ^a EtOH ^b MtOH ^b	RFG ² EtOH ^b MtOH ^b
Isobutyraldehyde	LPG ^a CNG ^b RFG ^b	RFG⁵	LPG ^b RFG ^b EtOH ^b	RFG ^b EtOH ^b MtOH ^b	LPG ^b RFG ^b EtOH ^b MtOH ^b	LPG ^b RFG ^b EtOH ^b MtOH ^b

 ^a Compound was identified by both GC-FID and GC-MS under the specified operating conditions.
 ^b Compound found by GC-FID/not found by GC-MS.
 ^c Compound found by GC-MS/not found by GC-FID.

26 REPORT 08-6068

TABLE 19. OTHER COMPOUNDS IDENTIFIED BY GC-MS ANALYSIS

Exhaust Configuration	With	out Cata	lyst	Wi	With Catalyst		
Fuel/Air Equivalence Ratio	0.8	1.0	1.2	0.8	1.0	1.2	
AR	OMATICS						
1,1(1,2-ethanediyl)bis-4-methyl-benzene	RFG	RFG	RFG			RFG	
1,2,3,4-tetrahydro-methyl-naphthalene	RFG	RFG	RFG			RFG	
1-Ethyl-2,3-dihydro-1-methyl-1H-indene	RFG	RFG	RFG			RFG	
acenaphthylene	RFG	RFG	RFG			RFG	
azulene	EtOH			EtOH			
biphenylene		EtOH					
cis-decahydro-naphthalene		LPG					
cyclodecane						EtOH	
cyclohexadiene						EtOH	
Ethyl-dimethylethyl-benzene	RFG	RFG	RFG			RFG	
Ethyl-naphthalene	RFG	RFG	RFG			RFG	
isopropyl-cyclobutane		EtOH					
methyl-(1-methylethyl)-benzene	RFG	RFG	RFG			RFG	
methyl-naphthalene	RFG	CNG RFG	CNG RFG EtOH		RFG	RFG	
methylethyl-naphthalene	RFG	RFG	RFG			RFG	
phenanthrene	RFG	RFG	RFG			RFG	
1,1'-(1,2-dimethyl-1,2-ethanediyl)bis-benzene	RFG	RFG	RFG			RFG	
AROMATIC	- UNSAT	URATED					
1,1'-(1,2-ethanediyl)bis-benzene	RFG	RFG	RFG			RFG	
1,1'-(1-methyl-1,2-ethanediyl)bis-benzene	RFG	RFG	RFG			RFG	
ethynyl-benzene	LPG	LPG_	LPG				
ethynyl-ethyl-benzene	RFG	RFG	RFG	RFG	RFG	RFG	
AROMATIC - C	XYGEN-C	ONTAIN	ING		_		
1-(4-ethylphenyl)-ehtanone	·					EtOH	
1-methyl-4-methylene-cyclohexane						EtOH	
1-napthalene-carboxaldehyde						RFG	
1-phenyl-ethanone			MtOH		CNG		
2-naphthyl-aldehyde	RFG	RFG				RFG	
2,5-biphenyl-phenol		CNG					
3-ethyl-phenol						EtOH	
benzene-acetaldehyde	RFG	RFG				RFG	
benzoic acid	LPG EtOH MtOH	MtOH	MtOH	LPG			

TABLE 19 (Cont'd). OTHER COMPOUNDS IDENTIFIED BY GC-MS ANALYSIS

Exhaust Configuration	With	out Cata	lyst	Wi	th Cataly	rst
Fuel/Air Equivalence Ratio	0.8	1.0	1.2	0.8	1.0_	1.2
diethyl-benzyl-ethanol	RFG	RFG	RFG			RFG
dimethyl-benzaldehyde	RFG	RFG	RFG			RFG
ethyl-benzaldehyde	RFG	RFG	RFG			RFG
ethylmethyl-phenol						EtOH
methyl-benzaldehyde	RFG	RFG	RFG			RFG MtOH
methyl-phenol	RFG	RFG	RFG			RFG MtOH
methyl-pentanone				EtOH		EtOH
p-(2-methylallyl)-phenol	RFG	RFG	RFG		<u> </u>	RFG
phenyl-maleic anhydride	EtOH MtOH	CNG	CNG			
toluene-methanol	RFG	RFG	RFG			RFG
trimethyl-2-cyclopentane-1-one		<u></u> _			<u> </u>	EtOH
OXYGE	N-CONTA	NING				
1-butanol, 3-methyl, formate	MtOH					
1-methylethylester					LPG	
1-hydroxy-4,5-diethyl-2(1H0-pyridinethione)	EtOH MtOH			EtOH MtOH		
2,5-dihydrofuran	RFG	RFG	RFG			RFG EtOH
2-butanone	RFG	.RFG	RFG			RFG
2-ethyl-1-butanol	RFG	RFG	RFG			RFG
2-butanoic acid						EtOH
2-methoxy-2-methyl-propane	RFG	RFG	RFG EtOH			RFG
2-methyl-2-propanol	MtOH					
6 carbon ketone	RFG	RFG	RFG			<u> </u>
acetic acid ethyl ester	EtOH	EtOH	EtOH			
.alphamethyl-benzene-methanol	EtOH	EtOH	EtOH			EtOH
1-(1-propenyl)-bicyclo[3.2.1]octane-2-one	RFG	RFG	RFG			<u> </u>
butanediol	RFG	RFG	RFG			RFG
butenol				EtOH	EtOH	EtOH
diethoxy-ethane				EtOH	EtOH	
ethyl-oxirane		MtOH				
formic acid ethyl ester	MtOH		EtOH			
hexanoic acid	FtOH		EtOH.			

TABLE 19 (Cont'd). OTHER COMPOUNDS IDENTIFIED BY GC-MS ANALYSIS

Exhaust Configuration	With	Without Catalyst		Wi	th Cataly	With Catalyst		
Fuel/Air Equivalence Ratio	0.8	1.0	1.2	0.8	1.0	1.2		
isopropyl-myristate	EtOH MtOH	EtOH MtOH	MtOH		EtOH			
methyl-butanol						EtOH		
methyl-pentadiene						EtOH		
phenyl-methanol	RFG	RFG	RFG			RFG		
propanol	MtOH		EtOH		EtOH	MtOH		
tetradecanoic acid		CNG			LPG			
OXYGEN-CON	TAINING - U	NSATUR	ATED					
2-phenyl-2-butenal		RFG	RFG					
3-heptene-2-ol						EtOH		
3-pentene-2-one						EtOH		
4-hexene-1-ol						EtOH		
diethyl-ketene	RFG	RFG	RFG					
U	NSATURATE	D						
1,3,7-octatrien-5-yne	RFG	RFG	RFG					
3,4-nonadiene				EtOH				
3-methyl-decane			CNG					
cycloheptatriene	EtOH							
dimethyl-decene	MtOH							
dimehtyl-heptene	EtOH							
hexadiyne	RFG EtOH MtOH	RFG EtOH	RFG EtOH					
	SATURATED)	-1	· L	<u> </u>			
2-methyl-butane			MtOH					
C ₁₅ branched alkane						EtOH		
C ₁₇ branched alkane	RFG MtOH	RFG MtOH	RFG EtOH MtOH	MtOH	MtOH	RFG EtOH MtOH		
C ₁₈ branched alkane	MtOH					EtOH		
C ₁₉ branched alkane	MtOH	MtOH	EtOH MtOH	MtOH		EtOH MtOH		
C ₂₀ branched alkane	MtOH	MtOH	EtOH MtOH	MtOH		EtOH MtOH		
dimethyloxy-dimethyl-cyclohexane					MtOH			
eicosane		MtOH			MtOH	EtOH		

TABLE 19 (Cont'd). OTHER COMPOUNDS IDENTIFIED BY GC-MS ANALYSIS

Exhaust Configuration	Without Catalyst		With Catalyst		st	
Fuel/Air Equivalence Ratio	0.8	1.0	1.2	0.8	1.0	1.2
hexadecane	MtOH	MtOH	EtOH MtOH	MtOH	MtOH	EtOH
methyl-tetradecane	RFG	RFG	RFG			RFG
nonadecane	MtOH	MtOH	EtOH MtOH	MtOH	MtOH	EtOH MtOH
octadecane	MtOH	MtOH	EtOH MtOH	MtOH	MtOH	EtOH MtOH
pentadecane	MtOH	CNG MtOH	EtOH MtOH	MtOH	MtOH	EtOH MtOH
tetradecane	MtOH	CNG	EtOH		MtOH	
tetramethyl-cyclopropane	EtOH	EtOH				
tetramethyl-hexadecane					MtOH	
trimethyl-dodecane	RFG	RFG	RFG		<u> </u>	RFG
NITROGE	N-CONTA	INING				
1-cyclopropyl-4-nitro-benzene	RFG	RFG				
1-nitropropane	LPG	LPG				
1-nitro-2-propanol		LPG				
2,4-dimethyl-2-nitro-pentane	RFG	RFG	RFG			
2-nitropropane	LPG	LPG	LPG			
nitroethane	LPG	LPG EtOH	LPG CNG EtOH			
nitromethane	LPG EtOH MtOH	EtOH MtOH	CNG EtOH			
SULFUF	-CONTAI	NING				-
sulfonylbis-methane		MtOH		EtOH	EtOH MtOH	MtOH
sulfur dioxide		EtOH				

V. SUMMARY AND CONCLUSIONS

Regulated and volatile organic exhaust species were characterized from a 1993 Chevrolet Lumina operating on compressed natural gas (CNG), liquefied petroleum gas (LPG), and reformulated gasoline (RFG), and from a 1988 Chevrolet Corsica operating on ethanol (EtOH) and methanol (MtOH). For the evaluation of gaseous fuels, aftermarket conversion kits were installed on the Lumina. The Corsica was a dedicated alcohol vehicle owned by the University of Tennessee. For all fuels, the vehicles were operated over the chassis dynamometer portion of the Federal Test Procedure (FTP) for light-duty vehicles at fuel/air equivalence ratios of 0.8, 1.0, and 1.2; exhaust emissions were sampled both with and without the catalytic converter in place. The objective of the program was to qualitatively identify organic emissions from alternative-fueled vehicles during normal operation and simulated failure modes. To provide additional information for the program, these vehicle exhaust emissions were also quantified. Vehicles were tuned on each fuel to provide adequate driveability over the FTP; optimization of the vehicles to provide the lowest emissions levels was outside the scope of this program.

Analyses of exhaust samples included determination of regulated exhaust emissions by Code of Federal Regulations methods, hydrocarbon speciation, analyses of aldehydes and ketones according to Auto/Oil Phase II methods, and the determination of trace exhaust species by mass spectral analysis methods. In addition, a limited comparison of the ozone-forming potential of each vehicle/fuel combination was conducted based on the Maximum Incremental Reactivity scale as used by the California Air Resources Board for determining reactivity of individual exhaust species. Some of the findings in the study are listed below.

- Speciation data showed greater than 95% of all LPG and CNG organic exhaust constituents to be C₁-C₃ compounds.
- Prevalent species in exhaust from reformulated gasoline were mostly C₄-C₈ compounds.
- For the alcohol fuels, more than 96% of organic exhaust species were C_1 and C_2 compounds.
- More than 99% of measured NMOG mass could be attributed to 34 species in CNG exhaust, 54 species in LPG exhaust, more than 200 species in reformulated gasoline exhaust, 7 species in ethanol exhaust, and 5 species in methanol exhaust.
- Because of poor vehicle driveability on neat alcohols, unburned fuel accounted for virtually all NMOG emissions during operation on ethanol and methanol.
- Acetaldehyde accounted for virtually all toxic emissions while operating on ethanol, while formaldehyde composed practically all toxic emissions while operating on methanol.

- On average, Reactivity Adjustment Factors (RAFs) of CNG and LPG exhaust were about 65% less than those of reformulated gasoline, whereas RAFs from ethanol and methanol were 50% and 75% less, respectively, than those of reformulated gasoline.
- Potential ozone produced by post-catalyst CNG and LPG emissions was less than half of that produced by RFG during stoichiometric operation. The alcohol fuels had RAFs of a level similar to the gaseous fuels at those operating conditions; however, high NMOG mass emissions rates resulted in ozone forming potentials for ethanol and methanol exhaust that were similar to reformulated gasoline.
- GC/MS analysis identified a number of nitrogen-containing compounds in exhaust samples from all fuels, including nitromethane, nitroethane, and nitropropane. A number of heavier compounds, likely from the lubricating oil, were also identified in exhaust from all fuels.

VI. RECOMMENDATIONS

The primary objective of this program was to identify organic compounds qualitatively in the exhaust of vehicles operating at various conditions on alternative fuels. Identification efforts were successful and the basic project goal was met. In addition, exhaust emissions were quantified in an attempt to provide fuel-to-fuel comparisons of exhaust emissions. However, these comparisons were difficult due to the variability of the vehicles used to generate exhaust. None of the vehicle-fuel combinations evaluated in this program were optimized to provide the lowest exhaust emissions. Both gaseous conversion kits operated rich at idle under certain conditions. In addition, the alcohol-fueled vehicle ran rough and drove poorly when it was not fully warmed up. For all alternative fuels tested, especially the alcohol fuels, insufficient fuel system calibrations affected the level of exhaust emissions. This was particularly apparent in the cold-start portion of the FTP. A possible means of lessening the influence of the poor vehicle calibrations would be to examine and compare the Bag 2 exhaust emissions generated in this program. Some Bag 2 observations are noted in this report; however, additional effort in this area may be warranted.

In future studies examining exhaust emissions levels, OEM alternative-fueled vehicles or the latest generation of electronically-controlled fuel-injected gaseous conversion kits should be used when possible. This would preclude examining M100 and E100, as OEM alcohol vehicles are currently limited to a maximum of M85 and E85. However, a current TLEV-certified flexible-fueled vehicle fitted with the appropriate electronically-controlled gaseous fuel conversion kit should provide a more direct comparison of exhaust emissions levels from alternative fuels.

The extreme fuel/air equivalence ratios examined during this program were representative of severe fuel-control failure modes; however, in almost all instances vehicle driveability was severely degraded. It is likely that such vehicle failures would be quickly repaired. Of more concern are vehicles operating slightly rich or slightly lean. These conditions may not be noticeable to the driver, but may severely effect the performance of a

catalytic converter. It is suggested that these types of in-use situations are more likely to occur and go unnoticed for long periods of time, and it may require additional work to quantify their effects.

The technique used to sample trace species for mass spectral analysis worked well for C_6 and higher species; however, a quantification of a number of these species was not possible. Additional refinements to the method are needed to provide emission rates for these compounds. The presence of a number of nitrogen-containing organic compounds (e.g., nitromethane, nitroethane, nitropropane) in the exhaust from all four alternative fuels is noteworthy, and additional analytical efforts are needed to investigate the presence of these compounds.

VII. REFERENCES

- 1. Code of Federal Regulations, Title 40, Part 86, Subpart B.
- 2. King, S., "Natural Gas as a Stationary Engine and Vehicular Fuel," SAE Paper 912364, 1991.
- 3. Painter, L. and Rutherford, J., "Statistical Design and Analysis Methods for the Auto/Oil Quality Research Program, SAE Paper 920319, 1992.
- 4. Bass, E.A., Evaluation of Aftermarket LPG Conversion Kits in Light-Duty Vehicle Applications, NREL TP-421-5462, Golden, CO: National Renewable Energy Laboratory, June 1993.
- 5. California Code of Regulations, Title 13, Section 1960.1, "California Exhaust Emission Standards and Test Procedures for 1988 and Subsequent Model Passenger Cars, Light-Duty Trucks, and Medium-Duty Vehicles," amended June 24, 1996.

APPENDIX A

COMPUTER PRINTOUT OF EMISSIONS DATA FROM "CHECK-OUT" FTP OF CHEVROLET LUMINA

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH
COMPUTER PROGRAM LDT 1.5-R 3-BAG EPA FTP VEHICLE DESCRIPTION FOR THE PARTY OF THE PA PROJECT NO. 08-6068-001

VEHICLE NUMBER 53M
VEHICLE MODEL 93 CHEVY LUMINA
ENGINE 3.1 L (189 CID) -V-6
TRANSMISSION 0DOMETER 5693 MILES (9160 KM) TEST CHECK-OUT GASOLINE AS RECD DATE 11/ 9/93 RUN DYNO 2 BAG CART 2 FUEL DENSITY 6.160 LB/GAL H .134 C .866 O .000 X .000 ACTUAL ROAD LOAD 6.50 HP (4.85 KW) TEST WEIGHT 4000 LBS (1814 KG) BAROMETER 29.42 IN HG (747.3 MM HG) RELATIVE HUMIDITY 58.6 PCT. DRY BULB TEMPERATURE 75.0°F (23.9°C) NOX HUMIDITY C.F. 1.012 BAG NUMBER COLD TRANSIENT (0-505 SEC.) 505.7 BAG DESCRIPTION STABILIZED HOT TRANSIENT (505-1372 SEC.) 867.8 (0- 505 SEC.) 505.2 RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) .976/.982 .978/.982 .976/.982 3.65 (5.87) 561.8 (15.91) .00 (.00) 4735. (134.1) 3.91 (6.29) 563.0 (15.95) .00 (.00) 8143. (230.6) 3.65 (5.88) 563.5 (15.96) .00 (.00) 4745. (134.4) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM) 49.8/ 2/ 49.77 6.1/ 2/ 6.10 56.2/ 14/ 254.13 SAMPLE METER/RANGE/PPM (BAG) 90.27 1/ 1/ 9.05 16.2/ 2/ 16.19 5.8/ 2/ 5.80 88.1/ 13/ 215.15 BCKGRD METER/RANGE/PPM 59.6/ 1/ 5.98 43.2/ 12/ 42.04 HC 5.98 CQ SAMPLE METER/RANGE/PPM BCKGRD METER/RANGE/PPM .2/ 83.8/ 14/ 14/ .81 .7311 1.5/ 1.43 .5037 .5/ 13/ 1.09 79.4/ 14/ .6481 CO 12/ CO2 SAMPLE METER/RANGE/PCT 70.3/ CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (BAG) (D) 13.8/ 14/ .0470 13.8/ 14/ .0470 13.9/ 14/ .0474 72.9/ 1/ 18.23 13.4/ 3.35 1/ 30.5/ 1/ 7.63 NOX BCKGRD METER/RANGE/PPM 1/ 1.0/ 1/ 1/ DILUTION FACTOR 17.73 26.51 20.11 CONCENTRATION PPM 44.02 3.30 10.68 207.39 245.00 .6868 39.49 .4585 CO CONCENTRATION PPM CONCENTRATION PCT CO2 NOX CONCENTRATION PPM 18.00 3.11 7.37 .438 .827 38.251 1686.17 CO MASS GRAMS 10.603 32.443 1483.77 CO2 MASS GRAMS 1935.92 NOX MASS GRAMS 4.670 FUEL MASS KG FUEL ECONOMY MPG (L/100KM) .554 18.42 (12.77) .616 17.74 (13.26) .485 21.06 (11.17)

3-BAG COMPOSITE RESULTS

G/MI CO G/MI G/MI 6.021 NOX .593

FUEL ECONOMY MPG (L/100KM) 18.71 (12.57)

APPENDIX B

COMPUTER PRINTOUTS OF EMISSIONS DATA FROM REFORMULATED GASOLINE BASELINE FTPs OF CHEVROLET LUMINA

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH

COMPUTER PROGRAM LDT 1.5-R

3-BAG EPA FTP VEHICLE EMISSION RESULTS

PROJECT NO. 08-6068-001

. 506

19.97 (11.78)

VEHICLE NUMBER 53M TEST L-PH2-REF-R1 GASOLINE EM-1611-F DATE 11/11/93 RUN
DYNO 2 BAG CART 2
ACTUAL ROAD LOAD 6.50 HP (4.85 KW)
TEST WEIGHT 4000 LBS (1814 KG) FUEL DENSITY 6.157 LB/GAL H .137 C .847 O .016 X .000 VEHICLE MODEL 93 CHEVY LUMINA ENGINE 3.1 L (189 CID)-V-6 TRANSMISSION 5732 MILES (9222 KM) ODOMETER BAROMETER 29.21 IN HG (741.9 MM HG) DRY BULB TEMPERATURE 77.0°F (25.0°C) NOX HUMIDITY C.F. 1.024 RELATIVE HUMIDITY 56.0 PCT. BAG NUMBER BAG DESCRIPTION COLD TRANSIENT STABILIZED HOT TRANSIENT (0- 505 SEC.) (0-505 SEC.) (505-1372 SEC.) RUN TIME SECONDS 504.9 867.6 505.2 DRY/WET CORRECTION FACTOR, SAMP/BACK .975/.982 .977/.982 .975/.982 3.86 (6.22) 563.9 (15.97) .00 (.00) 8154. (230.9) MEASURED DISTANCE MILES (KM) 3.64 (5.86) 3.62 (5.82) BLOWER FLOW RATE SCFM (SCMM) 564.4 (15.98) 563.4 (15.96) .00 (.00) 4750. (134.5) GAS METER FLOW RATE SCFM (SCMM) .00 (.00) 4744. (134.4) TOTAL FLOW SCF (SCM) 42.1/ 2/ 42.08 8.9/ 2/ 8.89 80.2/ 13/ 193.48 14.5/ SAMPLE METER/RANGE/PPM (BAG) 10.8/ 2/ 10.79 HC BCKGRD METER/RANGE/PPM 9.8/ 2/ 9.79 8.9/ 2/ 8.89 19.3/ 12/ SAMPLE METER/RANGE/PPM CO 18.61 42.0/ 13/ 95.82 1.96 BCKGRD METER/RANGE/PPM .9/ 13/ 2.0/ 12/ CO 1.90 .5/ 13/ 1.09 80.6/ CO2 SAMPLE METER/RANGE/PCT 70.4/ .5051 84.4/ 14/ .7432 14/ 14/ .6698 CO2 BCKGRD METER/RANGE/PCT 13.5/ 14/ .0458 13.4/ 14/ .0454 13.0/ 14/ .0438 NOX SAMPLE METER/RANGE/PPM (BAG) (D) 49.4/ 1/ 12.36 5.6/ 1/ 1.40 23.3/ 1/ 5.83 NOX BCKGRD METER/RANGE/PPM 2.7/ 1/ .68 .7/ 1/ .18 1/ .18 DILUTION FACTOR 17.38 26.22 19.57 HC CONCENTRATION PPM 33.69 1.37 6.05 CO CONCENTRATION PPM 185.34 16.29 91.82 C02 CONCENTRATION PCT .7001 .4615 .6282 CONCENTRATION PPM NOX 11.72 1.23 5.66 HC .187 MASS GRAMS 2.671 .479 CO MASS GRAMS 29.022 4.380 14.361 C02 MASS GRAMS 1723.97 1951.07 1545.29 NOX MASS GRAMS 3.086 . 557 1.489

.573

17.75 (13.26)

. 631

17.09 (13.76)

3-BAG COMPOSITE RESULTS

FUEL

MASS KG

FUEL ECONOMY MPG (L/100KM)

HC G/MI .214 CO G/MI 3.342 NOX G/MI .365

FUEL ECONOMY MPG (L/100KM) 17.95 (13.10)

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH 3-BAG EPA FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001

COMPUTER PROGRAM LDT 1.5-R

COMPUTER PROGRAM LDT 1.5-R 3-1	BAG EPA FTP VEHICLE I	MISSION RESULTS	PROJECT NO. 08-6068-001
VEHICLE NUMBER VEHICLE MODEL 93 CHEVY LUMINA ENGINE 3.1 L (189 CID) -V-6 TRANSMISSION L4 ODOMETER 5743 MILES (9240 KM)	TEST L-PH2-REF- DATE 11/12/93 DYNO 2 BAG ACTUAL ROAD LOF TEST WEIGHT 40	-R2 RUN CART 2 ND 6.50 HP (4.85 KW NOO LBS (1814 KG)	GASOLINE EM-1611-F FUEL DENSITY 6.157 LB/GAL H .137 C .847 O .016 X .000
BAROMETER 28.98 IN HG (736.1 MM HG) RELATIVE HUMIDITY 57.2 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)		50 00- / 05 40-1	
BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)	555.0 (15.72) .00 (.00) 4673. (132.3)	557.4 (15.79) .00 (.00) 8056. (228.2)	557.0 (15.77) .00 (.00) 4690. (132.8)
HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO3 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM DILUTION FACTOR HC CONCENTRATION PPM CO3 CONCENTRATION PPM CO4 CONCENTRATION PPM CO5 CONCENTRATION PPM HC MASS GRAMS CO5 MASS GRAMS CO5 MASS GRAMS NOX MASS GRAMS FUEL MASS KG FUEL ECONOMY MPG (L/100KM)	44.2/ 2/ 44.1/ 6.9/ 2/ 6.90 53.9/ 14/ 242.10 .2/ 14/ .81 84.7/ 14/ .7493 14.8/ 14/ .0510 47.9/ 1/ 11.98 .7/ 1/ .18	76.5/ 1/ 7.68 65.3/ 1/ 6.55 18.3/ 12/ 17.63 1.2/ 12/ 1.14 71.2/ 14/ .5166 14.6/ 14/ .0502 5.4/ 1/ 1.35 .5/ 1/ .13	7.4/ 2/ 7.40 73.7/ 13/ 176.03 .6/ 13/ 1.31 80.6/ 14/ .6698 14.7/ 14/ .0506 12.7/ 1/ 3.18 .5/ 1/ .13
DILUTION FACTOR HC CONCENTRATION PPM CO CONCENTRATION PPM CO2 CONCENTRATION PCT NOX CONCENTRATION PPM	17.14 37.68 233.32 .7013 11.82	25.66 1.38 16.05 4683 1.23	19.34 9.88 169.25 .6218 3.06
HC MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS FUEL MASS KG FUEL ECONOMY MPG (L/100KM)	2.939 35.948 1699.10 3.183 .569 17.71 (13.28)	.185 4.264 1956.30 .571 .633 17.02 (13.82)	.773 26.171 1512.03 .827 .501 20.17 (11.66)

3-BAG COMPOSITE RESULTS

HC CO G/MI .253 CO G/MI 4.637 NOX G/MI .323 FUEL ECONOMY MPG (L/100KM)

17.95 (13.10)

APPENDIX C

COMPUTER PRINTOUTS OF EMISSIONS DATA FROM FTPs WITH LPG

Page C-	Test Number	Operating Condition	Catalyst Installation
1	L-LPG-0.8-E1	Lean	Without Catalyst
2	L-LPG-0.8-E2	Lean	Without Catalyst
3	L-LPG-0.8-C1	Lean	With Catalyst
4	L-LPG-0.8-C2	Lean	With Catalyst
5	L-LPG-1.0-E1	Stoich	Without Catalyst
6	L-LPG-1.0-E2	Stoich	Without Catalyst
7	L-LPG-1.0-C1	Stoich	With Catalyst
8	L-LPG-1.0-C2	Stoich	With Catalyst
9	L-LPG-1.2-E1	Rich	Without Catalyst
10	L-LPG-1.2-E2	Rich	Without Catalyst
11	L-LPG-1.2-C1	Rich	With Catalyst
12	L-LPG-1.2-C2	Rich	With Catalyst

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH

COMPUTER PROGRAM LDT 1.5-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001

VEHICLE NUMBER 53M TEST L-LPG-0.8-E1 LPG

DATE 2/ 1/94 RUN 1
DYNO 2 BAG CART 2
ACTUAL ROAD LOAD 6.50 HP (4.85 KW)
TEST WEIGHT 4000 LBS (1814 KG) FUEL DENSITY 5.733 LB/GAL H .181 C .819 O .000 X .000 VEHICLE MODEL 93 CHEVY LUMINA ENGINE 3.1 L (189 CID)-V-6 TRANSMISSION L46120 MILES (9847 KM) ODOMETER BAROMETER 29.64 IN HG (752.9 MM HG) DRY BULB TEMPERATURE 72.0°F (22.2°C) NOX HUMIDITY C.F. .811 RELATIVE HUMIDITY 21.6 PCT. BAG NUMBER BAG DESCRIPTION COLD TRANSIENT STABILIZED HOT TRANSIENT (0- 505 SEC.) (505-1372 SEC.) 867.6 (0-505 SEC.) RUN TIME SECONDS 505.0 505.0 DRY/WET CORRECTION FACTOR, SAMP/BACK .986/.994 .989/.994 .987/.994 3.64 (5.86) 569.3 (16.12) .28 (.01) 4794. (135.8) 3.65 (5.88) 571.9 (16.20) .27 (.01) 4815. (136.4) MEASURED DISTANCE MILES (KM) 3.88 (6.25) 572.3 (16.21) .29 (.01) 8280. (234.5) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM)
TOTAL FLOW SCF (SCM) 18.9/ 3/ 188.58 .8/ 3/ 7.98 19.2/ HC SAMPLE METER/RANGE/PPM (BAG) 3/ 191.57 19.1/ 3/ 190.58 .8/ 3/ 7.98 54.1/ 13/ 125.52 8/ 3/ 7.98 79.4/ 13/ 191.31 .5/ 13/ 1.09 74.7/ 14/ .5695 13.4/ 14/ .0454 HС BCKGRD METER/RANGE/PPM .9/ 3/ 8.98 98.0/ 13/ 243.05 CO SAMPLE METER/RANGE/PPM 13/ .44 14/ .6535 BCKGRD METER/RANGE/PPM .2/ CO .3/ 13/ . 65 CO2 SAMPLE METER/RANGE/PCT 79.7/ 64.5/ 14/ .4268 CO2 BCKGRD METER/RANGE/PCT .0482 13.9/ 14/ .0474 1/ NOX SAMPLE METER/RANGE/PPM (BAG) (D) 30.5/ 2/ 30.51 34.8/ 8.77 31.0/ 2/ 2/ 31.01 .50 .39 NOX BCKGRD METER/RANGE/PPM .5/ 2/ 1.5/ .2/ 4.76 CH4 SAMPLE PPM (1.110) 5.95 5 53 CH4 BCKGRD PPM 2.53 2.54 2.54 DILUTION FACTOR 17.07 19.26 24.89 HC CONCENTRATION PPM 184.06 181.96 181.01 CO CONCENTRATION PPM 122.34 238.33 186.43 CO2 CONCENTRATION PCT .3813 .5265 6081 30.04 NOX CONCENTRATION PPM 8.39 30.82 CONCENTRATION PPM 3.52 2.36 3.12 177.55 NMHC CONCENTRATION PPM 181.43 178.05 MASS GRAMS THC 15.555 26.016 15.244 MASS GRAMS 19.336 29.598 CO 65.062 CO2 MASS GRAMS 1511.60 1636.97 1314.47 XON MASS GRAMS 6.325 3.052 6.518 CH4 MASS GRAMS .214 .551 .284 NMHC MASS GRAMS (FID) 14.204 24.074 13,962 MASS KG 469 FUEL. .530 .606 FUEL ECONOMY MPG (L/100KM) 17.90 (13.14) 16.67 (14.11) 20.26 (11.61) 3-BAG COMPOSITE RESULTS G/MI THC 5.495 CH4 G/MI .107 NMHC 11.980 5.063 G/MI G/MI CO CARBONYL G/MI NOX G/MI 1.259 .272 ALCOHOL G/MI .053

C-1

FUEL ECONOMY MPG (L/100KM) 17.81 (13.21)

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH

L.P.C

COMPUTER PROGRAM LDT 1.5-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001 TEST L-LPG-0.8-E2

VEHICLE MODEL 93 CHEVY LUMINA ENGINE 93 CHEVY LUMINA 3.1 L (189 CID)-V-6 DATE 2/ 2/94 RUN 1 DYNO 2 BAG CART 2 ACTUAL ROAD LOAD 6.50 HP (4.85 KW) FUEL DENSITY 5.733 LB/GAL H .181 C .819 O .000 X .000 TRANSMISSION L4 6131 MILES (9864 KM) ODOMETER TEST WEIGHT 4000 LBS (1814 KG) BAROMETER 29.62 IN HG (752.3 MM HG) RELATIVE HUMIDITY 21.6 PCT. DRY BULB TEMPERATURE 72.0°F (22.2°C) NOX HUMIDITY C.F. .811 BAG NUMBER BAG DESCRIPTION COLD TRANSIENT STABILIZED HOT TRANSIENT (0- 505 SEC.) (0-505 SEC.) (505-1372 SEC.) RUN TIME SECONDS 504.8 867.8 505.6 DRY/WET CORRECTION FACTOR, SAMP/BACK .986/.994 .989/.994 .987/.994 3.90 (6.27) MEASURED DISTANCE MILES (KM) 3.66 (5.88) 569.9 (16.14) 3.65 (5.88) 570.5 (16.16) BLOWER FLOW RATE SCFM (SCMM) 571.9 (16.20) .27 (.01) 4797. (135.9) .28 (.01) 8276. (234.4) .27 (.01) 4810. (136.2) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM) 19.0/ 3/189.58 .8/ 3/ 7.98 84.5/ 13/205.21 18.3/ 21.9/ 3/ 218.51 HC SAMPLE METER/RANGE/PPM (BAG) 3/ 182.59 BCKGRD METER/RANGE/PPM .8/ 7.98 HC .8/ 3/ 7.98 47.0/ 13/ 107.96 .8/ 3/ 7.98 78.2/ 13/ 188.07 SAMPLE METER/RANGE/PPM .7/ 13/ 1.52 74.7/ 14/ .5695 .8/ 13/ 64.4/ 14/ BCKGRD METER/RANGE/PPM 1.52 .6446 13/ 1.74 79.2/ CO2 SAMPLE METER/RANGE/PCT 14/ .4255 14.5/ CO2 BCKGRD METER/RANGE/PCT 14.8/ 14/ .0510 14.4/ 14/ .0494 14/ .0498 NOX SAMPLE METER/RANGE/PPM (BAG) (D) 32.1/ 2/ 32.9/ 2/ 32.91 2/ .50 1/ 33.8/ 8.52 32.11 NOX BCKGRD METER/RANGE/PPM .5/ .50 1.2/ .31 CH4 SAMPLE PPM (1.110) 4.69 5.85 5.76 CH4 BCKGRD PPM 2.69 2.73 2.80 19.18 DILUTION FACTOR 17.36 25.16 CONCENTRATION PPM HC 175.07 181.91 210.95 CO CONCENTRATION PPM 104.17 200.09 182.84 CONCENTRATION PCT .5965 .3781 .5223 NOX CONCENTRATION PPM 32.44 8.22 31.74 CH4 CONCENTRATION PPM 2.16 3.23 3.11 NMHC CONCENTRATION PPM 172.67 178.33 207.50 THC MASS GRAMS 14.877 25.972 17.539 CO MASS GRAMS 16.477 54.597 28.996 MASS GRAMS C02 1483.71 1622.41 1302.55 NOX MASS GRAMS 6.836 2.988 6.705 CH4 MASS GRAMS .196 .504 .282 NMHC MASS GRAMS (FID) 13.527 24.101 16.299 FUEL MASS KG .595 .467 FUEL ECONOMY MPG (L/100KM) 18.35 (12.82) 17.02 (13.82) 20.36 (11.56) 3-BAG COMPOSITE RESULTS THC G/MI 5.610 CH4 G/MI .099 CO G/MI 10.355 NMHC G/MI 5.191 NOX G/MI 1.291 CARBONYL G/MI .271 ALCOHOL G/MI . 048 FUEL ECONOMY MPG (L/100KM) 18.12 (12.98)

C-2

VEHICLE NUMBER 53M

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT N COMPUTER PROGRAM LDT 1.5-R PROJECT NO. 08-6068-001 TEST L-LPG-0.8-C1 DATE 1/28/94 RUN 1

COMPUTER PROGRAM LDT 1.5-R 3-E	BAG CARB FTP VEHICLE	EMISSION RESULTS	PROJECT NO. 08-6068-001
VEHICLE NUMBER 53M VEHICLE MODEL 93 CHEVY LUMINA ENGINE 3.1 L (189 CID) -V-6 TRANSMISSION L4 ODOMETER 6083 MILES (9787 KM)	TEST L-LPG-0.8 DATE 1/28/94 DYNO 2 BAG ACTUAL ROAD LO TEST WEIGHT 4	:-C1 RUN 1 : CART 2 NAD 6.50 HP (4.85 KW .000 LBS (1814 KG)	LPG FUEL DENSITY 5.733 LB/GAL H .181 C .819 O .000 X .000
BAROMETER 29.40 IN HG (746.8 MM HG) RELATIVE HUMIDITY 19.8 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)	DRY BULB TEMPERATURE 1 COLD TRANSIENT (0-505 SEC.) 505.2	2	NOX HUMIDITY C.F807 3 HOT TRANSIENT (0- 505 SEC.) 505.4
MEASURED DISTANCE MILES (KM) MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)	3.61 (5.80)	3.79 (6.09)	3.60 (5.79)
	568.2 (16.09)	572.1 (16.20)	571.7 (16.19)
	.14 (.00)	.14 (.00)	.14 (.00)
	4785. (135.5)	8275. (234.4)	4816. (136.4)
HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT	53.6/ 2/ 53.57	11.6/ 2/ 11.59	38.3/ 2/ 38.28
	5.1/ 2/ 5.10	5.7/ 2/ 5.70	5.7/ 2/ 5.70
	15.6/ 12/ 15.01	45.2/ 12/ 44.01	57.4/ 12/ 56.11
	.9/ 12/ .85	2.3/ 12/ 2.19	.5/ 12/ .47
	80.1/ 14/ .6607	66.5/ 14/ .4522	75.7/ 14/ .5855
	13.3/ 14/ .0450	13.1/ 14/ .0442	12.9/ 14/ .0434
NOX SAMPLE METER/RANGE/PPM (BAG) (D) NOX BEKGRD METER/RANGE/PPM CH4 SAMPLE PPM (1.110) CH4 BCKGRD PPM DILUTION FACTOR	39.2/ 2/ 39.22	35.8/ 1/ 9.01	31.7/ 2/ 31.71
	.4/ 2/ .40	.8/ 1/ .21	.3/ 2/ .30
	3.86	5.11	4.68
	2.43	2.38	2.34
HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO BCKGRD METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (BAG) (D) NOX BCKGRD METER/RANGE/PPM CH4 SAMPLE PPM (1.110) CH4 BCKGRD PPM DILUTION FACTOR HC CONCENTRATION PPM CO2 CONCENTRATION PPM CO2 CONCENTRATION PPM CNX CONCENTRATION PPM CNX CONCENTRATION PPM NMHC CONCENTRATION PPM NMHC CONCENTRATION PPM	48.76	6.12	32.87
	13.88	41.18	54.55
	.6183	.4097	.5443
	38.84	8.82	31.43
	1.57	2.82	2.46
	47.02	2.99	30.14
THC MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS CH4 MASS GRAMS NMHC MASS GRAMS FUEL MASS KG FUEL ECONOMY MPG (L/100KM)	3.877	.846	2.595
	2.190	11.236	8.662
	1533.99	1757.91	1359.16
	8.126	3.190	6.619
	.142	.440	.224
	3.675	.405	2.370
3-BAG COMPOSITE RESULTS			
THC G/MI .: CO G/MI 2.: NOX G/MI 1.4 FUEL ECONOMY MPG (L/10	316 415 DOKM) 17.85 (13.18)	NMHC G/MI CARBONYL G/MI	.451 .004

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH

COMPUTER PROGRAM LDT 1.5-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001

VEHICLE NUMBER 53M TEST L-LPG-0.8-C2 DATE 1/31/94 RUN 1 DYNO 2 BAG CART 2 VEHICLE MODEL 93 CHEVY LUMINA FUEL DENSITY 5.733 LB/GAL H .181 C .819 O .000 X .000 ENGINE 3.1 L (189 CID)-V-6 ACTUAL ROAD LOAD 6.50 HP (4.85 KW) TEST WEIGHT 4000 LBS (1814 KG) TRANSMISSION L4 6101 MILES (9816 KM) ODOMETER

BAROMETER 29.65 IN HG (753.1 MM HG) DRY BULB TEMPERATURE 71.0°F (21.7°C) NOX HUMIDITY C.F. .816 RELATIVE HUMIDITY 23.8 PCT. BAG NUMBER COLD TRANSIENT (0-505 SEC.) HOT TRANSIENT BAG DESCRIPTION STABILIZED (0- 505 SEC.) (505-1372 SEC.) 868.0 504.7 RUN TIME SECONDS 505.2 DRY/WET CORRECTION FACTOR, SAMP/BACK .985/.994 .988/.994 .986/.994 MEASURED DISTANCE MILES (KM) 3.65 (5.88) 3.88 (6.24) 3.65 (5.87) BLOWER FLOW RATE SCFM (SCMM) 572.5 (16.21) 574.4 (16.27) 574.0 (16.26) .14 (.00) 8312. (235.4) .14 (.00) .14 (.00) 4817. (136.4) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM) 4835. (136.9) SAMPLE METER/RANGE/PPM (BAG) 57.9/ 57.87 10.8/ 2/ 10.79 38.8/ BCKGRD METER/RANGE/PPM 5.6/ 2/ 5.60 6.4/ 2/ 6.40 2/ 6.0/ 6.00 13.7/ 12/ 13.16 50.2/ 12/ .9/ 12/ 67.4/ 14/ 59.4/ 12/ CO SAMPLE METER/RANGE/PPM 48.95 58.12 BCKGRD METER/RANGE/PPM .7/ 81.1/ .85 .4640 .4/ 12/ 76.4/ 14/ CO 12/ .66 3.8 .6790 CO2 SAMPLE METER/RANGE/PCT .5969 14/ CO2 BCKGRD METER/RANGE/PCT 13.7/ 13.4/ 14/ 13.7/ 14/ .0466 14/ .0466 .0454 NOX SAMPLE METER/RANGE/PPM (BAG) (D) 32.4/ 2/ 32.41 33.5/ 2/ 32.91 1/ 8.44 32.9/ .3/ 2/ .40 1/ NOX BCKGRD METER/RANGE/PPM .4/ 2/ 1.5/ 3.49 CH4 SAMPLE PPM (1.110) 4.55 4.40 CH4 BCKGRD PPM 2.32 2.35 2.33 17.04 24.89 DILUTION FACTOR 19.28 CONCENTRATION PPM 52.60 HC 4.65 33.09 CQ CONCENTRATION PPM 12.23 47.24 56.51 .4192 .6352 C02 CONCENTRATION PCT .5538 CONCENTRATION PPM 32.04 8.07 NOX 32.63 CONCENTRATION PPM 1.30 2.29 CH4 2.19 NMHC CONCENTRATION PPM 51.15 2.11 30.66 THC MASS GRAMS 4.206 .648 2.622 12.946 MASS GRAMS വ 1.943 9.007 C02 MASS GRAMS 1586.34 1806.92 1388.32 NOX MASS GRAMS 6.819 2.964 6.971 MASS GRAMS .119 CH4 .360 .200 NMHC MASS GRAMS (FID) 4.023 .286 2.420 .534 17.79 (13.22) .610 16.54 (14.22) .470 20.17 (11.66) FUEL MASS KG FUEL ECONOMY MPG (L/100KM) 3-BAG COMPOSITE RESULTS

THC G/MT .525 CH4 G/MI .070 G/MI 2.513 NMHC CO G/MT 451 NOX G/MI 1.311 CARBONYL G/MI .004 FUEL ECONOMY MPG (L/100KM) 17.69 (13.30)

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001 COMPUTER PROGRAM LDT 1.5-R

VEHICLE NUMBER 53M VEHICLE MODEL 93 CHEVY LUMINA ENGINE 3.1 L (189 CID)-V-6 TRANSMISSION L4 ODOMETER 5945 MILES (9565 KM)	TEST L-LPG-1.0-	-E1	LPG	
VEHICLE MODEL 93 CHEVY LUMINA	DATE 1/18/94	RUN 1	FUEL DENSITY 5.	733 LB/GAL
ENGINE 3.1 L (189 CID)-V-6	DYNO 2 BAG	CART 2	. н .181 С .819 О	.000 x .000
ODOMETER 5945 MILES / 9565 VM)	ACTUAL RUAD LUI	AD 0.50 HP (4.85 AW	,	
ODOMETER 5945 MIDES (9505 KM)	P INDIAW ICAI	000 DB3 (1814 NG)		
BAROMETER 29.56 IN HG (750.8 MM HG)	DRY BULB TEMPERATURE	69.0°F (20.6°C)	NOX HUMIDITY C.F	793
RELATIVE HUMIDITY 18.3 PCT.				
BAG NUMBER	1	2	3	
BAG DESCRIPTION	COLD TRANSIENT	STABILIZED	HOT TRANSIENT	
	(0-505 SEC.)	(505-1372 SEC.)	(0- 505 SEC.)	
RUN TIME SECONDS	506.2	868.2	505.0	
MEASURED DISTANCE MILES (VM)	.98//.996	396 (6 33)	.988/.996	
REASORED DISTANCE MIDES (RM) RIOWER FLOW RATE SCEM (SCMM)	5.04 (5.05) 552 8 (15.66)	568 1 (16 09)	572 7 (16 22)	
GAS METER FLOW RATE SCFM (SCMM)	28 (.01)	.28 (.01)	.28 (.01)	
TOTAL FLOW SCF (SCM)	4666. (132.2)	8224. (232.9)	4823. (136.6)	
BAROMETER 29.56 IN HG (750.8 MM HG) RELATIVE HUMIDITY 18.3 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)		,,		
HC SAMPLE METER/RANGE/PPM (BAG)	78.0/ 2/ 77.95	64.9/ 2/ 64.86	78.5/ 2/ 78.45	
HC BCKGRD METER/RANGE/PPM	5.5/ 2/ 5.50	6.1/ 2/ 6.10	5.8/ 2/ 5.80	
CO SAMPLE METER/RANGE/PPM	62.7/ 1/ 564.79	66.5/ 14/ 309.87	85.8/ 14/ 420.70	
CO BCKGRD METER/RANGE/PPM	.0/ 1/ .00	.1/ 14/ .40	.5/ 14/ 2.02	
CO2 SAMPLE METER/RANGE/PCT	78.1/ 14/ .6254	63.8/ 14/ .4182	73.7/ 14/ .5539	
COZ BCKGKU METER/RANGE/PCT	13.5/ 14/ .0458	13.5/ 14/ .0458	13.7/ 14/ .0466	
NOX SAMPLE METER/RANGE/PPM (BAG) (D)	40.1/ 2/ 40.12	1 0 / 1 / 20.62	44.// 2/ 44./2	
CH4 SAMPLE PPM (1 110)	.3/ 2/ .30 6.40	5 87	6.04	
CH4 BCKGRD PPM	2.90	2.84	2.85	
HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (BAG) (D) NOX BCKGRD METER/RANGE/PPM CH4 SAMPLE PPM (1.110) CH4 BCKGRD PPM DILUTION FACTOR HC CONCENTRATION PPM CO2 CONCENTRATION PPM CO3 CONCENTRATION PPM CH4 CONCENTRATION PPM NMC CONCENTRATION PPM NMC CONCENTRATION PPM NMC CONCENTRATION PPM				
DILUTION FACTOR	16.98	25.69	19.39	
HC CONCENTRATION PPM	72.78	59.00	72.96	
CO CONCENTRATION PPM	553.27	304.65	410.91	
NOY CONCENTRATION PCT	.5625 45 94	.3/42 20 37	.3097	
CH4 CONCENTRATION PPM	3 67	3 1/1	3 34	
NMHC CONCENTRATION PPM	68.71	55.52	69.25	
THC MASS GRAMS	5.940	8.535	6.133	
CO MASS GRAMS	85.121	82.604	65.334	
CO2 MASS GRAMS	1409.01	1595.47	1274.61	
NOX MASS GRAMS	9.186	7.195	9.183	
CH4 MASS GRAMS	.323	.488	.304	
NAME MASS GRAMS (FID)	5.436 520	/.456 504	5.454 465	
THC MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS CH4 MASS GRAMS NMHC MASS GRAMS (FID) FUEL MASS KG FUEL ECONOMY MPG (L/100KM)	18.18 (12.94)	17.22 (13 66)	20.29 (11 60)	
roll bonom mrs (b) roller,	10.10 (11.54)	17.22 (13.00)	20.23 (11.00)	
3-BAG COMPOSITE RESULTS	•			
THE CANT 1	246	CWA C/MT	107	
CO G/MI 20	369	NMHC G/MI	1.710	
NOX G/MI 2.1	185	CARBONYL G/MT	.112	
THC G/MI 1.5 CO G/MI 20.3 NOX G/MI 2.3		ALCOHOL G/MI	.017	
FUEL ECONOMY MPG (L/1	OOKM) 18.19 (12.93)			

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001 COMPUTER PROGRAM LDT 1.5-R

VEHICLE NUMBER 53M VEHICLE MODEL 93 CHEVY LUMINA ENGINE 3.1 L (189 CID) -V-6 TRANSMISSION L4 ODOMETER 5957 MILES (9584 KM)	TEST L-LPG-1.0-1 DATE 1/19/94 DYNO 2 BAG (ACTUAL ROAD LOAI TEST WEIGHT 400	E2 RUN 1 CART 2 D 6.50 HP (4.85 KW) DO LBS (1814 KG)	LPG FUEL DENSITY 5.733 LB/GAL H .181 C .819 O .000 X .000
		50 00m / 00 00m)	
BAG DESCRIPTION	COLD TRANSIENT	STABILIZED (505-1372 SEC.)	HOT TRANSIENT
BAROMETER 29.59 IN HG (751.6 MM HG) RELATIVE HUMIDITY 31.2 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)	505.0 .984/.993 3.64 (5.86) 566.4 (16.04) .28 (.01) 4769. (135.1)	867.9 .987/.993 3.90 (6.28) 572.8 (16.22) .28 (.01) 8290. (234.8)	505.8 .985/.993 3.65 (5.87) 568.1 (16.09) .27 (.01) 4791. (135.7)
HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (BAG) (D)	80.3/ 2/ 80.25 5.9/ 2/ 5.90 66.3/ 1/ 607.52 .1/ 1/ .69 78.8/ 14/ .6376 14.4/ 14/ .0494 47.9/ 2/ 47.92	68.2/ 2/ 68.16 6.7/ 2/ 6.70 65.8/ 14/ 305.99 .5/ 14/ 2.02 64.7/ 14/ .4293 14.5/ 14/ .0498 84.4/ 1/ 21.09	80.4/ 2/ 80.35 6.6/ 2/ 6.60 87.1/ 14/ 428.32 .6/ 14/ 2.43 73.9/ 14/ .5570 14.9/ 14/ .0515 45.8/ 2/ 45.82
NOX BCKGRD METER/RANGE/PPM CH4 SAMPLE PPM (1.110) CH4 BCKGRD PPM	.4/ 2/ .40 6.16 2.51	1.5/ 1/ .39 5.60 2.50	.5/ 2/ .50 5.73 2.50
DILUTION FACTOR HC CONCENTRATION PPM CO CONCENTRATION PPM CO2 CONCENTRATION PCT NOX CONCENTRATION PPM CH4 CONCENTRATION PPM NMHC CONCENTRATION PPM	16.59 74.71 591.79 .5911 47.55 3.80 70.49	25.09 61.73 297.94 .3814 20.72 3.20 58.18	19.27 74.10 416.20 .5082 45.35 3.36 70.37
TOTAL FLOW SCF (SCM) HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO ECKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM CO3 SAMPLE METER/RANGE/PPM CO4 SAMPLE PPM (1.110) CH4 BCKGRD PPM DILUTION FACTOR HC CONCENTRATION PPM CO4 CONCENTRATION PCT NOX CONCENTRATION PCT NOX CONCENTRATION PPM CH4 CONCENTRATION PPM CH4 CONCENTRATION PPM THC MASS GRAMS CO MASS GRAMS CO MASS GRAMS NOX MASS GRAMS NMHC MASS GRAMS NMHC MASS GRAMS (FID) FUEL MASS KG FUEL ECONOMY MPG (L/100KM) 3-BAG COMPOSITE RESULTS	6.253 93.055 1461.80 10.217 .342 5.490 .542 17.47 (13.46)	9.013 81.437 1639.56 7.738 .500 7.877 .598 16.96 (13.87)	6.340 65.748 1262.58 9.790 .304 5.506 .462 20.55 (11.44)
THC G/MI 2. CO G/MI 21. NOX G/MI 2. FUEL ECONOMY MPG (L/1	029 057 347	CH4 G/MI NMHC G/MI CARBONYL G/MI ALCOHOL G/MI	.109 1.772 .121 .027
FUEL ECONOMY MPG (L/1	00KM) 17.96 (13.10)		

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH 9ROJECT NO. 08-6068-001 COMPUTER PROGRAM LDT 1.5-R

VEHICLE NUMBER 53M VEHICLE MODEL 93 CHEVY LUMINA ENGINE 3.1 L (189 CID)-V-6 TRANSMISSION L4 ODOMETER 5902 MILES (9496 KM)	TEST L-LPG-1.0 DATE 1/13/94 DYNO 2 BAG ACTUAL ROAD LO TEST WEIGHT 4	-C1 RUN 1 CART 2 AD 6.50 HP (4.85 KV 000 LBS (1814 KG)	LPG FUEL DENSITY 5.733 LB/GAL H .181 C .819 O .000 X .000
BAROMETER 29.31 IN HG (744.5 MM HG) RELATIVE HUMIDITY 60.7 PCT. BAG NUMBER BAG DESCRIPTION	DRY BULB TEMPERATURE 1 COLD TRANSIENT	: 64.0°F (17.8°C) 2 STABILIZED	NOX HUMIDITY C.F914 3 HOT TRANSIENT
BAROMETER 29.31 IN HG (744.5 MM HG) RELATIVE HUMIDITY 60.7 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM) HC SAMPLE METER/RANGE/PPM (BAG)	(0-505 SEC.) 505.3 .979/.987 3.64 (5.85) 566.7 (16.05) .28 (.01) 4775. (135.2)	(505-1372 SEC.) 868.4 .982/.987 3.87 (6.23) 567.1 (16.06) .28 (.01) 8212. (232.6)	(0- 505 SEC.) 504.5 .980/.987 3.62 (5.82) 565.9 (16.03) .28 (.01) 4760. (134.8)
HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (BAG) (D) NOX BCKGRD METER/RANGE/PPM (BAG) NOX BCKGRD METER/RANGE/PPM CH4 SAMPLE PPM (1.110) CH4 BCKGRD PPM DILUTION FACTOR HC CONCENTRATION PPM CO2 CONCENTRATION PPM CO2 CONCENTRATION PPM CH4 CONCENTRATION PPM CH4 CONCENTRATION PPM NMHC CONCENTRATION PPM NMHC CONCENTRATION PPM	28.8/ 2/ 28.78 6.7/ 2/ 6.70 46.6/ 14/ 205.00 .7/ 14/ 2.83 80.4/ 14/ .6661 14.5/ 14/ .0498 32.3/ 1/ 8.14 .9/ 1/ .23 7.61 2.96	14.0/ 2/ 13.99 8.9/ 2/ 8.89 43.0/ 12/ 41.84 2.2/ 12/ 2.09 66.4/ 14/ .4509 14.0/ 14/ .0478 17.6/ 1/ 4.47 .5/ 1/ .13 7.73 2.82	18.9/ 2/ 18.89 7.1/ 2/ 7.10 57.1/ 13/ 133.05 .9/ 13/ 1.96 75.7/ 14/ .5855 13.9/ 14/ .0474 41.5/ 1/ 10.43 .7/ 1/ .18 6.08 2.78
DILUTION FACTOR HC CONCENTRATION PPM CO CONCENTRATION PPM CO2 CONCENTRATION PCT NOX CONCENTRATION PPM CH4 CONCENTRATION PPM NMHC CONCENTRATION PPM	16.98 22.48 195.21 .6193 7.92 4.82 17.13	25.63 5.44 38.61 .4049 4.35 -5.02	19.48 12.16 126.81 .5405 10.26 3.44 8.34
THC MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS CH4 MASS GRAMS NMHC MASS GRAMS FUEL ECONOMY MPG (L/100KM)	1.779 30.731 1533.13 1.874 .435 1.336 .529 17.89 (13.15)	.783 10.454 1724.15 1.768 .778 .000 .581 17.34 (13.57)	.960 19.903 1334.05 2.419 .309 .648 .456
3-BAG COMPOSITE RESULTS THC G/MI .: CO G/MI 4.: NOX G/MI .:			
FUEL ECONOMY MPG (L/1	00KM) 18.27 (12.87)	ALCOHOL G/MI	.001

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT N COMPUTER PROGRAM LDT 1.5-R PROJECT NO. 08-6068-001

VEHICLE NUMBER 53M TEST L-LPG-1.0-C2 DATE 1/17/94 RUN 1
DYNO 2 BAG CART 2
ACTUAL ROAD LOAD 6.50 HP (4.85 KW)
TEST WEIGHT 4000 LBS (1814 KG) FUEL DENSITY 5.733 LB/GAL H .181 C .819 O .000 X .000 VEHICLE MODEL 93 CHEVY LUMINA ENGINE 3.1 L (189 CID)-V-6 TRANSMISSION L4 5924 MILES (9531 KM) ODOMETER BAROMETER 29.38 IN HG (746.3 MM HG) DRY BULB TEMPERATURE 62.0°F (16.7°C) NOX HUMIDITY C.F. .841 RELATIVE HUMIDITY 41.5 PCT. BAG NUMBER BAG DESCRIPTION COLD TRANSIENT STABILIZED HOT TRANSIENT (0- 505 SEC.) (0-505 SEC.) (505-1372 SEC.) RUN TIME SECONDS 504.9 504.9 868.5 DRY/WET CORRECTION FACTOR, SAMP/BACK .983/.992 .986/.992 .984/.992 3.64 (5.85) 568.7 (16.11) .28 (.01) 4788. (135.6) 3.86 (6.21) 572.6 (16.22) .28 (.01) 8293. (234.9) 3.63 (5.84) 571.9 (16.20) MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) .28 (.01) 4815. (136.4) TOTAL FLOW SCF (SCM) 2/ 28.18 2/ 5.30 HC SAMPLE METER/RANGE/PPM (BAG) 28.2/ 11.0/ 2/ 10.99 17.0/ 2/ 16.99 HC BCKGRD METER/RANGE/PPM 5.3/ 2/ 5.30 86.9/ 13/ 211.83 5.6/ 2/ 5.60 5.5/ 2/ 5.50 SAMPLE METER/RANGE/PPM 37.9/ 12/ 43.3/ 13/ CO 36.82 98.96 1.74 .3/ BCKGRD METER/RANGE/PPM 13/ .7/ .8/ 13/ CO 12/ .66 . 65 79.5/ CO2 SAMPLE METER/RANGE/PCT . 6499 66.1/ 14/ .4470 14/ .5742 CO2 BCKGRD METER/RANGE/PCT 13.1/ 14/ .0442 12.9/ 14/ .0434 12.9/ 14/ .0434 1/ 1/ NOX SAMPLE METER/RANGE/PPM (BAG) (D) 31.1/ 1/ 7.84 29.3/ 7.40 50.2/ 12.60 1/ NOX BCKGRD METER/RANGE/PPM .8/ .21 .6/ 1/ .15 .5/ .13 4.97 CH4 SAMPLE PPM (1.110) 5.68 6.24 CH4 BCKGRD PPM 2.26 2.23 2.24 DILUTION FACTOR 17.37 25.89 HC CONCENTRATION PPM 23.19 5.61 11.77 CO CONCENTRATION PPM 204.18 35.32 95.71 .6083 C02 CONCENTRATION PCT .4053 .5330 CONCENTRATION PPM NOX 7.65 7.25 12.48 CONCENTRATION PPM 3.58 4.07 2.84 NMHC CONCENTRATION PPM 19.22 1.10 8.62 1.867 THC MASS GRAMS 798 .949 MASS GRAMS 15.195 9.656 CO 32.233 C02 MASS GRAMS 1510.10 1742.49 1330.75 MASS GRAMS NOX 1.669 2.737 .323 .258 CH4 MASS GRAMS .637 MMHC MASS GRAMS (FID) 1.503 .149 .678 MASS KG FUEL .522 .587 . 452 FUEL ECONOMY MPG (L/100KM) 18.11 (12.99) 17.11 (13.75) 20.85 (11.28) 3-BAG COMPOSITE RESULTS THC G/MI .286 CH4 G/MT 123 G/MI 4.295 NMHC CO G/MI .158 хои .670 CARBONYL G/MI .003 ALCOHOL G/MI

FUEL ECONOMY MPG (L/100KM) 18.24 (12.90)

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH
COMPUTER PROGRAM LDT 1.5-R

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH
PROJECT NO. 08-6068-001 VEHICLE NUMBER 53M VEHICLE MODEL 93 CHEVY LUMINA TEST L-LPG-1.2-E1 DATE 1/21/94 RUN 1

VEHICLE NUMBER 53M		TEST L-LPG-1.2	-E1	LPG FUEL DENSITY 5.733 LB, H .181 C .819 O .000 X	
VEHICLE MODEL 93 C	CHEVY LUMINA	DATE 1/21/94	RUN 1	FUEL DENSITY 5.733 LB	/GAL
ENGINE 3.1 I	L (189 CID)-V-6	DYNO 2 BAG	CART 2	H .181 C .819 O .000 X	.000
TRANSMISSION L4		ACTUAL ROAD LO	AD 6.50 HP (4.85 K)	W}	
ODOMETER 59	997 MILES (9649 KM)	TEST WEIGHT 4	000 LBS (1814 KG)		
RELATIVE HUMIDITY 48	3.9 PCT.				
BAG NUMBER		1	2	3	
BAG DESCRIPTION		COLD TRANSIENT	STABILIZED	HOT TRANSIENT	
		(0-505 SEC.)	(505-1372 SEC.)	(0- 505 SEC.)	
RUN TIME SECONDS		505.2	867.5	504.4	
DRY/WET CORRECTION	N FACTOR, SAMP/BACK	.983/.989	.985/.989	.983/.989	
MEASURED DISTANCE	MILES (KM)	3.60 (5.79)	3.82 (6.15)	3.60 (5.80)	
BLOWER FLOW RATE S	SCFM (SCMM)	572.4 (16.21)	575.3 (16.29)	578.6 (16.39)	
GAS METER FLOW RAT	re scfm (scmm)	.28 (.01)	.28 (.01)	.28 (.01)	
TOTAL FLOW SCF (SC	N FACTOR, SAMP/BACK MILES (KM) SCFM (SCMM) EE SCFM (SCMM)	4822. (136.6)	8322. (235.7)	4867. (137.8)	
HC SAMPLE METER/F	RANGE/PPM (BAG)	14.1/ 3/ 140.69	88.8/ 2/ 88.75	10.5/ 3/ 104.77	
HC BCKGRD METER/F	RANGE/PPM	.7/ 3/ 6.98	7.2/ 2/ 7.20	.7/ 3/ 6.98	
CO SAMPLE METER/F	RANGE/PPM	66.6/ 3/3163.23	64.8/ 2/1471.87	51.4/ 2/1040.79	
CO BCKGRD METER/F	RANGE/PPM	.1/ 3/ 2.05	.2/ 2/ 2.68	.0/ 2/ .00	
CO2 SAMPLE METER/F	RANGE/PCT	70.4/ 14/ .5051	58.9/ 14/ .3615	68.3/ 14/ .4760	
CO2 BCKGRD METER/F	RANGE/PCT	13.7/ 14/ .0466	13.4/ 14/ .0454	13.6/ 14/ .0462	
NOX SAMPLE METER/F	RANGE/PPM (BAG) (D)	33.6/ 1/ 8.47	(25.3/ 1/ 6.40	52.3/ 1/ 13.12	
NOX BCKGRD METER/F	RANGE/PPM	.7/ 1/ .18	.6/ 1/ .15	.6/ 1/ .15	
CH4 SAMPLE PPM (1.	.110)	20.57	11.92	13.22	
CH4 BCKGRD PPM		2.46	2.45	2.52	
DILLIMITAN DI AMON		14.15	22.36	10.00	
DILUTION FACTOR	T 7774	14.15	22.70	19.90	
HC CONCENTRATION	N PPM	134.20	81.87	1012 90	
CO CONCENTRATION	N PPM	30/4.42	1433.79	1012.03	
NOV CONCENTRATION	A POL	.4018	.3101	10.00	
NUX CONCENTRATION	N PPM	8.30	0.25	12.98	
NAMES CONCENTRATION	N PPM	18.28	71.03	10.83	
NIAC CONCENTRATION	N PPM	113.91	71.23	00.12	
THE MACE CRAME		10 940	11 507	0 111	
CO MASS GRAMS		10.940	303 300	162 525	
CO MACC CRAMS		1154 70	1272 47	102.525	
NOV MACCODAMC		1 014	2 /2.4/	3 021	
CUA MACC CRAMC		1 664	1 506	005	
NIMUC MACC CDAMC	(PTD)	2.004 2.004	9 690	6 9//	
FITTI MASS GRAMS	(FID)	652	675	457	
FUEL ECONOMY MPG	(T./100KM)	14 36 (16 38)	14 73 (15 97)	20 52 (11.46)	
TOEB ECONOMI MIG	(1) 100/11)	14.50 (10.50)	14.75 (15.57)	20.32 (11.40)	
· •	THC G/MI 2.8 CO G/MI 93.7 NOX G/MI .6	305	CH4 G/MT	.375	
l	CO G/MI 93.7	746	NMHC G/MI	2.348	
1	NOX G/MI	578	CARBONYL G/MI	.068	
			ALCOHOL G/MI	.014	
1	FUEL ECONOMY MPG (L/10	00KM) 15.99 (14.72)			

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH

COMPUTER PROGRAM LDT 1.5-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001

VEHICLE NUMBER 53M VEHICLE MODEL 93 CHEVY LUMINA TEST L-LPG-1.2-E2 LPG TEST L-LPG-1.2-B2
DATE 1/24/94 RUN 1
DYNO 2 BAG CART 2
ACTUAL ROAD LOAD 6.50 HP (4.85 KW)
TEST WEIGHT 4000 LBS (1814 KG) FUEL DENSITY 5.733 LB/GAL 3.1 L (189 CID)-V-6 H .181 C .819 O .000 X .000 ENGINE TRANSMISSION L4 6016 MILES (9679 KM) ODOMETER DRY BULB TEMPERATURE 78.0°F (25.6°C) BAROMETER 29.33 IN HG (745.0 MM HG) NOX HUMIDITY C.F. 1.067 RELATIVE HUMIDITY 60.1 PCT. BAG NUMBER 2 HOT TRANSIENT COLD TRANSIENT STABILIZED BAG DESCRIPTION (505-1372 SEC.) 867.7 (0-505 SEC.) (0- 505 SEC.) 505.3 RUN TIME SECONDS 505.1 DRY/WET CORRECTION FACTOR, SAMP/BACK .973/.980 .975/.980 .974/.980 3.88 (6.24) 563.7 (15.96) .27 (.01) 8156. (231.0) MEASURED DISTANCE MILES (KM) 3.64 (5.86) 3.62 (5.82) BLOWER FLOW RATE SCFM (SCMM) 560.9 (15.88) 560.0 (15.86) .27 (.01) 4724. (133.8) GAS METER FLOW RATE SCFM (SCMM) .28 (.01) 4718. (133.6) TOTAL FLOW SCF (SCM) 2/ 96.14 2/ 9.59 HC SAMPLE METER/RANGE/PPM (BAG) 15.4/ 3/ 153.66 96.2/ 11.6/ 3/ 115.74 3/ 8.98 3/3164.95 3/ 8.98 2/2152.84 .9/ .9/ 81.3/ HC BCKGRD METER/RANGE/PPM 9.6/ 2/1570.89 CO SAMPLE METER/RANGE/PPM 66.4/ .4/ 2/ 6.26 68.5/ 14/ .4787 12.9/ 14/ .0434 40.4/ 1/ 10.16 .2/ 1/ .05 BCKGRD METER/RANGE/PPM .1/ 3/ 2.33 70.9/ 14/ .5123 .4/ 2/ 6.26 85.2/ 13/ .3577 CO CO2 SAMPLE METER/RANGE/PCT 13.5/ 14/ .0458 CO2 BCKGRD METER/RANGE/PCT 18.7/ 13/ .0436 NOX SAMPLE METER/RANGE/PPM (BAG) (D) 1/ 7.10 4.97 28.1/ 19.6/ 1/ 1/ . 05 NOX BCKGRD METER/RANGE/PPM .2/ 1/ .3/ .08 22.24 CH4 SAMPLE PPM (1.110) 13.12 14.76 CH4 BCKGRD PPM 2.37 2.37 2.36 DILUTION FACTOR 14.02 22.49 16.73 CONCENTRATION PPM 145.32 86.98 107.30 CO CONCENTRATION PPM 3063.86 1521.52 2081.43 .4698 .3161 C02 CONCENTRATION PCT .4379 NOX CONCENTRATION PPM 7.05 4.90 10.11 CONCENTRATION PPM 10.85 CH4 20.04 12.54 NMHC CONCENTRATION PPM 123.08 74.93 93.38 11.645 THC MASS GRAMS 12.063 8.571 MASS GRAMS 477.198 CO 409.121 323.776 MASS GRAMS CO2 1336.62 2.308 1150.63 1071.27 NOX MASS GRAMS 1.924 2.756 MASS GRAMS 1.787 1.671 CH4 1.117 NMHC MASS GRAMS (FID) 9.494 9.979 7.194 FUET. .645 14.68 (16.03) .672 15.02 (15.66) MASS KG .535 17.58 (13.38) FUEL ECONOMY MPG (L/100KM) 3-BAG COMPOSITE RESULTS THC G/MT 2.924 CH4 G/MI 410 G/MI 106.381 NMHC 2.419 CO G/MT NOX .627 CARBONYL G/MI .070 G/MI

ALCOHOL G/MI

.025

FUEL ECONOMY MPG (L/100KM) 15.59 (15.09)

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT N

COMPUTER PROGRAM LDT 1.5-R

PROJECT NO. 408-6068-00

		2011001011 11200110	
VEHICLE NUMBER 53M VEHICLE MODEL 93 CHEVY LUMINA ENGINE 3.1 L (189 CID) -V-6 TRANSMISSION L4 ODOMETER 6034 MILES (9708 KM)	TEST L-LPG-1.2 DATE 1/26/94	P-C1 RUN 2	LPG FUEL DENSITY 5.733 LB/GAL
ENGINE 3.1 L (189 CID)-V-6	DYNO 2 BAG	CART 2	H .181 C .819 O .000 X .000
TRANSMISSION L4	ACTUAL ROAD LO	OAD 6.50 HP (4.85 KW	7)
ODOMETER 6034 MILES (9708 KM)	TEST WEIGHT	1000 LBS (1814 KG)	
BAROMETER 29.09 IN HG (738.9 MM HG) RELATIVE HUMIDITY 59.7 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)	DRY BULB TEMPERATURE	77.0°F (25.0°C)	NOX HUMIDITY C.F. 1.052
BAG NUMBER	1	2	3
BAG DESCRIPTION	COLD TRANSIENT	STABILIZED	HOT TRANSIENT
	(0-505 SEC.)	(505-1372 SEC.)	(0- 505 SEC.)
RUN TIME SECONDS	505.0	867.9	505.6
DRY/WET CORRECTION FACTOR, SAMP/BACK	.974/.981	.975/.981	.974/.981
MEASURED DISTANCE MILES (KM)	3.63 (5.84)	3.89 (6.25)	3.63 (5.83)
CAC MEMBER FLOW RATE SCEM (SCMM)	559.8 (15.85)	14 (00)	339.8 (13.85)
MODAL BLOW FOR (SOM)	4712 (100)	2004 (220 2)	.14 (.00)
TOTAL FLOW SCF (SCM)	4/13. (133.5)	8094. (229.2)	4/18. (133.6)
HC SAMPLE METER/RANGE/PPM (BAG)	13.9/ 3/ 138.69	71.9/ 2/ 71.86	82.1/ 2/ 82.05
HC BCKGRD METER/RANGE/PPM	.9/ 3/ 8.98	8.9/ 2/ 8.89	8.6/ 2/ 8.60
CO SAMPLE METER/RANGE/PPM	64.5/ 3/3073.85	58.7/ 2/1310.51	74.4/ 2/1870.45
CO BCKGRD METER/RANGE/PPM	.2/ 3/ 4.66	.4/ 2/ 6.26	.6/ 2/ 9.40
CO2 SAMPLE METER/RANGE/PCT	72.1/ 14/ .5298	62.5/ 14/ .4025	71.0/ 14/ .5137
CO2 BCKGRD METER/RANGE/PCT	14.7/ 14/ .0506	14.5/ 14/ .0498	14.2/ 14/ .0486
NOX SAMPLE METER/RANGE/PPM (BAG) (D)	4.5/ 1/ 1.16	1.3/ 1/ .34	1.0/ 1/ .26
NOX BURGRD METER/RANGE/PPM	1.0/ 1/ .26	.8/ 1/ .21	.0/ 1/ .15
CHA BOYODD DDM	23.33	2 77	2 97
CH4 BCRGRD FFR	2.70	2.77	2.0)
HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (BAG) (D) NOX BCKGRD METER/RANGE/PPM CH4 SAMPLE PPM (1.110) CH4 BCKGRD PPM DILUTION FACTOR HC CONCENTRATION PPM CO2 CONCENTRATION PPM CO2 CONCENTRATION PPM CH4 CONCENTRATION PPM CH4 CONCENTRATION PPM CH4 CONCENTRATION PPM NMHC CONCENTRATION PPM	13.90	21.78	16.63
HC CONCENTRATION PPM	130.36	63.37	73.97
CO CONCENTRATION PPM	2972.63	1267.17	1803.46
CO2 CONCENTRATION PCT	. 4828	.3550	.4680
NOX CONCENTRATION PPM	.92	.14	.11
CH4 CONCENTRATION PPM	21.04	14.11	15.35
NMHC CONCENTRATION PPM	107.00	47.71	56.94
THC MASS GRAMS	10.156	8.468	5.761
CO MASS GRAMS	461.894	338.159	280.547
CO2 MASS GRAMS	1179.74	1489.78	1145.02
NOX MASS GRAMS	.246	.064	.030
CH4 MASS GRAMS	1.872	2.156	1.367
NMHC MASS GRAMS (FID)	8.235	6.306	4.387
FUEL MASS KG	. 645	.682	.534
THC MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS CH4 MASS GRAMS NMHC MASS GRAMS (FID) FUEL MASS KG FUEL ECONOMY MPG (L/100KM)	14.63 (16.08)	14.82 (15.88)	17.64 (13.33)
3-BAG COMPOSITE RESULTS			
THC G/MI 2.1 CO G/MI 92.7 NOX G/MI .(FUEL ECONOMY MPG (L/10	45	CH4 G/MT	. 498
CO G/MI 92.7	709	NMHC G/MI	1.643
NOX G/MI .(025	CARBONYL G/MI	.004
FUEL ECONOMY MPG (L/10	OOKM) 15.48 (15.19)		

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH

COMPUTER PROGRAM LDT 1.5-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001 VEHICLE NUMBER 53M TEST L-LPG-1.2-C2 LPG DATE 1/27/94 RUN 1 DYNO 2 BAG CART 2 FUEL DENSITY 5.733 LB/GAL H .181 C .819 O .000 X .000 93 CHEVY LUMINA VEHICLE MODEL VNO 2 BAG CART 2
ACTUAL ROAD LOAD 6.50 HP (4.85 KW)
TEST WEIGHT 4000 LBS (1814 KG) ENGINE 3.1 L (189 CID)-V-6 TRANSMISSION L4 6046 MILES (9728 KM) ODOMETER BAROMETER 28.95 IN HG (735.3 MM HG) DRY BULB TEMPERATURE 75.0°F (23.9°C) NOX HUMIDITY C.F. 1.073 RELATIVE HUMIDITY 66.3 PCT. BAG NUMBER COLD TRANSIENT HOT TRANSIENT BAG DESCRIPTION STABILIZED (0- 505 SEC.) (0-505 SEC.) (505-1372 SEC.) 868.1 RUN TIME SECONDS 505.2 505.0 .973/.980 DRY/WET CORRECTION FACTOR, SAMP/BACK .973/.980 .975/.980 MEASURED DISTANCE MILES (KM) 3.64 (5.86) 3.89 (6.26) 3.64 (5.85) 557.1 (15.78) BLOWER FLOW RATE SCFM (SCMM) 555.8 (15.74) 555.0 (15.72) GAS METER FLOW RATE SCFM (SCMM) .14 (.00) 8063. (228.3) .14 (.00) 4674. (132.4) .14 (.00) 4679. (132.5) TOTAL FLOW SCF (SCM) 77.7/ 2/ 77.65 8.7/ 2/ 8.69 61.7/ 2/1408.77 14.5/ SAMPLE METER/RANGE/PPM (BAG) 3/ 144.68 89.4/ .9/ HC BCKGRD METER/RANGE/PPM 3/ 8.98 2/ 8.4/ 3/3148.26 76.7/ CO SAMPLE METER/RANGE/PPM 2/1962.13 BCKGRD METER/RANGE/PPM .6/ 2/ 9.40 70.4/ 14/ .5051 13.8/ 14/ .0470 .3/ 3/ 7.00 71.4/ 14/ .5195 .5/ 2/ 7.83 61.1/ 14/ .3862 CO CO2 SAMPLE METER/RANGE/PCT 13.5/ 14/ .0458 CO2 BCKGRD METER/RANGE/PCT 13.3/ 14/ .0450 4.0/ 1.03 .8/ 1/ .0/ 1/ .9/ 1/ .3/ 1/ NOX SAMPLE METER/RANGE/PPM (BAG) (D) 1/ .21 NOX BCKGRD METER/RANGE/PPM 05 .2/ 1/ .00 15.97 CH4 SAMPLE PPM (1.110) 23.84 17.75 CH4 BCKGRD PPM 2.87 3.06 2.72 DILUTION FACTOR 22.05 13.95 16.62 CONCENTRATION PPM 69.35 HC 136.34 81.46 CO CONCENTRATION PPM 3036.58 1358.68 1888.49 . 4770 .4610 CO2 CONCENTRATION PCT .3432 NOX CONCENTRATION PPM .98 21.01 .21 .16 15.20 CONCENTRATION PPM CH4 NMHC CONCENTRATION PPM 113.02 54.68 64.59 THC MASS GRAMS 10.550 9.217 6.275 MASS GRAMS CO 468.431 361.179 291.042 C02 MASS GRAMS 1434.84 1157.23 1117.24 NOX MASS GRAMS .266 .097 .043 CH4 MASS GRAMS 1.856 2.013 1.341 NMHC MASS GRAMS (FID) 8.636 7.199 4.930 .677 14.94 (15.74) .642 14.75 (15.94) min. MASS KG .531 FUEL ECONOMY MPG (L/100KM) 17.81 (13.21) 3-BAG COMPOSITE RESULTS THO G/MI 2.303 CH4 G/MI .475 96.791 NMHC CO G/MT G/MI 1.823

CARBONYL G/MI

.004

15.62 (15.06)

NOX

G/MI

FUEL ECONOMY MPG (L/100KM)

.031

APPENDIX D

COMPUTER PRINTOUTS OF EMISSIONS DATA FROM FTPs WITH CNG

Page D-	Test Number	Operating Condition	Catalyst Installation
1	L-CNG-0.8-E1	Lean	Without Catalyst
2	L-CNG-0.8-E2	Lean	Without Catalyst
3	L-CNG-0.8-C1	Lean	With Catalyst
4	L-CNG-0.8-C2	Lean	With Catalyst
5	L-CNG-1.0-E2	Stoich	Without Catalyst
6	L-CNG-1.0-E3	Stoich	Without Catalyst
7	L-CNG-1.0-C1	Stoich	With Catalyst
8	L-CNG-1.0-C2	Stoich	With Catalyst
9	L-CNG-1.2-E1	Rich	Without Catalyst
10	L-CNG-1.2-E2	Rich	Without Catalyst
11	L-CNG-1.2-C1	Rich	With Catalyst
12	L-CNG-1.2-C2	Rich	With Catalyst

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH PROJECT NO. 08-6068-001 COMPUTER PROGRAM LDT 1.5-R TEST L-CNG-0.8-E1 DATE 3/23/94 RUN 1 CNG FUEL DENSITY 5.601 LB/GAL

COMPUTER PROGRAM LDT 1.5-R 3			
VEHICLE NUMBER 53M VEHICLE MODEL 93 CHEVY LUMINA ENGINE 3.1 L (189 CID)-V-6 TRANSMISSION L4 ODOMETER 6530 MILES (10506 KM	TEST L-CNG-0.8 DATE 3/23/94 DYNO 2 BAG ACTUAL ROAD LO TEST WEIGHT 4	-E1 RUN 1 CART 2 AD 6.50 HP (4.85 KW 000 LBS (1814 KG)	CNG FUEL DENSITY 5.601 LB/GAL H .235 C .720 O .000 X .045"
BAROMETER 28.98 IN HG (736.1 MM HG) RELATIVE HUMIDITY 78.0 PCT.	DRY BULB TEMPERATURE	74.0°F (23.3°C)	NOX HUMIDITY C.F. 1.145
BAG NUMBER BAG DESCRIPTION	1 COLD TRANSIENT (0-505 SEC.)	2 STABILIZED (505-1372 SEC.)	3 HOT TRANSIENT (0- 505 SEC.)
BAROMETER 28.98 IN HG (736.1 MM HG) RELATIVE HUMIDITY 78.0 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)	505.1 .965/.977 3.62 (5.83) 558.7 (15.82) .27 (.01) 4706. (133.3)	867.0 .969/.977 3.86 (6.21) 558.7 (15.82) .27 (.01) 8078. (228.8)	505.2 .967/.977 3.64 (5.86) 558.3 (15.81) .27 (.01) 4703. (133.2)
HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM	95.3/ 2/ 95.24 9.3/ 2/ 9.29 85.8/ 13/ 208.79 .4/ 13/ .87	10.0/ 3/ 99.78 1.0/ 3/ 9.98 81.8/ 13/ 197.82 .4/ 13/ .87	81.3/ 2/ 81.25 9.3/ 2/ 9.29 45.7/ 13/ 104.79 .4/ 13/ .87
CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (BAG) (D) NOX BCKGRD METER/RANGE/PPM	76.2/ 14/ .5936 13.3/ 14/ .0450 28.6/ 2/ 28.61 .2/ 2/ .20	62.1/ 14/ .3978 13.2/ 14/ .0446 28.1/ 1/ 7.10 .8/ 1/ .21	72.3/ 14/ .5328 13.1/ 14/ .0442 24.2/ 2/ 24.21 .3/ 2/ .30
CH4 SAMPLE PPM (1.100) CH4 BCKGRD PPM	69.15 3.47	73.18 3.40	57.66 3.05
HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PCM NOX BCKGRD METER/RANGE/PPM (BAG) (D) NOX BCKGRD METER/RANGE/PPM CH4 SAMPLE PPM (1.100) CH4 BCKGRD PPM DILUTION FACTOR HC CONCENTRATION PPM CO CONCENTRATION PPM CO2 CONCENTRATION PPM CH4 CONCENTRATION PPM CH4 CONCENTRATION PPM NMHC CONCENTRATION PPM NMHC CONCENTRATION PPM THC MASS GRAMS	15.51 86.55 199.08 .5515 28.43 65.90 14.06	22.65 90.24 189.71 .3552 6.90 69.93 13.32	17.54 72.49 99.71 .4911 23.93 54.78 12.23
THC MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS CHA MASS GRAMS NMHC MASS GRAMS (FID) FUEL MASS KG FUEL ECONOMY MPG (L/100KM)	7.216 30.888 1345.63 8.294 5.855 1.080 .512 17.98 (13.09)	12.870 50.524 1487.53 3.455 10.665 1.756 .580 16.91 (13.91)	6.140 15.461 1197.58 6.978 4.865 .939 .448
3-BAG COMPOSITE RESULTS			
THC G/MI 2 CO G/MI 9 NOX G/MI 1	.600 .697 .469	CH4 G/MI NMHC G/MI CARBONYL G/MI	2.130 .368 .097
FUEL ECONOMY MPG (L/	100KM) 18.05 (13.03)	ALCOHOL G/MI	.004

D-1

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH
3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001 COMPUTER PROGRAM LDT 1.5-R

VEHICLE NUMBER 53M	TEST L-CNG-0.8	-E2	CNG
VEHICLE MODEL 93 CHEVY LUMINA	DATE 3/24/94	RUN 1	FUEL DENSITY 5.601 LB/GAL
ENGINE 3.1 L (189 CID)-V-6	DYNO 2 BAG	CART 2	H .235 C .720 O .000 X .045
TRANSMISSION L4	ACTUAL ROAD LO	AD 6.50 HP (4.85 KW	1)
VEHICLE NUMBER 53M VEHICLE MODEL 93 CHEVY LUMINA ENGINE 3.1 L (189 CID)-V-6 TRANSMISSION L4 ODOMETER 6542 MILES (10526 KM)	TEST WEIGHT 4	000 LBS (1814 KG)	
BAROMETER 29.07 IN HG (738.4 MM HG)	DRY BULB TEMPERATURE	78.0°F (25.6°C)	NOX HUMIDITY C.F. 1.210
RELATIVE HUMIDITY 75.1 PCT.			
BAG NUMBER	1	2	3
BAG DESCRIPTION	COLD TRANSIENT	STABILIZED	HOT TRANSIENT
	(0-505 SEC.)	(505-1372 SEC.)	(0- 505 SEC.)
RUN TIME SECONDS	505.0	867.2	505.2
DRY/WET CORRECTION FACTOR, SAMP/BACK	.963/.975	.967/.975	.964/.975
MEASURED DISTANCE MILES (KM)	3.61 (5.81)	3.86 (6.21)	3.61 (5.81)
BLOWER FLOW RATE SCFM (SCMM)	560.7 (15.88)	561.4 (15.90)	560.7 (15.88)
GAS METER FLOW RATE SCFM (SCMM)	.27 (.01)	.28 (.01)	.28 (.01)
BAROMETER 29.07 IN HG (738.4 MM HG) RELATIVE HUMIDITY 75.1 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)	4722. (133.7)	8119. (229.9)	4724. (133.8)
TO CAMPLE MEMBER (DAMED (DAME)	10.01. 21.101.77	05 07 05 04	02.4/ 0/ 02.25
HC SAMPLE METER/RANGE/PPM (BAG)	10.2/ 3/ 101.//	96.0/ 2/ 95.94	83.4/ 2/ 83.35
HC BURGRD METER/RANGE/PPM	1.2/ 3/ 11.9/	11.9/ 2/ 11.89	9.0/ .2/ 9.59
CO BOYODD METER/RANGE/PPM	87.47 137 213.21	/5.1/ 13/ 1/9./6	59.0/ 13/ 13/.86
CO BUNGRU METER/RANGE/FFM	-2/ 13/ .44 75 0/ 14/ 5071	61 0/ 14/ 2054	.2/ I3/ .44 77 2/ 14/ E220
CO2 DOWODD METER/RANGE/FCI	13.0/ 14/ .30/1	12 0/ 14/ .3934	12 9/ 14/ .5320
NOY SAMPLE METER/RANGE/FCI	26.6/ 2/ 26.61	27 6/ 1/ 6 97	24 6/ 2/ 24 61
NOX BOKORD METER/RANGE/PPM	3/ 2/ 30	9/ 1/ 23	2/ 2/ 24.01
CH4 SAMPLE PPM (1 100)	73 87	70 02	62 05
CH4 BCKGRD PPM	3.69	3 75	3 14
	5.05	33	3.22
DILUTION FACTOR	15.65	22.89	17.43
HC CONCENTRATION PPM	90.57	84.57	74.31
CO CONCENTRATION PPM	203.96	172.09	131.95
CO2 CONCENTRATION PCT	.5461	.3536	.4922
NOX CONCENTRATION PPM	26.33	6.75	24.42
CH4 CONCENTRATION PPM	70.41	66.43	59.09
NMHC CONCENTRATION PPM	13.11	11.50	9.30
THC MASS GRAMS	7.573	12.169	6.272
CO MASS GRAMS	31.752	46.064	20.550
CO2 MASS GRAMS	1336.94	1488.33	1205.50
NOX MASS GRAMS	8.150	3.592	7.562
CH4 MASS GRAMS	6.277	10.183	5.270
NMHC MASS GRAMS (FID)	1.011	1.524	.718
FUEL MASS KG	.509	.5//	.454
FORD ECONOMI MPG (D/100KM)	19:01 (13:06)	17.01 (13.83)	20.10 (11.05)
TOTAL FLOW SCF (SCM) HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (BAG) (D) NOX BCKGRD METER/RANGE/PPM CO4 SAMPLE PPM (1.100) CH4 BCKGRD PPM DILUTION FACTOR HC CONCENTRATION PPM CO2 CONCENTRATION PPM CO4 CONCENTRATION PPM NMC CONCENTRATION PPM NMC CONCENTRATION PPM THC MASS GRAMS CO MASS GRAMS CO4 MASS GRAMS CO5 MASS GRAMS CO5 MASS GRAMS CO4 MASS GRAMS CH4 MASS GRAMS CH5 MASS GRAMS CH6 MASS GRAMS CH7 MASS GRAMS CH6 MASS GRAMS CH7 MASS GRAMS CH7 MASS GRAMS CH6 MASS GRAMS CH7 MASS GRAMS CH7 MASS GRAMS CH8 MASS GRAMS CH9 MASS GRAMS C			
THC G/MI 2. CO G/MI 9. NOX G/MI 1. FUEL ECONOMY MPG (L/1	E 1 2	CUA CAST	2 126
CO G/MT 9	560	NMHC G/MI	2.120
NOX G/MI 1	527	CARRONYI, G/MI	100
		ALCOHOL G/MI	.000
FUEL ECONOMY MPG (L/1	00KM) 18.01 (13.06)		
- , .			

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH
COMPUTER PROGRAM LDT 1.5-R

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSION RESULTS
PROJECT NO. 08-6068-001

VEHICLE NUMBER 53M VEHICLE MODEL 93 CHEVY LUMINA ENGINE 3.1 L (189 CID) -V-6 TRANSMISSION L4 ODOMETER 6498 MILES (10455 KM)	TEST L-CNG-0.8 DATE 3/21/94 DYNO 2 BAG ACTUAL ROAD LO	-C1 RUN 2 CART 2 AD 6.50 HP (4.85 KW)	CNG FUEL DENSITY 5.601 LB/GA H .235 C .720 O .000 X .0	L)45
ODOMETER 6498 MILES (10455 KM)	TEST WEIGHT 4	.000 LBS (1814 KG)		
BAROMETER 29.18 IN HG (741.2 MM HG) RELATIVE HUMIDITY 49.7 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)	DRY RILLR TEMPERATURE	78 0°F (25 6°C)	NOX HIMIDITY CF 992	
BAG NUMBER	1	2	3	
BAG DESCRIPTION	COLD TRANSIENT	STABILIZED	HOT TRANSIENT	
	(0-505 SEC.)	(505-1372 SEC.)	(0- 505 SEC.)	
RUN TIME SECONDS	505.2	867.3	505.2	
MEACINED DISCHANCE MILES (FM)	.9/2/.983	-9/5/.983	.9/3/.983 2 62 / E 02)	
RIOWER FLOW PATE SCEM (SCMM)	563 6 (15 96)	565 9 (16 03)	5.02 (5.03)	
GAS METER FLOW RATE SCFM (SCMM)	.28 (.01)	.28 (.01)	.27 (.01)	
TOTAL FLOW SCF (SCM)	4748. (134.5)	8185. (231.8)	4743. (134.3)	
,	,,	•		
HC SAMPLE METER/RANGE/PPM (BAG)	49.3/ 2/ 49.27	35.9/ 2/ 35.88	45.6/ 2/ 45.57	
HC BCKGRD METER/RANGE/PPM	8.9/ 2/ 8.89	8.3/ 2/ 8.30	7.4/ 2/ 7.40	
CO SAMPLE METER/RANGE/PPM	36.9/ 12/ 35.84	13.1/ 12/ 12.58	29.3/ 12/ 28.38	
CO BCKGRD METER/RANGE/PPM	.4/ 12/ .38	.0/ 12/ .00	.1/ 12/ .09	
CO2 BANFLE METER/RANGE/PCT	13 2 / 14 / 0446	13 1 / 14 / 0442	12.5/ 14/ 1557	
NOX SAMPLE METER/RANGE/PPM (BAG) (D)	84.2/ 1/ 21.04	22.6/ 1/ 5.72	79.9/ 1/ 19.98	
NOX BCKGRD METER/RANGE/PPM	.7/ 1/ .18	.7/ 1/ .18	.7/ 1/ .18	
CH4 SAMPLE PPM (1.100)	36.98	27.67	34.81	
CH4 BCKGRD PPM	2.76	2.72	2.51	
DILLIMION ENGAD	15 70	22.02	17.70	
DILUTION FACTOR HC CONCENTRATION DDM	15.70	23.03	17.79	
CO CONCENTRATION PPM	34 27	12 22	27 39	
CO2 CONCENTRATION PCT	.5651	.3722	.4948	
NOX CONCENTRATION PPM	20.87	5.55	19.81	
CH4 CONCENTRATION PPM	34.39	25.07	32.44	
HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (BAG) (D) NOX BCKGRD METER/RANGE/PPM CH4 SAMPLE PPM (1.100) CH4 BCKGRD PPM DILUTION FACTOR HC CONCENTRATION PPM CO2 CONCENTRATION PPM CO2 CONCENTRATION PPM CH4 CONCENTRATION PPM NMHC CONCENTRATION PPM NMHC CONCENTRATION PPM	3.11	.37	2.91	
muo va aa anava	2 242	2 007	2 140	
THC MASS GRAMS	3.343 5.365	3.947	3.14U 4.284	
CO2 MASS GRAMS	1391.06	1579 67	1216 83	
NOX MASS GRAMS	5.322	2.440	5.046	
CH4 MASS GRAMS	3.083	3.874	2.905	
NMHC MASS GRAMS (FID)	.241	.049	.225	
FUEL MASS KG	.510	.578	.446	
THC MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS CH4 MASS GRAMS NMHC MASS GRAMS (FID) FUEL MASS KG FUEL ECONOMY MPG (L/100KM)	17.96 (13.10)	16.85 (13.96)	20.63 (11.40)	
3-BAG COMPOSITE RESULTS				
THC G/MI	961	CH4 G/MT	.921	
CO G/MI 1.	081	NMHC G/MI	.038	
THC G/MI . CO G/MI 1. NOX G/MI 1.	021	CARBONYL G/MI ALCOHOL G/MI	.002	
FUEL ECONOMY MPG (L/1	00KM) 18.01 (13.06)			

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT N COMPUTER PROGRAM LDT 1.5-R PROJECT NO. 08-6068-001 VEHICLE NUMBER 53M VEHICLE MODEL 93 CHEVY LUMINA ENGINE 3.1 L (189 CID)-V-6 TEST L-CNG-0.8-C2
DATE 3/22/94 RUN 1
DYNO 2 BAG CART 2
ACTUAL ROAD LOAD 6.50 HP (4.85 KW)
TEST WEIGHT 4000 LBS (1814 KG) FUEL DENSITY 5.601 LB/GAL H .235 C .720 O .000 X .045 TRANSMISSION L4

6509 MILES (10472 KM)

BAROMETER 29.22 IN HG (742.2 MM HG)	DRY BULB TEMPERATURE	75.0°F (23.9°C)	NOX HUMIDITY C.F835
RELATIVE HUMIDITY 25.0 PCT.	1	3	3
DAG NUMBER	COLD EDVICEDM	COADII TOUD	J IIOM MD ANGTENIM
BAG DESCRIPTION	COLD TRANSIENT	(EOE 1373 CEC.)	ROT TRANSIENT
NIN MIND GROOMS	(0-505 SEC.)	(505-13/2 SEC.)	(U- 505 SEC.)
RUN TIME SECONDS	505.0	867.3	505.4
DRY/WET CORRECTION FACTOR, SAMP/BACK	.981/.992	.985/.992	.982/.992
MEASURED DISTANCE MILES (KM)	3.61 (5.80)	3.86 (6.22)	3.61 (5.81)
BLOWER FLOW RATE SCFM (SCMM)	564.6 (15.99)	566.8 (16.05)	563.8 (15.97)
GAS METER FLOW RATE SCFM (SCMM)	.28 (.01)	.28 (.01)	.27 (.01)
RELATIVE HUMIDITY 25.0 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)	4755. (134.7)	8197. (232.1)	4751. (134.6)
HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (BAG) (D) NOX BCKGRD METER/RANGE/PPM CH4 SAMPLE PPM (1.100) CH4 BCKGRD PPM DILUTION FACTOR HC CONCENTRATION PPM CO2 CONCENTRATION PCT NOX CONCENTRATION PPM CH4 CONCENTRATION PPM CH4 CONCENTRATION PPM CH4 CONCENTRATION PPM CH4 CONCENTRATION PPM	51.0/ 2/ 50.97	39.6/ 2/ 39.58	50.7/ 2/ 50.67
HC BCKGRD METER/RANGE/PPM	7.6/ 2/ 7.60	8.2/ 2/ 8.20	8.1/ 2/ 8.10
CO SAMPLE METER/RANGE/PPM	36.1/ 12/ 35.05	12.3/ 12/ 11.80	46.9/ 12/ 45.69
CO BCKGRD METER/RANGE/PPM	.3/ 12/ .28	.3/ 12/ .28	.5/ 12/ .47
CO2 SAMPLE METER/RANGE/PCT	76.1/ 14/ .5919	62.7/ 14/ .4049	71.9/ 14/ .5268
CO2 BCKGRD METER/RANGE/PCT	12.8/ 14/ .0430	13.2/ 14/ .0446	13.5/ 14/ .0458
NOX SAMPLE METER/RANGE/PPM (BAG) (D)	31.5/ 2/ 31.51	32.9/ 1/ 8.29	24.9/ 2/ 24.91
NOX BCKGRD METER/RANGE/PPM	.2/ 2/ .20	1.2/ 1/ .31	.2/ 2/ .20
CH4 SAMPLE PPM (1.100)	38.51	30.26	38.51
CH4 BCKGRD PPM	2.51	2.61	2.74
DILUTION FACTOR	16.08	23.56	18.01
HC CONCENTRATION PPM	43.85	31.73	43.02
CO CONCENTRATION PPM	33.90	11.30	44.17
CO2 CONCENTRATION PCT	.5516	.3622	.4836
NOX CONCENTRATION PPM	31.33	8.00	24.72
CH4 CONCENTRATION PPM	36 16	27 76	35 92
NMHC CONCENTRATION PPM	4.07	1.19	3.51
THC MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS CH4 MASS GRAMS NMHC MASS GRAMS (FID) FUEL MASS KG FUEL ECONOMY MPG (L/100KM)	3 607	4 504	2 526
CO MACC CDAMC	5.007 E 313	2.004	5.320
CO MACC CRAMC	3.313 1250 04	3.U33 1530 35	0.717
NOV MACCORANC	£ 720	1339.33	TT3T.30
NOA MASS GRAMS	0./38	4.303	2.314
Und MASS GRAMS	3.440	4.23/	3.444
NAME MASS GRAMS (FID)	.316	. 123	.2/3
FUEL MASS AG	.477	.563	.439
FOEL ECONOMI MPG (L/100KM)	18.37 (12.81)	17.42 (13.51)	20.91 (11.25)
3-BAG COMPOSITE RESULTS			
THC G/MI 1	.079	CH4 G/MI	1.008
CO G/MI 1	.242	NMHC G/MI	.060

ODOMETER

NMHC G/MI CARBONYL G/MI ALCOHOL G/MI NOX G/MI G/MI 1.190 .003 FUEL ECONOMY MPG (L/100KM) 18.48 (12.73)

D-4

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH
3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001 COMPUTER PROGRAM LDT 1.5-R

COMPUTER PROGRAM LDT 1.5-R 3-H	BAG CARB FTP VEHICLE	EMISSION RESULTS	PROJECT NO. 08-6068-001
VEHICLE NUMBER 53M VEHICLE MODEL 93 CHEVY LUMINA ENGINE 3.1 L (189 CID) -V-6 TRANSMISSION L4 ODOMETER 6327 MILES (10180 KM)	TEST L-CNG-1.0 DATE 3/7/94 DYNO 2 BAG ACTUAL ROAD LO TEST WEIGHT 4	-E2 RUN 1 CART 2 AD 6.50 HP (4.85 KW)	CNG FUEL DENSITY 5.573 LB/GAL H .236 C .725 O .000 X .040
BAROMETER 29.22 IN HG (742.2 MM HG)	DRY BULB TEMPERATURE	76.0°F (24.4°C)	NOX HUMIDITY C.F. 1.087
RELATIVE HUMIDITY 66.6 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)	(0-505 SEC.)	(505-1372 SEC.)	(0- 505 SEC.)
	505.2	867.5	505.0
	.968/.979	.971/.979	.969/.979
	3.63 (5.84)	3.85 (6.20)	3.62 (5.83)
	564.5 (15.99)	564.2 (15.98)	564.5 (15.99)
	.27 (.01)	.27 (.01)	.27 (.01)
	4755. (134.7)	8161. (231.1)	4753. (134.6)
HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (BAG) (D) NOX BCKGRD METER/RANGE/PPM CH4 SAMPLE PPM (1.110)	90.2/ 2/ 90.15	11.5/ 3/ 114.74	13.6/ 3/ 135.70
	10.0/ 2/ 9.99	1.2/ 3/ 11.97	1.1/ 3/ 10.98
	55.0/ 1/ 504.72	74.6/ 13/ 178.42	42.7/ 1/ 378.16
	.2/ 1/ 1.68	.7/ 13/ 1.52	.3/ 1/ 2.52
	75.6/ 14/ .5838	62.4/ 14/ .4013	71.3/ 14/ .5181
	13.9/ 14/ .0474	13.7/ 14/ .0466	13.8/ 14/ .0470
	90.1/ 1/ 22.48	29.1/ 1/ 7.35	75.3/ 1/ 18.84
	1.3/ 1/ .34	1.7/ 1/ .44	1.0/ 1/ .26
DILUTION FACTOR HC CONCENTRATION PPM CO CONCENTRATION PPM CO2 CONCENTRATION PCT NOX CONCENTRATION PPM CH4 CONCENTRATION PPM NMHC CONCENTRATION PPM	15.09	22.52	17.05
	80.82	103.30	125.37
	483.66	171.05	361.95
	.5396	.3568	.4738
	22.17	6.93	18.60
	59.90	80.27	96.94
	14.33	14.21	17.76
CH4 BCKGRD PPM DILUTION FACTOR HC CONCENTRATION PPM CO CONCENTRATION PPM CO2 CONCENTRATION PCT NOX CONCENTRATION PPM CH4 CONCENTRATION PPM NMHC CONCENTRATION PPM THC MASS GRAMS CO MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS NOX MASS GRAMS CH4 MASS GRAMS NMHC MASS GRAMS NMHC MASS GRAMS NMHC MASS GRAMS THE MASS KG FUEL ECONOMY MPG (L/100KM)	6.682	14.603	10.311
	75.825	46.026	56.723
	1330.36	1509.87	1167.81
	6.208	3.329	5.207
	5.377	12.368	8.700
	1.113	1.893	1.378
	.531	.587	.465
	17.29 (13.61)	16.60 (14.17)	19.71 (11.94)
3-BAG COMPOSITE RESULTS			
THC G/MI 3.:	123	CH4 G/MI	2.626
CO G/MI 14.:	339	NMHC G/MI	.422
NOX G/MI 1.:	199	CARBONYL G/MI	.075
FUEL ECONOMY MPG (L/1	00KM) 17.52 (13.43)	ALCOHOL G/MI	.000

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH
COMPUTER PROGRAM LDT 1.5-R

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH
PROJECT NO. 08-6068-001 TEST L-CNG-1.0-E3

COMPUTER PROGRAM LDT 1.5-R 3-E			
VEHICLE NUMBER VEHICLE MODEL 93 CHEVY LUMINA ENGINE 3.1 L (189 CID)-V-6 TRANSMISSION L4 ODOMETER 6338 MILES (10197 KM)	TEST L-CNG-1.0 DATE 3/8/94 DYNO 2 BAG ACTUAL ROAD LO TEST WEIGHT 4	-E3 RUN 1 CART 2 AD 6.50 HP (4.85 KW 000 LBS (1814 KG)	CNG FUEL DENSITY 5.573 LB/GAL H .236 C .725 O .000 X .040
BAG NUMBER BAG DESCRIPTION	1 COLD TRANSIENT (0-505 SEC.)	2 STABILIZED (505-1372 SEC.)	3 HOT TRANSIENT (0- 505 SEC.)
BAROMETER 29.06 IN HG (738.1 MM HG) RELATIVE HUMIDITY 63.3 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)	505.4 .968/.979 3.65 (5.87) 555.0 (15.72) .27 (.01) 4677. (132.5)	867.8 .972/.979 3.87 (6.23) 559.0 (15.83) .27 (.01) 8089. (229.1)	505.8 .969/.979 3.65 (5.88) 555.1 (15.72) .27 (.01) 4682. (132.6)
TOTAL FLOW SCF (SCM) HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO ECKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 ECKGRD METER/RANGE/PCT CO3 ECKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PCM NOX BCKGRD METER/RANGE/PPM CH4 SAMPLE PPM (1.110) CH4 ECKGRD PPM DILUTION FACTOR HC CONCENTRATION PPM CO3 CONCENTRATION PPM CO4 CONCENTRATION PPM CO4 CONCENTRATION PPM CH4 CONCENTRATION PPM CH4 CONCENTRATION PPM CH4 CONCENTRATION PPM THC MASS GRAMS CO MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS CH4 MASS GRAMS NHC MASS GRAM	91.3/ 2/ 91.25 9.4/ 2/ 9.39 53.3/ 1/ 486.56 .2/ 1/ 1.68 75.6/ 14/ .5838 13.4/ 14/ .0454 90.3/ 1/ 22.53 1.0/ 1/ .26 63.22 2.87	13.7/ 3/ 136.70 1.1/ 3/ 10.98 70.3/ 13/ 167.04 .9/ 13/ 1.96 62.0/ 14/ .3966 13.8/ 14/ .0470 27.7/ 1/ 7.00 .9/ 1/ .23 101.63 3.10	11.9/ 3/ 118.74 .8/ 3/ 7.98 81.4/ 14/ 394.97 .3/ 14/ 1.21 70.9/ 14/ .5123 12.3/ 14/ .0411 69.9/ 1/ 17.50 .6/ 1/ .15 87.00 2 26
DILUTION FACTOR HC CONCENTRATION PPM CO CONCENTRATION PPM CO2 CONCENTRATION PCT NOX CONCENTRATION PPM CH4 CONCENTRATION PPM NMHC CONCENTRATION PPM	15.12 82.47 466.72 .5415 22.29 60.54 15.27	22.73 126.20 159.84 .3517 6.77 98.66 16.69	17.22 111.22 379.82 .4736 17.36 84.87
THC MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS CH4 MASS GRAMS NMHC MASS GRAMS FUEL MASS KG FUEL ECONOMY MFG (L/100KM)	6.711 71.971 1313.10 6.105 5.346 1.167 .523 17.65 (13.33)	17.667 42.627 1475.00 3.209 15.066 2.205 .575 17.02 (13.82)	9.035 58.632 1149.72 4.759 7.502 1.300 .458 20.16 (11.67)
3-BAG COMPOSITE RESULTS			
THC G/MI 3.4 CO G/MI 14.2 NOX G/MI 1.3	116 123 136	CH4 G/MI NMHC G/MI CARBONYL G/MI ALCOHOL G/MI	2.877 .458 .079
FUEL ECONOMY MPG (L/10	OKM) 17.94 (13.11)	raconon G/MI	

D-6

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH 9ROJECT NO. 08-6068-001 COMPUTER PROGRAM LDT 1.5-R

	DAG CARD FIF VEHICLE		PRODUCT NO. 00 0000-001
VEHICLE NUMBER 53M VEHICLE MODEL 93 CHEVY LUMINA ENGINE 3.1 L (189 CID) -V-6 TRANSMISSION L4 ODOMETER 6275 MILES (10096 KM)	TEST L-CNG-1.0 DATE 2/22/94 DYNO 2 BAG ACTUAL ROAD LC TEST WEIGHT 4	O-C1 RUN 2 CART 2 DAD 6.50 HP (4.85 KW	CNG FUEL DENSITY 5.573 LB/GAL H .236 C .725 O .000 X .040
BAROMETER 28.95 IN HG (735.3 MM HG) RELATIVE HUMIDITY 59.7 PCT.	DRY BULB TEMPERATURE	77.0°F (25.0°C)	NOX HUMIDITY C.F. 1.055
BAG NUMBER BAG DESCRIPTION	1 COLD TRANSIENT (0-505 SEC.)	2 STABILIZED (505-1372 SEC.)	3 HOT TRANSIENT (0- 505 SEC.)
RELATIVE HUMIDITY 59.7 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)	504.6 .969/.980 3.64 (5.86) 561.7 (15.91) .27 (.01) 4726. (133.8)	868.1 .973/.980 3.88 (6.24) 561.4 (15.90) .27 (.01) 8126. (230.1)	505.8 .970/.980 3.64 (5.86) 552.6 (15.65) .26 (.01) 4661. (132.0)
HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPT CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (BAG) (D)	59.1/ 2/ 59.07 9.7/ 2/ 9.69 84.4/ 13/ 204.94 .5/ 13/ 1.09 76.1/ 14/ .5919 13.4/ 14/ .0454 15.2/ 1/ 3.87	27.3/ 2/ 27.28 9.7/ 2/ 9.69 17.7/ 12/ 17.05 1.1/ 12/ 1.04 63.0/ 14/ .4085 13.5/ 14/ .0458 6.2/ 1/ 1.59	61.2/ 2/ 61.16 9.6/ 2/ 9.59 53.8/ 13/ 124.77 .7/ 13/ 1.52 73.0/ 14/ .5432 14.1/ 14/ .0482 9.5/ 1/ 2.43
NOX BCKGRD METEK/RANGE/PPM CH4 SAMPLE PPM (1.110) CH4 BCKGRD PPM	45.77 3.99	19.62 3.62	47.71 3.73
HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (BAG) (D) NOX BCKGRD METER/RANGE/PPM CH4 SAMPLE PPM (1.110) CH4 BCKGRD PPM DILUTION FACTOR HC CONCENTRATION PPM CO2 CONCENTRATION PPM CO2 CONCENTRATION PPM CO3 CONCENTRATION PPM CH4 CONCENTRATION PPM CH4 CONCENTRATION PPM NMHC CONCENTRATION PPM NMHC CONCENTRATION PPM NMHC CONCENTRATION PPM	15.66 49.99 196.42 .5495 3.79 42.04 3.33	23.42 18.00 15.53 .3646 1.52 16.16	17.23 52.13 118.96 .4978 2.40 44.20 3.06
THC MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS CH4 MASS GRAMS NMHC MASS GRAMS (FID) FUEL MASS KG FUEL ECONOMY MPG (L/100KM)	4.033 30.604 1346.38 1.024 3.751 .257 .508 18.09 (13.00)	2.521 4.162 1536.36 .703 2.479 .009 .561 17.49 (13.45)	4.170 18.280 1203.07 .640 3.889 .233 .450 20.46 (11.50)
3-BAG COMPOSITE RESULTS			
THC G/MI CO G/MI 3 NOX G/MI FUEL ECONOMY MPG (L/1	882 690 201	CH4 G/MI NMHC G/MI CARBONYL G/MI ALCOHOL G/MI	.839 .034 .003 .007
FUEL ECONOMY MPG (L/1	00KM) 18.36 (12.81)		

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT N COMPUTER PROGRAM LDT 1.5-R PROJECT NO. 08-6068-001 VEHICLE NUMBER 53M
VEHICLE MODEL 93 CHEVY LUMINA
ENGINE 3.1 L (189 CID)-V-6 TEST L-CNG-1.0-C2
DATE 2/23/94 RUN 1
DYNO 2 BAG CART 2
ACTUAL ROAD LOAD 6.50 HP (4.85 KW) FUEL DENSITY 5.573 LB/GAL H .236 C .725 O .000 X .040

5.1 L4 TRANSMISSION

ODOMETER 6287 MILES (10115 KM)	TEST WEIGHT 40	000 LBS (1814 KG)	
BAROMETER 29.23 IN HG (742.4 MM HG) RELATIVE HUMIDITY 33.4 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)	DRY BULB TEMPERATURE	70.0°F (21.1°C)	NOX HUMIDITY C.F849
BAG NUMBER	1	2	3
BAG DESCRIPTION	COLD TRANSTENT	STABILIZED	HOT TRANSTENT
	(0-505 SEC)	(505-1372 CEC)	/ N= ENE CEC \
DIN DIME CECONDO	(0-303 BEC.)	067 0	(0- 303 GMC.)
NOW TIME SECONDS	300.0	607.9	303.6
DRY/WET CORRECTION FACTOR, SAMP/BACK	.9807.991	.984/.991	.981/.991
MEASURED DISTANCE MILES (KM)	3.63 (5.84)	3.86 (6.21)	3.64 (5.85)
BLOWER FLOW RATE SCFM (SCMM)	560.8 (15.88)	566.2 (16.04)	561.5 (15.90)
GAS METER FLOW RATE SCFM (SCMM)	.28 (.01)	.28 (.01)	.27 (.01)
TOTAL FLOW SCF (SCM)	4732. (134.0)	8195. (232.1)	4734. (134.1)
HC SAMPLE METER/RANGE/PPM (BAG)	52.3/ 2/ 52.27	23.3/ 2/ 23.29	51.1/ 2/ 51.07
HC BCKGRD METER/RANGE/PPM	6.0/ 2/ 6.00	5.9/ 2/ 5.90	6.8/ 2/ 6.80
CO SAMPLE METER/RANGE/PPM	48.5/ 14/ 214.50	14.3/ 12/ 13.74	45.9/ 13/ 105.28
CO BCKGRD METER/RANGE/PPM	.5/ 14/ 2.02	1.4/ 12/ 1.33	.5/ 13/ 1.09
CO2 SAMPLE METER/RANGE/PCT	76.0/ 14/ .5903	62.4/ 14/ .4013	71.4/ 14/ 5195
COS BCKCED METER / RANGE / PCT	13 1/ 14/ 0442	13 0/ 14/ 0438	13 0/ 14/ 0438
NOY CAMPLE METER/PANCE/PRM (RAC) (D)	18 1/ 1/ 4 60	76/ 1/ 195	12.0/ 14/ 2.06
NON DONORD MEMBER/MANGE/FEM (DAG) (D)	2/ 1/ 4.00	1/ 1/ 1/ 03	3/ 1/ 00
OUA CAMPIE DEM (1 110)	.2/ 1/ .03	17 04	.3/ 1/ .00
CH4 DAMPLE PPM (1.110)	41.23	17.84	40.47
CH4 BCKGRD PPM	2.36	2.37	2.47
DILUTION FACTOR	15.69	23.88	18.09
HC CONCENTRATION PPM	46.66	17.64	44.65
CO CONCENTRATION PPM	206.60	12.17	101.52
CO2 CONCENTRATION PCT	.5489	.3594	.4781
NOX CONCENTRATION PPM	4.55	1.92	2.99
CH4 CONCENTRATION PPM	39.02	· 15.57	38.14
NMHC CONCENTRATION PPM	3.34	.35	2.31
THC MASS GRAMS	3.763	2.463	3.594
CO MASS GRAMS	32.229	3.289	15.844
CO2 MASS GRAMS	1346.74	1526.89	1173.57
NOX MASS GRAMS	.990	.724	.650
CH4 MASS GRAMS	3.486	2.409	3.409
NMHC MASS GRAMS (FID)	.258	.047	. 179
FUEL MASS KG	.509	. 557	437
FUEL ECONOMY MPG (L/100KM)	18.01 (13.06)	17.51 (13.43)	21.04 (11.18)
TOTAL FLOW SCF (SCM) HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (BAG) (D) NOX BCKGRD METER/RANGE/PPM CO2 BCKGRD METER/RANGE/PPM CH4 BCKGRD PPM DILUTION FACTOR HC CONCENTRATION PPM CO2 CONCENTRATION PCT NOX CONCENTRATION PCT NOX CONCENTRATION PPM CH4 CONCENTRATION PPM NMHC CONCENTRATION PPM THC MASS GRAMS CO2 MASS GRAMS CO2 MASS GRAMS CO4 MASS GRAMS CH4 MASS GRAMS NOX			
THC G/MI .8	318	CH4 G/MI	.781
THC G/MI .8 CO G/MI 3.4	195	NMHC G/MI	.035

CARBONYL G/MI ALCOHOL G/MI NOX G/MI .203 .002 .000 FUEL ECONOMY MPG (L/100KM) 18.50 (12.72)

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH
COMPUTER PROGRAM LDT 1.5-R

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESULTS

RESEARCH
PROJECT NO. 08-6068-001

VEHICLE NUMBER 53M VEHICLE MODEL 93 CHEVY LUMINA ENGINE 3.1 L (189 CID) -V-6 TRANSMISSION L4 ODOMETER 6390 MILES (10281 KM)	TEST L-CNG-1.2-E1 DATE 3/10/94 RUN DYNO 2 BAG CART ACTUAL ROAD LOAD 6. TEST WEIGHT 4000 LE	1 1 2 H .50 HP (4.85 KW) 3S (1814 KG)	CNG FUEL DENSITY 5.573 LB/GAL .236 C .725 O .000 X .040
BAROMETER 29.60 IN HG (751.8 MM HG) RELATIVE HUMIDITY 23.8 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)	1 COLD TRANSIENT ST (0-505 SEC.) (505 505.7 .984/.994 .5 3.62 (5.83) 3.8 573.7 (16.25) 577 .28 (.01) .2	2 PABILIZED HOT 5-1372 SEC.) (866.8 867/.994 37.(6.23) 3.6 7.3 (16.35) 573 28 (.01)	3 T TRANSIENT 0- 505 SEC.) 505.4 985/.994 63 (5.83) 1.6 (16.19) 28 (.01)
TOTAL FLOW SCF (SCM) HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT CO3 BCKGRD METER/RANGE/PCT CO4 BCKGRD METER/RANGE/PPM CO5 SAMPLE METER/RANGE/PPM CH4 SAMPLE PPM (1.110) CH4 BCKGRD PPM DILUTION FACTOR HC CONCENTRATION PPM CO5 CONCENTRATION PPM CO6 CONCENTRATION PCT NOX CONCENTRATION PPM CH4 CONCENTRATION PPM CH4 CONCENTRATION PPM THC MASS GRAMS CO MASS GRAMS CO MASS GRAMS CO MASS GRAMS CO1 MASS GRAMS CO2 MASS GRAMS CO3 MASS GRAMS CO4 MASS GRAMS CO5 MASS GRAMS CO5 MASS GRAMS CO6 MASS GRAMS CO7 MASS GRAMS CO7 MASS GRAMS CO8 MASS GRAMS CO9 MASS GRAMS CO9 MASS GRAMS CO1 MASS GRAMS CO1 MASS GRAMS CO1 MASS GRAMS CO2 MASS GRAMS CO3 MASS GRAMS CO4 MASS GRAMS CO5 MASS GRAMS CO6 MASS GRAMS CO7 MASS GRAMS CO7 MASS GRAMS CO8 MASS GRAMS CO9 MASS GRAMS CO9 MASS GRAMS CO9 MASS GRAMS CO1 MASS GRAMS CO2 MASS GRAMS CO3 MASS GRAMS CO4 MASS GRAMS CO5 MASS GRAMS CO6 MASS GRAMS CO7 MA	64.3/ 3/ 641.57 41.6/ .8/ 3/ 7.98 .8/ 62.5/ 3/2912.38 65.3/ .2/ 3/ 4.66 .4/ 71.2/ 14/ .5166 57.5/ 13.3/ 14/ .0450 13.1/ 30.6/ 1/ 7.72 14.9/ 1.5/ 1/ .39 1.6/ 495.81 3.46	7 3/ 415.07 29.8, 7 3/ 7.98 8, 8 2/1532.04 77.8, 9 2/6.26 .5, 1 14/ .3464 67.2, 1 14/ .0442 12.9, 1 1/ 3.79 31.0, 1 1/ 41 1.2, 317.97 335	/ 3/297.34 / 3/7.98 / 2/2006.86 / 2/7.83 / 14/.4613 / 14/.0434 / 1/7.82 / 1/31 225.07 3.64
DILUTION FACTOR HC CONCENTRATION PPM CO CONCENTRATION PPM CO2 CONCENTRATION PCT NOX CONCENTRATION PPM CH4 CONCENTRATION PPM NMHC CONCENTRATION PPM	11.24 634.30 2841.53 .4756 7.37 492.66	18.07 407.53 1498.78 .3046 3.40 314.80 58.10	14.11 289.92 1956.98 .4210 7.53 221.69 43.84
THC MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS CH4 MASS GRAMS NMHC MASS GRAMS FUEL MASS KG FUEL ECONOMY MPG (L/100KM)	52.543 453.180 1192.92 1.575 44.993 6.907 .740 12.37 (19.02) 12.	58.203 412.317 1317.87 1.255 49.593 7.917 .767 .76 (18.43) 15	23.921 310.825 1051.54 1.604 20.163 3.449 .580 .80 (14.89)
	96 CF 18 NN 80 C2		

COMPUTER PROGRAM LDT 1.5-R SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH PROJECT NO. 08-6068-001

VEHICLE NUMBER 53M VEHICLE MODEL 93 CHEVY LUMINA ENGINE 3.1 L (189 CID) -V-6 TRANSMISSION L4 ODOMETER 6401 MILES (10299 KM)	TEST L-CNG-1.	2-E2	CNG
VEHICLE MODEL 93 CHEVY LUMINA	DATE 3/11/94	RUN 1	FUEL DENSITY 5.573 LB/GAL
ENGINE 3.1 L (189 CID)-V-6	DYNO 2 BA	G CART 2	H .236 C .725 O .000 X .040
TRANSMISSION L4	ACTUAL ROAD L	OAD 6.50 HP (4.85 KW	1)
ODOMETER 6401 MILES (10299 KM)	TEST WEIGHT	4000 LBS (1814 KG)	
BAROMETER 29.53 IN HG (750.1 MM HG)	DRY BULB TEMPERATUR	E 71.0°F (21.7°C)	NOX HUMIDITY C.F 842
RELATIVE HUMIDITY 30.6 PCT.			
BAG NUMBER	1	2	3
BAG DESCRIPTION	COLD TRANSIENT	STABILIZED	HOT TRANSIENT
	(0-505 SEC.)	(505-1372 SEC.)	(0- 505 SEC.)
RUN TIME SECONDS	506.4	867.9	505.3
DRY/WET CORRECTION FACTOR, SAMP/BACK	.982/.992	.985/.992	.983/.992
MEASURED DISTANCE MILES (KM)	3.62 (5.83)	3.88 (6.25)	3.59 (5.77)
BLOWER FLOW RATE SCFM (SCMM)	571.9 (16.20)	573.9 (16.25)	570.8 (16.17)
GAS METER FLOW RATE SCFM (SCMM)	.27 (.01)	.28 (.01)	.27 (.01)
BAROMETER 29.53 IN HG (750.1 MM HG) RELATIVE HUMIDITY 30.6 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)	4829. (136.8)	8306. (235.2)	4810. (136.2)
HC SAMPLE METER/RANGE/PPM (BAG)	65.1/ 3/ 649.55	40.5/ 3/404.10	28.0/ 3/ 279.38
HC BCKGRD METER/RANGE/PPM	1.0/ 3/ 9.98	1.1/ 3/ 10.98	1.0/ 3/ 9.98
CO SAMPLE METER/RANGE/PPM	60.9/ 3/2787.04	64.6/ 2/1507.60	77.6/ 2/1998.68
CO BCKGRD METER/RANGE/PPM	.5/ 3/ 11.69	.7/ 2/ 10.97	.8/ 2/ 12.55
CO2 SAMPLE METER/RANGE/PCT	70.9/ 14/ .5123	59.3/ 14/ .3659	67.2/ 14/ .4613
CO2 BCKGRD METER/RANGE/PCT	14.1/ 14/ .0482	14.3/ 14/ .0490	14.4/ 14/ .0494
NOX SAMPLE METER/RANGE/PPM (BAG) (D)	27.9/ 1/ 7.05	15.8/ 1/ 4.02	32.3/ 1/ 8.14
NOX BCKGRD METER/RANGE/PPM	1.2/ 1/ .31	1.2/ 1/ .31	1.4/ 1/ .36
CH4 SAMPLE PPM (1.110)	499.52	307.16	208.32
CH4 BCKGRD PPM	4.33	4.59	4.13
HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO BCKGRD METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (BAG) (D) NOX BCKGRD METER/RANGE/PPM CH4 SAMPLE PPM (1.110) CH4 BCKGRD PPM DILUTION FACTOR HC CONCENTRATION PPM CO2 CONCENTRATION PPM CO4 CONCENTRATION PPM CH4 CONCENTRATION PPM NMC CONCENTRATION PPM NMC CONCENTRATION PPM NMC CONCENTRATION PPM NMC CONCENTRATION PPM	11.46	17.56	14.17
HC CONCENTRATION PPM	640.45	393.75	270.10
CO CONCENTRATION PPM	2706.96	1466.24	1940.27
CO2 CONCENTRATION PCT	. 4683	.3197	.4154
NOX CONCENTRATION PPM	6.76	3.73	7.81
CH4 CONCENTRATION PPM	495.57	302.83	204.48
NMHC CONCENTRATION PPM	90.37	57.61	43.13
THC MASS GRAMS	52.905	56.311	22 292
CO MASS GRAMS	430.986	401.532	307.669
CO2 MASS GRAMS	1172.54	1376.67	1035.88
NOX MASS GRAMS	1.489	1.411	1.711
CH4 MASS GRAMS	45.182	47.490	18.568
NMHC MASS GRAMS (FID)	7.126	7.814	3.387
FUEL MASS KG	.720	.781	.571
THC MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS CH4 MASS GRAMS NMHC MASS GRAMS (FID) FUEL MASS KG FUEL ECONOMY MPG (L/100KM)	12.71 (18.51)	12.57 (18.71)	15.87 (14.82)
3-BAG COMPOSITE RESULTS			
THC G/MI 12.: CO G/MI 101.: NOX G/MI	256	CHA G/MT	10 350
CO G/MI 101	816	NMHC G/MI	1 711
NOX G/MI	404	CARBONYL G/MI	.184
		ALCOHOL G/MI	.010
FIRE FOONOMY MPG /I./1	00WM) 13 40 /17 56)		

FUEL ECONOMY MPG (L/100KM) 13.40 (17.56)

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001 COMPUTER PROGRAM LDT 1.5-R TEST L-CNG-1.2-C1

VEHICLE NUMBER 53M VEHICLE MODEL 93 CHEVY LUMINA ENGINE 3.1 L (189 CID) -V-6 TRANSMISSION L4 ODOMETER 6421 MILES (10331 KM)	TEST L-CNG-1.2 DATE 3/15/94 DYNO 2 BAG ACTUAL ROAD LO TEST WEIGHT 4	-C1 RUN 1 CART 2 AD 6.50 HP (4.85 KW 000 LBS (1814 KG)	CNG FUEL DENSITY 5.573 LB/GAL H .236 C .725 O .000 X .040
BAROMETER 29.19 IN HG (741.4 MM HG) RELATIVE HUMIDITY 65.8 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)	DRY BULB TEMPERATURE	74.0°F (23.3°C)	NOX HUMIDITY C.F. 1.050
BAG NUMBER	1	2	3
BAG DESCRIPTION	COLD TRANSIENT	STABILIZED	HOT TRANSIENT
	(0-505 SEC.)	(505-1372 SEC.)	(0- 505 SEC.)
RUN TIME SECONDS	505.8	867.5	506.0
DRY/WET CORRECTION FACTOR, SAMP/BACK	.967/.981	.971/.981	.969/.981
MEASURED DISTANCE MILES (KM)	3.63 (5.84)	3.90 (6.28)	3.65 (5.88)
BLOWER FLOW RATE SCFM (SCMM)	356.5 (15.76)	300.5 (13.87)	22 (12.83)
TOTAL FLOW SCF (SCM)	.2/ (.UI) 4694 / 132 9)	.26 (.UI) 8107 (229 6)	.27 (.UI) 4717 (133 6)
TOTAL FLOW SCI (SCII)	4054. (152.5)	0107. (229.0)	4/17. (155.0)
HC SAMPLE METER/RANGE/PPM (BAG)	64.7/ 3/ 645.56	28.6/ 3/ 285.36	19.9/ 3/ 198.56
HC BCKGRD METER/RANGE/PPM	1.1/ 3/ 10.98	1.1/ 3/ 10.98	1.1/ 3/ 10.98
CO SAMPLE METER/RANGE/PPM	73.4/ 2/1831.36	50.6/ 1/ 458.17	73.9/ 1/ 722.19
CO BCKGRD METER/RANGE/PPM	.4/ 2/ 6.26	.5/ 1/ 4.19	.5/ 1/ 4.19
CO2 SAMPLE METER/RANGE/PCT	37.5/ 1/ .6890	69.1/ 14/ .4869	78.3/ 14/ .6289
CO2 BCKGRD METER/RANGE/PCT	2.7/ 1/ .0470	13.6/ 14/ .0462	14.2/ 14/ .0486
NOX SAMPLE METER/RANGE/PPM (BAG) (D)	2.2/ 1/ .57	1.5/ 1/ .39	1.7/ 1/ .44
NOX BUKGKD METEK/KANGE/PPM	.9/ 1/ .23	1.1/ 1/ .28	1.1/ 1/ .28
CH4 SAMPLE PPM (I.100)	- 4.62	4 20	113.04
CITY DOMORD III	4.02	4.20	4.13
DILUTION FACTOR	10.47	17.35	13.49
HC CONCENTRATION PPM	635.63	275.02	188.40
CO CONCENTRATION PPM	1749.79	438.00	689.69
CO2 CONCENTRATION PCT	. 6465	.4434	. 5839
NOX CONCENTRATION PPM	.36	.12	.18
CH4 CONCENTRATION PPM	540.53	243.93	169.81
NMHC CONCENTRATION PPM	41.06	6.70	1.61
THC MASS GRAMS	51 073	38 227	15 249
CO MASS GRAMS	270.781	117.077	107.263
CO2 MASS GRAMS	1573.28	1863.96	1428.07
NOX MASS GRAMS	.095	.055	.047
CH4 MASS GRAMS	47.899	37.337	15.123
NMHC MASS GRAMS (FID)	3.147	.887	.124
FUEL MASS KG	.772	.778	.592
FUEL ECONOMY MPG (L/100KM)	11.88 (19.80)	12.69 (18.54)	15.59 (15.09)
HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT CO3 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM CH4 SAMPLE PPM (1.100) CH4 BCKGRD PPM DILUTION FACTOR HC CONCENTRATION PPM CO3 CONCENTRATION PPM CO4 CONCENTRATION PPM CH4 CONCENTRATION PPM CH4 CONCENTRATION PPM CH4 CONCENTRATION PPM THC MASS GRAMS CO MASS GRAMS CO MASS GRAMS CO4 MASS GRAMS CO5 MASS GRAMS CH4 MASS GRAMS NOX MASS GRAMS NOX MASS GRAMS NOX MASS GRAMS CH4 MASS GRAMS NMHC MASS G			
THC G/MT 9 1	129	CHA CAMT	9 921
CO G/MI 39 (053	NMHC G/MT	.306
NOX G/MI .C	016	CARBONYL G/MI	.002
THC G/MI 9.1 CO G/MI 39.0 NOX G/MI .0 FUEL ECONOMY MPG (L/10		ALCOHOL G/MI	.000
FUEL ECONOMY MPG (L/10	00KM) 13.23 (17.78)		

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT N COMPUTER PROGRAM LDT 1.5-R PROJECT NO. 08-6068-001

VEHICLE NUMBER
VEHICLE MODEL
STANSMISSION
ODOMETER

53M
S1 CHEVY LUMINA
C189 CID -V-6
L4
C190 MILES (10349 KM) TEST L-CNG-1.2-C2
DATE 3/16/94 RUN 1
DYNO 2 BAG CART 2
ACTUAL ROAD LOAD 6.50 HP (4.85 KW)
TEST WEIGHT 4000 LBS (1814 KG) FUEL DENSITY 5.573 LB/GAL H .236 C .725 O .000 X .040 BAROMETER 29.22 IN HG (742.2 MM HG) RELATIVE HUMIDITY 72.8 PCT. DRY BULB TEMPERATURE 71.0°F (21.7°C) NOX HUMIDITY C.F. 1.049

LATIVE HUMIDITY 72.8 PCT.	•	•	<u>.</u>
BAG NUMBER	COLD GENTALEME	2 CM3 D T T T T T D D	3
DAG DESCRIPTION	/ 0-505 CPC \	/505_1372 CDC \	HOT TRANSIENT
DIN TIME SECONDS	(0-303 SEC.)	967 2	(0- 505 SEC.)
NOW TIME SECONDS	967/ 901	007.2	060/001
MENCEMEN DICENSICE MILES (VM)	3 63 (F 04)	3 00 (6 30)	2 62 (5 04)
DIOMED DIOM DATE CODM (COMM)	5.03 (3.04)	5.50 (0.20)	5.03 (J.04) 664 1 (15 97)
CAC METER FLOW DATE COPM (COMM)	27 (01)	20 (13.99)	27 (01)
TOTAL FLOW SCF (SCM)	4766. (135.0)	8166. (231.3)	4754. (134.6)
ELATIVE HUMIDITY 72.8 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)			
HC SAMPLE METER/RANGE/PPM (BAG)	58.6/ 3/ 584.70	30.5/ 3/ 304.32	18.2/ 3/ 181.60
HC BCKGRD METER/RANGE/PPM	1.1/ 3/ 10.98	1.3/ 3/ 12.97	1.1/ 3/ 10.98
CO SAMPLE METER/RANGE/PPM	70.1/ 2/1705.70	54.4/ 1/ 498.28	69.7/ 1/ 671.37
CO BCKGRD METER/RANGE/PPM	.3/ 2/ 4.70	.4/ 1/ 3.35	.5/ 1/ 4.19
CO2 SAMPLE METER/RANGE/PCT	81.9/ 14/ .6941	69.4/ 14/ .4911	78.4/ 14/ .6306
CO2 BCKGRD METER/RANGE/PCT	13.0/ 14/ .0438	13.0/ 14/ .0438	13.2/ 14/ .0446
NOX SAMPLE METER/RANGE/PPM (BAG) (D)	1.9/ 1/ .49	1.1/ 1/ .28	1.7/ 1/ .44
NOX BCKGRD METER/RANGE/PPM	.7/ 1/ .18	.7/ 1/ .18	1.2/ 1/ .31
CH4 SAMPLE PPM (1.100)	496.65	259.92	156.71
CH4 BCKGRD PPM	3.64	3.73	3.38
DILUTION FACTOR	10.61	17.05	13.59
HC CONCENTRATION PPM	574.76	292.11	171.43
CO CONCENTRATION PPM	1626.64	476.29	639.35
CO2 CONCENTRATION PCT	. 6544	.4499	.5893
NOX CONCENTRATION PPM	.33	.11	.15
CH4 CONCENTRATION PPM	493.35	256.41	153.58
NMHC CONCENTRATION PPM	32.07	10.06	2.49
TOTAL FLOW SCF (SCM) HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO SCAMPLE METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM CH4 SAMPLE PM (1.100) CH4 BCKGRD PPM DILUTION FACTOR HC CONCENTRATION PPM CO2 CONCENTRATION PPM CO2 CONCENTRATION PPM CO4 CONCENTRATION PPM CO4 CONCENTRATION PPM CH4 CONCENTRATION PPM MMHC CONCENTRATION PPM THC MASS GRAMS CO MASS GRAMS CO MASS GRAMS CO4 MASS GRAMS NOX MASS GRAMS CH4 MASS GRAMS CH5 MASS GRAMS CH6 MASS GRAMS CH7 MASS GRAMS CH7 MASS GRAMS CH8 MASS GRAMS CH9 MASS	46.937	40.878	13.984
CO MASS GRAMS	255.622	128.233	100.203
CO2 MASS GRAMS	1617.21	1904.70	1452.47
NOX MASS GRAMS	.088	.053	.041
CH4 MASS GRAMS	44.396	39.532	13.784
NMHC MASS GRAMS (FID)	2.497	1.341	.193
FUEL MASS KG	.776	.801	.596
FUEL ECONOMY MPG (L/100KM)	11.83 (19.89)	12.30 (19.12)	15.38 (15.29)

3-BAG COMPOSITE RESULTS

THC G/MI 9.169 CH4 G/MI 8.829 G/MI 39.216 G/MI .335 NOX G/MI .015 CARBONYL G/MI .004 .000 ALCOHOL G/MI

FUEL ECONOMY MPG (L/100KM) 12.95 (18.16)

APPENDIX E

COMPUTER PRINTOUTS OF EMISSIONS DATA WITH REFORMULATED GASOLINE

Page E-	Test Number	Operating Condition	Catalyst Installation
1	L-PH2-0.8-E1	Lean	Without Catalyst
2	L-PH2-0.8-E2	Lean	Without Catalyst
3	L-PH2-0.8-C1	Lean	With Catalyst
4	L-PH2-0.8-C2	Lean	With Catalyst
5	L-PH2-1.0-E1	Stoich	Without Catalyst
6	L-PH2-1.0-E2	Stoich	Without Catalyst
7	L-PH2-1.0-C1	Stoich	With Catalyst
8	L-PH2-1.0-C2	Stoich	With Catalyst
9	L-PH2-1.2-E1	Rich	Without Catalyst
10	L-PH2-1.2-E2	Rich	Without Catalyst
11	L-PH2-1.2-C1	Rich	With Catalyst
12	L-PH2-1.2-C2	Rich	With Catalyst

GASOLINE PHASE II EM-1701-F

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT N PROJECT NO. 08-6068-001 COMPUTER PROGRAM LDT 1.5-R TEST L-PH2-0.8-E1

DATE 4/22/94 RUN 1
DYNO 2 BAG CART 2
ACTUAL ROAD LOAD 6.50 HP (4.85 KW)
TEST WEIGHT 4000 LBS (1814 KG) FUEL DENSITY 6.186 LB/GAL H .139 C .841 O .020 X .000 VEHICLE MODEL 93 CHEVY LUMINA 3.1 L (189 CID)-V-6 ENGINE TRANSMISSION L46805 MILES (10949 KM) ODOMETER BAROMETER 29.18 IN HG (741.2 MM HG) DRY BULB TEMPERATURE 76.0°F (24.4°C) NOX HUMIDITY C.F. 1.032 RELATIVE HUMIDITY 59.2 PCT. BAG NUMBER HOT TRANSIENT COLD TRANSIENT BAG DESCRIPTION STABILIZED (0- 505 SEC.) (0-505 SEC.) (505-1372 SEC.) RUN TIME SECONDS 506.0 505.5 866.9 DRY/WET CORRECTION FACTOR, SAMP/BACK .974/.981 .976/.981 .975/.981 3.60 (5.80) 559.3 (15.84) .27 (.01) 4719. (133.6) 3.59 (5.78) 558.2 (15.81) MEASURED DISTANCE MILES (KM) 3.85 (6.20) 558.8 (15.82) .28 (.01) 8077. (228.8) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) .27 (.01) 4705. (133.3) TOTAL FLOW SCF (SCM) 31.4/ 3/ 313.30 1.0/ 3/ 9.98 78.2/ 14/ 376.37 38.7/ SAMPLE METER/RANGE/PPM (BAG) 3/ 386.14 45.2/ 3/ 450.99 1.5/ 3/ 14.97 69.9/ 12/ 68.76 HC BCKGRD METER/RANGE/PPM .8/ 3/ 7.98 14/ 280.27 SAMPLE METER/RANGE/PPM 61.1/ CO .8/ 14/ 80.9/ 14/ 14/ 2.02 14/ .7787 BCKGRD METER/RANGE/PPM 1.71 .5/ 1.8/ 3.23 12/ CO CO2 SAMPLE METER/RANGE/PCT 86.1/ 72.3/ 14/ .5328 .6753 14/ .0470 2/ 26.61 2/ .30 CO2 BCKGRD METER/RANGE/PCT 13.8/ 13.8/ 14/ .0470 14.2/ 14/ .0486 1/ NOX SAMPLE METER/RANGE/PPM (BAG) (D) 75.4/ 1/ 26.6/ 28.9/ 7.30 18.87 NOX BCKGRD METER/RANGE/PPM .30 1.9/ 1/ .3/ .49 . 54 6.60 5.25 6.06 CH4 SAMPLE PPM (1.120) CH4 BCKGRD PPM 2.61 DILUTION FACTOR 15.66 22.62 17.79 HC CONCENTRATION PPM 378.67 436.69 303.88 CONCENTRATION PPM 268.73 .7347 CO 65.12 361.14 CO2 .4878 CONCENTRATION PCT .6295 CONCENTRATION PPM 6.83 26.33 18.36 CONCENTRATION PPM 4.06 2.76 NMHC CONCENTRATION PPM 374.11 433.60 299.97 31.715 61.993 THC MASS GRAMS 25.493 MASS GRAMS 41.809 17.342 56.026 CO CO2 MASS GRAMS 1797.56 2043.17 1535.69 NOX MASS GRAMS 6.948 3.084 4.830 .362 .310 CH4 MASS GRAMS .421 MASS GRAMS (FID) MMHC 28.829 57.194 23.049 FUEL MASS KG .637 .734 .553 FUEL ECONOMY MPG (L/100KM) 15.89 (14.81) 14.72 (15.98) 18.24 (12.90) 3-BAG COMPOSITE RESULTS THC G/MI 12.104 CH4 G/MI .101 CO G/MI 9.030 G/MI 11.106 NOX G/MI 1.185 CARBONYL G/MI ALCOHOL G/MI .136 FUEL ECONOMY MPG (L/100KM) 15.82 (14.87)

VEHICLE NUMBER 53M

COMPUTER PROGRAM LDT 1.5-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO 08-6068-001

VEHICLE NUMBER 53M TEST L-PH2-0.8-E2 GASOLINE PHASE II EM-1701-F DATE 4/25/94 RUN 1
DYNO 2 BAG CART 2
ACTUAL ROAD LOAD 6.50 HP (4.85 KW)
TEST WEIGHT 4000 LBS (1814 KG) FUEL DENSITY 6.186 LB/GAL H .139 C .841 O .020 X .000 VEHICLE MODEL 93 CHEVY LUMINA ENGINE 3.1 L (189 CID)-V-6 TRANSMISSION L46824 MILES (10979 KM) ODOMETER BAROMETER 28.98 IN HG (736.1 MM HG) DRY BULB TEMPERATURE 78.0°F (25.6°C) NOX HUMIDITY C.F. 1.137 RELATIVE HUMIDITY 67.5 PCT. BAG NUMBER 3 HOT TRANSIENT (0- 505 SEC.) STABILIZED (505-1372 SEC.) BAG DESCRIPTION COLD TRANSIENT (0-505 SEC.) 505.3 RUN TIME SECONDS 866.9 505.0 DRY/WET CORRECTION FACTOR, SAMP/BACK .969/.977 .972/.977 .970/.977 3.62 (5.82) 554.6 (15.71) .27 (.01) 4670. (132.3) 3.90 (6.27) 554.4 (15.70) .27 (.01) 8013. (226.9) MEASURED DISTANCE MILES (KM) 3.61 (5.81) BLOWER FLOW RATE SCFM (SCMM) 553.8 (15.68) .27 (.01) 4666. (132.1) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM) 3/ 410.09 HC SAMPLE METER/RANGE/PPM (BAG) 39.3/ 3/ 392.13 41.1/ 32.8/ 3/ 327.27 HC BCKGRD METER/RANGE/PPM .8/ 3/ 7.98 68.2/ 14/ 319.35 1.1/ 3/ 10.98 79.8/ 14/ 385.65 .9/ 3/ 8.98 CO SAMPLE METER/RANGE/PPM 74.5/ 12/ 73.52 BCKGRD METER/RANGE/PPM .2/ 14/ .81 .7/ 12/ .4/ 14/ 1.62 .66 CO2 SAMPLE METER/RANGE/PCT 86.8/ 14/ .7938 72.2/ 14/ .5313 81.2/ 14/ .6809 13.5/ 14/ .0458 75.8/ 1/ 18.97 1.3/ 1/ .34 CO2 BCKGRD METER/RANGE/PCT 13.2/ 14/ .0446 13.2/ 14/ .0446 2/ 1/1/ NOX SAMPLE METER/RANGE/PPM (BAG) (D) 30.4/ 30.41 36.5/ 9.19 .34 NOX BCKGRD METER/RANGE/PPM .3/ 2/ .30 .9/ .23 CH4 SAMPLE PPM (1.120) 6.73 5.91 4.81 CH4 BCKGRD PPM 2.39 2.34 2.35 DILUTION FACTOR 15.31 22.82 17.61 CONCENTRATION PPM HC 384.67 401.50 316.92 CO CONCENTRATION PPM 70.52 306.61 370.54 CO2 CONCENTRATION PCT .7521 .4886 . 6377 CONCENTRATION PPM 30.13 8.97 18.65 CH4 CONCENTRATION PPM 4.50 2.57 NMHC CONCENTRATION PPM 379.63 398.62 THC MASS GRAMS 31.924 57.184 26,388 MASS GRAMS co 47.209 18.633 57.003 C02 MASS GRAMS 1821.13 2030.23 1542.78 NOX MASS GRAMS 8.669 4.426 CH4 MASS GRAMS .397 .390 .326 NMHC MASS GRAMS (FID) 28,951 52.162 23.832 FUEL MASS KG .647 .726 15.07 (15.61) .556 FUEL ECONOMY MPG (L/100KM) 15.68 (15.00) 18.22 (12.91) 3-BAG COMPOSITE RESULTS G/MI THC 11.443 CH4 G/MI .099 G/MI 9.510 G/MI 10.411 NOX 1.492 CARBONYL G/MI ALCOHOL G/MI .129

15.97 (14.73)

FUEL ECONOMY MPG (L/100KM)

GASOLINE PHASE II EM-1701-F FUEL DENSITY 6.186 LB/GAL H .139 C .841 O .020 X .000

COMPUTER PROGRAM LDT 1.5-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001

TEST L-PH2-0.8-C1
DATE 4/20/94 RUN 1
DYNO 2 BAG CART 2

ACTUAL ROAD LOAD 6.50 HP (4.85 KW) TEST WEIGHT 4000 LBS (1814 KG) TRANSMISSION 6776 MILES (10902 KM) ODOMETER BAROMETER 29.31 IN HG (744.5 MM HG) RELATIVE HUMIDITY 65.3 PCT. DRY BULB TEMPERATURE 73.0°F (22.8°C) NOX HUMIDITY C.F. 1.030 BAG NUMBER BAG DESCRIPTION COLD TRANSIENT STABILIZED HOT TRANSIENT (0- 505 SEC.) (0-505 SEC.) (505-1372 SEC.) RUN TIME SECONDS 505.3 867.4 505.0 DRY/WET CORRECTION FACTOR, SAMP/BACK .976/.982 3.86 (6.22) 559.7 (15.85) .974/.982 3.62 (5.82) .974/.982 MEASURED DISTANCE MILES (KM) 3.61 (5.81) BLOWER FLOW RATE SCFM (SCMM) 559.8 (15.85) 559.8 (15.86) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM) .28 (.01) 4717. (133.6) .28 (.01) 8096. (229.3) .27 (.01) 4714. (133.5) 2/ **47.07** 2/ 7.30 8.4/ SAMPLE METER/RANGE/PPM (BAG) 47.1/ 8.40 11.5/ 2/ 11.49 6.3/ 2/ 6.30 65.5/ 13/ 154.52 BCKGRD METER/RANGE/PPM 7.3/ 7.0/ 2/ HC 7.00 SAMPLE METER/RANGE/PPM 69.2/ 14/ 324.95 5.7/ 5.44 14/ 1.21 14/ .7916 .6/ 13/ 1.31 83.7/ 14/ .7291 14.0/ 14/ .0478 BCKGRD METER/RANGE/PPM .3/ .5/ 12/ . 47 75.8/ .5871 86.7/ CO2 SAMPLE METER/RANGE/PCT 14/ CO2 BCKGRD METER/RANGE/PCT .0454 14/ .0470 14.0/ 14/ .0478 13.8/ 1/ 13.97 1/ 20 13.4/ 14/ NOX SAMPLE METER/RANGE/PPM (BAG) (D) 2/ 25.01 28.2/ 7.12 55.7/ 25.0/ NOX BCKGRD METER/RANGE/PPM 2/ CH4 SAMPLE PPM (1.120) 6.84 4.58 5.30 CH4 BCKGRD PPM 3.37 3.27 3.09 DILUTION FACTOR 15.98 22.47 17.75 CONCENTRATION PPM 40.23 1.71 5.55 HC CONCENTRATION PPM 311.88 4.82 147.82 CO2 CONCENTRATION PCT .7491 .5422 .6840 NOX CONCENTRATION PPM 24.73 6.92 13.70 CONCENTRATION PPM 1.46 CH4 3.68 2.38 NMHC CONCENTRATION PPM .07 2.88 36.12 THC MASS GRAMS 3.175 .236 CO MASS GRAMS 48.501 1.286 22.975 CO2 MASS GRAMS 1831.92 2275.95 1671.95 MASS GRAMS 3.128 3.604 NOX 6.508 CH4 MASS GRAMS .327 .223 .212 NMHC MASS GRAMS (FID) 2.782 .010 .222 FUEL MASS KG .623 .740 555 FUEL ECONOMY MPG (L/100KM) 16.26 (14.46) 14.66 (16.05) 18.30 (12.85) 3-BAG COMPOSITE RESULTS THC G/MI .248 CH4 G/MI .065 CO G/MI 4.713 NMHC G/MI .178 NOX G/MI 1.067 CARBONYL G/MI .005 ALCOHOL G/MI .000 FUEL ECONOMY MPG (L/100KM) 15.86 (14.83)

VEHICLE NUMBER 53M

VEHICLE MODEL

ENGINE

93 CHEVY LUMINA

3.1 L (189 CID)-V-6

GASOLINE PHASE II EM-1701-F

COMPUTER PROGRAM LDT 1.5-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001

TEST L-PH2-0.8-C2
DATE 4/21/94 RUN 1
DYNO 2 BAG CART 2 FUEL DENSITY 6.186 LB/GAL H .139 C .841 O .020 X .000 93 CHEVY LUMINA VEHICLE MODEL ENGINE 3.1 L (189 CID)-V-6 ACTUAL ROAD LOAD 6.50 HP (4.85 KW) TEST WEIGHT 4000 LBS (1814 KG) TRANSMISSION L4ODOMETER 6787 MILES (10920 KM) BAROMETER 29.23 IN HG (742.4 MM HG) RELATIVE HUMIDITY 51.9 PCT. DRY BULB TEMPERATURE 76.0°F (24.4°C) NOX HUMIDITY C.F. .984 BAG NUMBER 3 BAG DESCRIPTION COLD TRANSIENT STABILIZED HOT TRANSIENT (0-505 SEC.) (505-1372 SEC.) (0- 505 SEC.) RIIN TIME SECONDS 506.0 867.4 505.4 DRY/WET CORRECTION FACTOR, SAMP/BACK .978/.984 .975/.984 .977/.984 MEASURED DISTANCE MILES (KM) 3.60 (5.79) 3.85 (6.20) 3.61 (5.81) BLOWER FLOW RATE SCFM (SCMM) 556.8 (15.77) 558.4 (15.81) 557.7 (15.80) GAS METER FLOW RATE SCFM (SCMM) .28 (.01) 4698. (133.0) .28 (.01) 8076. (228.7) .27 (.01) 4700. (133.1) TOTAL FLOW SCF (SCM) 2/ 41.88 2/ 6.60 HC SAMPLE METER/RANGE/PPM (BAG) 41.9/ 81.9/ 1/ 8.22 12.9/ 2/ 12.89 BCKGRD METER/RANGE/PPM 6.75 2/ HC 6.6/ 67.3/ 1/ 6.2/ 6.20 13/ 132.04 SAMPLE METER/RANGE/PPM 56.7/ 4.6/ 12/ 4.38 90.2/ 13/ 221.00 CO BCKGRD METER/RANGE/PPM .4/ 13/ .87 1.1/ 12/ 1.04 .5/ 13/ 1.09 89.3/ 13.5/ CO2 SAMPLE METER/RANGE/PCT 14/ 8504 75.7/ 14/ 5855 83.0/ 14/ .7153 CO2 BCKGRD METER/RANGE/PCT 14/ .0458 13.3/ 14/ .0450 13.5/ 14/ .0458 1/ NOX SAMPLE METER/RANGE/PPM (BAG) (D) 96.7/ 14.24 1/ 24.08 27.1/ 1/ 6.85 56.8/ NOX BCKGRD METER/RANGE/PPM 1/ 1/ .8/ CH4 SAMPLE PPM (1.120) 5.59 4.27 5.06 CH4 BCKGRD PPM 2.78 2.65 2.58 DILUTION FACTOR 15.25 22.54 17.92 1.76 CONCENTRATION PPM 35.71 HC 7.04 CONCENTRATION PPM 126.80 C02 CONCENTRATION PCT .8076 .5425 .6720 NOX CONCENTRATION PPM 23.91 6.62 14.05 CH4 CONCENTRATION PPM 2.99 1.74 2.62 NMHC CONCENTRATION PPM 32.36 -.19 4.10 THC 2.865 .280 MASS GRAMS .555 CO MASS GRAMS 19.639 .873 33.032 CO2 MASS GRAMS 1967.22 2271.64 1637.84 NOX MASS GRAMS 5.983 2.850 3.518 CH4 MASS GRAMS .265 .266 .233 NMHC MASS GRAMS (FID) 2.482 .000 .315 FUEL MASS KG .651 .738 549 FUEL ECONOMY MPG (L/100KM) 15.51 (15.17) 14.64 (16.07) 18.46 (12.74) 3-BAG COMPOSITE RESULTS THC G/MT .245 CH4 G/MI .069 CO G/MT 3.773 NMHC G/MT .167 CARBONYI, G/MI NOX G/MI 996 .006 ALCOHOL G/MI .003 FUEL ECONOMY MPG (L/100KM) 15.74 (14.94)

VEHICLE NUMBER 53M

GASOLINE PHASE II EM-1701-F

COMPUTER PROGRAM LDT 1.5-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001 TEST L-PH2-1.0-E1

TEST L-FR2-1.0-51
DATE 4/8/94 RUN 1
DYNO 2 BAG CART 2
ACTUAL ROAD LOAD 6.50 HP (4.85 KW)
TEST WEIGHT 4000 LBS (1814 KG) FUEL DENSITY 6.186 LB/GAL H .139 C .841 O .020 X .000 VEHICLE MODEL 93 CHEVY LUMINA ENGINE 3.1 L (189 CID)-V-6 TRANSMISSION L4 6630 MILES (10667 KM) ODOMETER BAROMETER 29.27 IN HG (743.5 MM HG) DRY BULB TEMPERATURE 77.0°F (25.0°C) NOX HUMIDITY C.F. .954 RELATIVE HUMIDITY 45.7 PCT. BAG NUMBER HOT TRANSIENT (0- 505 SEC.) COLD TRANSIENT BAG DESCRIPTION STABILIZED (0-505 SEC.) (505-1372 SEC.) 867.3 RUN TIME SECONDS 506.0 504.9 867.3 .981/.985 DRY/WET CORRECTION FACTOR, SAMP/BACK .978/.985 .979/.985 3.62 (5.83) 562.6 (15.93) MEASURED DISTANCE MILES (KM) 3.62 (5.83) 3.86 (6.21) 557.9 (15.80) .28 (.01) 4707. (133.3) BLOWER FLOW RATE SCFM (SCMM) 559.2 (15.84) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM) .28 (.01) 8087. (229.0) .28 (.01) 4736. (134.1) 81.5/ 2/ 81.45 6.8/ 2/ 6.80 54.2/ 14/ 243.66 9.7/ 3/ 96.78 .8/ 3/ 7.98 82.0/ 14/ 398.47 .7/ 14/ 2.83 78.3/ 14/ .6289 HC SAMPLE METER/RANGE/PPM (BAG) 12.4/ 3/ 123.72 HC BCKGRD METER/RANGE/PPM .7/ 3/ 6.98 1/486.56 CO SAMPLE METER/RANGE/PPM 53.3/ BCKGRD METER/RANGE/PPM 2.02 .0/ 81.9/ .5/ 14/ CO 1/ .00 14/ .6941 14/ CO2 SAMPLE METER/RANGE/PCT 68.6/ 14/ .0434 2/ 43.22 CO2 BCKGRD METER/RANGE/PCT 12.9/ 13.4/ 14/ .0454 14.0/ 14/ .0478 1/ 18.89 1/ .21 36.7/ 2/ NOX SAMPLE METER/RANGE/PPM (BAG) (D) 43.2/ 75.5/ 36.72 2/ 7.10 .30 NOX BCKGRD METER/RANGE/PPM .3/ .30 .8/ .21 .3/ 5.37 5.90 CH4 SAMPLE PPM (1.100) CH4 BCKGRD PPM 3.20 3.13 3.25 DILUTION FACTOR 17.54 25.83 19.52 HC CONCENTRATION PPM 117.14 74.92 89.21 CO CONCENTRATION PPM 235.83 472.67 384.97 CONCENTRATION PCT CO2 .4365 .6531 .5835 CONCENTRATION PPM NOX 42.94 18.69 36.43 CONCENTRATION PPM 2.30 86.11 NMHC CONCENTRATION PPM 112.57 72.40 10.754 THC 7.471 MASS GRAMS 9.727 CO MASS GRAMS 62.877 73.359 60.117 MASS GRAMS C02 1594.11 1830.04 1433.06 NOX MASS GRAMS 10.445 7.812 8.918 CH4 MASS GRAMS .369 .350 .252 MASS GRAMS (FID) NMHC 8.653 9.560 6.660 . 637 FUEL MASS KG . 565 .503 FUEL ECONOMY MPG (L/100KM) 16.99 (13.84) 20.19 (11.65) 18.01 (13.06) 3-BAG COMPOSITE RESULTS THC G/MI 2.566 CH4 G/MI . 087 CO G/MI 17.205 NMHC G/MI 2.283 NOX CARBONYL G/MI .161 ALCOHOL G/MI .035 FUEL ECONOMY MPG (L/100KM) 18.00 (13.07)

VEHICLE NUMBER

GASOLINE PHASE II EM-1701-F

COMPUTER PROGRAM LDT 1.5-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001 TEST L-PH2-1.0-E2

DATE 4/11/94 RUN 1
DYNO 2 BAG CART 2
ACTUAL ROAD LOAD 6.50 HP (4.85 KW)
TEST WEIGHT 4000 LBS (1814 KG) 93 CHEVY LUMINA FUEL DENSITY 6.186 LB/GAL H .139 C .841 O .020 X .000 VEHICLE MODEL 3.1 L (189 CID)-V-6 ENGINE TRANSMISSION L4 ODOMETER 6649 MILES (10698 KM) BAROMETER 29.03 IN HG (737.4 MM HG) RELATIVE HUMIDITY 65.9 PCT. DRY BULB TEMPERATURE 74.0°F (23.3°C) NOX HUMIDITY C.F. 1.052 BAG NUMBER COLD TRANSIENT STABILIZED HOT TRANSIENT BAG DESCRIPTION (0-505 SEC.) (505-1372 SEC.) (0- 505 SEC.) RUN TIME SECONDS 506.0 867.3 505.8 .974/.981 .974/.981 DRY/WET CORRECTION FACTOR, SAMP/BACK .976/.981 3.62 (5.82) 555.6 (15.74) MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) 3.86 (6.21) 555.7 (15.74) .28 (.01) 3.62 (5.82) 552.6 (15.65) .27 (.01) 4662. (132.0) .27 (.01) 4686. (132.7) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM) 8036. (227.6) HC SAMPLE METER/RANGE/PPM (BAG) 13.7/ 3/ 136.70 88.3/ 2/ 88.25 10.1/ 3/ 100.78 2/ HC BCKGRD METER/RANGE/PPM 3/ 7.98 8.60 1.0/ 3/ 9.98 .8/ 8.6/ 14/ 392.64 SAMPLE METER/RANGE/PPM 56.1/ 1/ 516.59 55.5/ 14/ 250.45 81.0/ 1.68 2.02 CO BCKGRD METER/RANGE/PPM .2/ 1/ .4/ 14/ 1.62 .5/ 14/ CO2 SAMPLE METER/RANGE/PCT 82.7/ 14/ .7094 68.8/ 14/ .4828 78.6/ 14/ . 6341 CO2 BCKGRD METER/RANGE/PCT 13.1/ 14/ .0442 13.4/ 14/ .0454 13.9/ 14/ .0474 2/ 1/ 15.66 34.92 NOX SAMPLE METER/RANGE/PPM (BAG) (D) 39.9/ 2/ 39.92 62.5/ 34.9/ 2/ 1/ .2/ 2/ NOX BCKGRD METER/RANGE/PPM .3/ .30 .9/ . 23 .20 CH4 SAMPLE PPM (1.100) 5.36 5.93 CH4 BCKGRD PPM 3.23 3.12 2.99 17.11 25.63 DILUTION FACTOR 19.39 CONCENTRATION PPM 79.99 HC 129.18 91.31 377.47 496.78 CONCENTRATION PPM 241.20 CO .4392 CONCENTRATION PCT .6678 .5891 NOX CONCENTRATION PPM 39.64 15.44 34.73 CH4 CONCENTRATION PPM 4.44 2.36 3.10 NMHC CONCENTRATION PPM 77.39 124 29 87 91 THC MASS GRAMS 10.520 11.349 7.571 MASS GRAMS 76.361 63.909 58.322 CO C02 MASS GRAMS 1614.30 1830.09 1431.51 NOX MASS GRAMS 10.533 7.072 9.276 MASS GRAMS .274 CH4 .391 .358 MASS GRAMS (FID) 10.156 6.727 NMHC 9.463 .573 MASS KG .638 FUEL .502 FUEL ECONOMY MPG (L/100KM) 17.70 (13.29) 16.96 (13.87) 20.22 (11.63) 3-BAG COMPOSITE RESULTS THC G/MI 2.701 G/MI .091 CH4 CO G/MI 17.390 NMHC G/MI 2.416 CARBONYL G/MI NOX G/MT 2 259 .158 ALCOHOL G/MI .035 FUEL ECONOMY MPG (L/100KM) 17.93 (13.12)

VEHICLE NUMBER 53M

RUN 1

GASOLINE PHASE II EM-1701-F

COMPUTER PROGRAM LDT 1.5-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001 TEST L-PH2-1.0-C1

DATE 4/6/94 RUN 1 DYNO 2 BAG CART 2 FUEL DENSITY 6.186 LB/GAL H .139 C .841 O .020 X .000 ENGINE 3.1 L (189 CID)-V-6 YNO 2 BAG CART 2 ACTUAL ROAD LOAD 6.50 HP (4.85 KW) TEST WEIGHT 4000 LBS (1814 KG) TRANSMISSION L4 6601 MILES (10621 KM) ODOMETER BAROMETER 29.32 IN HG (744.7 MM HG) DRY BULB TEMPERATURE 70.0°F (21.1°C) NOX HUMIDITY C.F. .823 RELATIVE HUMIDITY 26.4 PCT. BAG NUMBER BAG DESCRIPTION COLD TRANSIENT STABILIZED HOT TRANSIENT (0-505 SEC.) (505-1372 SEC.) (0- 505 SEC.) 505.6 RUN TIME SECONDS 867.6 505.7 DRY/WET CORRECTION FACTOR, SAMP/BACK .986/.993 .988/.993 .987/.993 3.64 (5.85) 562.7 (15.93) MEASURED DISTANCE MILES (KM) 3.62 (5.82) 3.90 (6.27) BLOWER FLOW RATE SCFM (SCMM) 560.9 (15.88) 563.3 (15.95) .28 (.01) 4729. (133.9) GAS METER FLOW RATE SCFM (SCMM) .28 (.01) 8149. (230.8) .28 (.01) 4745. (134.4) 13.6/ 2/ 13.59 6.0/ 2/ 6.00 48.6/ 13/ 111.89 .2/ 13/ .4/ 79.4/ 14/ 12.7/ TOTAL FLOW SCF (SCM) 44.4/ 2/ 44.37 6.3/ 2/ 6.30 44.4/ 70.6/ SAMPLE METER/RANGE/PPM (BAG) 1/ 7.08 BCKGRD METER/RANGE/PPM 63.7/ 1/ 6.30 6.39 62.5/ 14/ 287.87 CO SAMPLE METER/RANGE/PPM 9.4/ 12/ 9.00 CO BCKGRD METER/RANGE/PPM .2/ 14/ 83.6/ 14/ .81 .7271 .3/70.1/ 12/ .28 SAMPLE METER/RANGE/PCT 14/ . 5009 CO2 CO2 BCKGRD METER/RANGE/PCT 12.6/ 14/ .0422 12.9/ 14/ .0434 2.76 NOX SAMPLE METER/RANGE/PPM (BAG) (D) 1/ 14.42 10.8/ 1/ 1/ 57.5/ 15.4/ 3.92 .15 NOX BCKGRD METER/RANGE/PPM .6/ 1/ .15 .6/ 1/ .2/ 1/ .05 5.41 2.97 4.05 CH4 SAMPLE PPM (1.100) CH4 BCKGRD PPM 2.53 2.55 2.55 DILUTION FACTOR 17.41 26.32 20.02 .94 8.56 HC CONCENTRATION PPM 38.44 7.90 CO CONCENTRATION PPM 280.51 109.08 .6076 CO2 CONCENTRATION PCT .6873 .4591 CONCENTRATION PPM NOX 14.27 2.61 3.87 CONCENTRATION PPM 3.03 CH4 .51 1.62 NMHC CONCENTRATION PPM 35.10 .37 6.11 .130 THC MASS GRAMS 3.103 .621 2.300 17.064 CO MASS GRAMS 43.734 1685.18 CO2 MASS GRAMS 1939.87 1494.85 NOX MASS GRAMS 3.009 .948 .818 CH4 MASS GRAMS .271 .079 .145 NMHC MASS GRAMS (FID) 2.711 .050 .473 .tgur MASS KG .572 .631 495 17.73 (13.27) FUEL ECONOMY MPG (L/100KM) 17.32 (13.58) 20.63 (11.40) 3-BAG COMPOSITE RESULTS THC G/MI 242 CHA G/MI .037 NMHC CO G/MI 4.100 .198 G/MI NOX G/MI .360 CARBONYL G/MI .005 ALCOHOL G/MI FUEL ECONOMY MPG (L/100KM) 18.24 (12.90)

VEHICLE NUMBER 53M

93 CHEVY LUMINA

VEHICLE MODEL

COMPUTER PROGRAM LDT 1.5-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001

VEHICLE NUMBER 53M TEST L-PH2-1.0-C2 GASOLINE PHASE II EM-1701-F TEST L-FH2-1.U-C2
DATE 4/ 7/94 RUN 1
DYNO 2 BAG CART 2
ACTUAL ROAD LOAD 6.50 HP (4.85 KW)
TEST WEIGHT 4000 LBS (1814 KG) FUEL DENSITY 6.186 LB/GAL H .139 C .841 O .020 X .000 VEHICLE MODEL 93 CHEVY LUMINA 3.1 L (189 CID)-V-6 ENGINE TRANSMISSION L4 6612 MILES (10638 KM) ODOMETER BAROMETER 29.44 IN HG (747.8 MM HG) DRY BULB TEMPERATURE 74.0°F (23.3°C) NOX HUMIDITY C.F. .839 RELATIVE HUMIDITY 27.0 PCT. BAG NUMBER 3

HOT TRANSIENT (0- 505 SEC.) BAG DESCRIPTION COLD TRANSIENT STABILIZED 0-505 SEC.) (505-1372 SEC.) RUN TIME SECONDS 867.3 505.6 505.4 DRY/WET CORRECTION FACTOR, SAMP/BACK .985/.992 .987/.992 .986/.992 3.87 (6.22) 562.9 (15.94) .28 (.01) 8142. (230.6) 3.62 (5.82) 561.5 (15.90) MEASURED DISTANCE MILES (KM) 3.64 (5.85) BLOWER FLOW RATE SCFM (SCMM) 564.1 (15.98) GAS METER FLOW RATE SCFM (SCMM) .28 (.01) 4732. (134.0) .27 (.01) 4756. (134.7) TOTAL FLOW SCF (SCM) HC SAMPLE METER/RANGE/PPM (BAG) 42.6/ 2/ 42.58 63.9/ 1/ 6.41 14.9/ 2/ 14.89 BCKGRD METER/RANGE/PPM 5.6/ 2/ 5.60 70.2/ 13/ 166.78 HC 5.6/ 2/ 5.60 54.2/ 1/ 5.44 91.3/ 13/ 224.08 SAMPLE METER/RANGE/PPM 14.8/ 12/ 14.23 CO BCKGRD METER/RANGE/PPM 13/ 1.74 1.9/ .8/ 13/ CO 12/ 1.81 1.74 .8/ CO2 SAMPLE METER/RANGE/PCT 84.1/ 14/ .7371 .5037 80.0/ 70.3/ 14/ 14/ .6589 CO2 BCKGRD METER/RANGE/PCT 13.4/ 14/ .0454 13.5/ 14/ .0458 13.9/ 14/ .0474 1/ NOX SAMPLE METER/RANGE/PPM (BAG) (D) 66.3/ 1/ 16.61 6.1/ 1/ 1.56 12.4/ 3.16 NOX BCKGRD METER/RANGE/PPM 1.5/ 1/ .39 1.3/ 1/ .34 .8/ .21 CH4 SAMPLE PPM (1.100) 4.38 5.18 3.29 CH4 BCKGRD PPM 2.76 2.74 2.74 DILUTION FACTOR 17.33 26.15 19.54 HC CONCENTRATION PPM 37.30 1.18 9.58 CONCENTRATION PPM 217.22 CO 12.24 161.51 CO2 CONCENTRATION PCT .6944 16.24 .4597 . 6139 NOX CONCENTRATION PPM 1.24 2.97 CONCENTRATION PPM CH4 NMHC CONCENTRATION PPM 34.47 .46 7.62 THC MASS GRAMS 3.037 .162 .754 MASS GRAMS CO 33.892 3.286 25.324 MASS GRAMS C02 1703.72 1940.48 1513.85 NOX MASS GRAMS 3.493 .459 CH4 MASS GRAMS .230 .100 .160 MASS GRAMS (FID) 2.663 NMHC .062 .592 FUEL MASS KG .573 .632 .505 FUEL ECONOMY MPG (L/100KM) 17.70 (13.29) 17.18 (13.69) 20.21 (11.64)

3-BAG COMPOSITE RESULTS

THC G/MI .253 .039 G/MI CO G/MI G/MI .206 .006 NOX G/MI .311 CARBONYL G/MI ALCOHOL G/MI .003

FUEL ECONOMY MPG (L/100KM) 18.05 (13.03)

GASOLINE PHASE II EM-1701-F

3-BAG CARB FTP VEHICLE EMISSION RESULTS COMPUTER PROGRAM LDT 1.5-R PROJECT NO. 08-6068-001 TEST L-PH2-1.2-E1

DATE 4/14/94 RUN 2 DYNO 2 BAG CART 2 ACTUAL ROAD LOAD 6.50 HP (4.85 KW) TEST WEIGHT 4000 LBS (1814 KG) VEHICLE MODEL 93 CHEVY LUMINA ENGINE 93 CHEVY LUMINA 3.1 L (189 CID)-V-6 FUEL DENSITY 6.186 LB/GAL H .139 C .841 O .020 X .000 TRANSMISSION L46707 MILES (10791 KM) ODOMETER DRY BULB TEMPERATURE 75.0°F (23.9°C) NOX HUMIDITY C.F. 1.043 BAROMETER 29.08 IN HG (738.6 MM HG) RELATIVE HUMIDITY 62.4 PCT. BAG NUMBER BAG DESCRIPTION COLD TRANSIENT STABILIZED HOT TRANSIENT (0- 505 SEC.) (0-505 SEC.) (505-1372 SEC.) 505.6 RUN TIME SECONDS 506.0 867.2 DRY/WET CORRECTION FACTOR, SAMP/BACK .975/.981 .977/.981 .976/.981 3.62 (5.82) 553.1 (15.66) .27 (.01) MEASURED DISTANCE MILES (KM) 3.62 (5.82) 554.9 (15.72) 3.87 (6.22) 556.0 (15.75) BLOWER FLOW RATE SCFM (SCMM) .27 (.01) 8039. (227.7) .27 (.01) 4678. (132.5) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM) 4667. (132.2) 13.7/ 17.1/ 3/ 170.62 3/ 136.70 15.8/ 3/ 157.65 HC SAMPLE METER/RANGE/PPM (BAG) .9/ 3/ 8.98 1.5/ 2/2749.38 BCKGRD METER/RANGE/PPM HC .9/ 3/ 8.98 1.0/ .3/ 9.98 83.4/ 2/2243.07 78.4/ 2/2031.48 94.5/ SAMPLE METER/RANGE/PPM 72.0/ 14/ .5283 15.6/ 14/ .0544 38.3/ 1/ 9.64 1.8/ 1/ .46 .3/ 2/ 4.70 79.5/ 14/ .6499 .6/ 2/ 9.40 63.1/ 14/ .4097 BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT 14/ .0552 1/ 22.33 1/ .28 CO2 BCKGRD METER/RANGE/PCT 15.8/ 15.8/ 14/ 0552 22.9/ 1/ 1.5/ 1/ NOX SAMPLE METER/RANGE/PPM (BAG) (D) 5.80 89.5/ NOX BCKGRD METER/RANGE/PPM .28 .39 1.1/ CH4 SAMPLE PPM (1.120) 14.33 14.88 CH4 BCKGRD PPM 3.43 3.44 3.33 DILUTION FACTOR 14.96 21.31 16.32 CONCENTRATION PPM 162.24 127.19 HC 149.22 CONCENTRATION PPM 2164.60 1965.21 2656.45 .3571 CONCENTRATION PCT .5984 NOX CONCENTRATION PPM 22.07 5.43 9.20 CH4 CONCENTRATION PPM 11.13 11.60 12.78 NMHC CONCENTRATION PPM 149.77 114.19 134.91 THC MASS GRAMS 12.868 17.245 520.898 409.753 CO MASS GRAMS 333.068 CO2 MASS GRAMS 1448.01 1488.37 1157.74 NOX MASS GRAMS 5.817 2.465 2.431 1.761 CH4 MASS GRAMS .981 1.129 NMHC MASS GRAMS (FID) 11.414 14.992 10.307 FUEL MASS KG .653 .766 15.56 (15.12) FUEL ECONOMY MPG (L/100KM) 14.16 (16.61) 17.01 (13.83) 3-BAG COMPOSITE RESULTS THC G/MI 3.938 CH4 G/MI .377 CO G/MI 119.916 NMHC G/MI 3.443 .849 NOX G/MI CARBONYL G/MI .089 ALCOHOL G/MI .029 FUEL ECONOMY MPG (L/100KM) 15.15 (15.53)

VEHICLE NUMBER 53M

COMPUTER PROGRAM LDT 1.5-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001

VEHICLE NUMBER 53M TEST L-PH2-1.2-E2 GASOLINE PHASE II EM-1701-F DATE 4/15/94 RUN 1
DYNO 2 BAG CART 2
ACTUAL ROAD LOAD 6.50 HP (4.85 KW)
TEST WEIGHT 4000 LBS (1814 KG) 93 CHEVY LUMINA 3.1 L (189 CID)-V-6 FUEL DENSITY 6.186 LB/GAL H .139 C .841 O .020 X .000 VEHICLE MODEL ENGINE TRANSMISSION L4ODOMETER 6718 MILES (10809 KM) BAROMETER 29.04 IN HG (737.6 MM HG) RELATIVE HUMIDITY 62.5 PCT. DRY BULB TEMPERATURE 75.0°F (23.9°C) NOX HUMIDITY C.F. 1.044 BAG NUMBER 3 COLD TRANSIENT STABILIZED HOT TRANSIENT BAG DESCRIPTION (0-505 SEC.) (505-1372 SEC.) (0- 505 SEC.) 506.4 RUN TIME SECONDS 505.7 867.1 .976/.981 DRY/WET CORRECTION FACTOR, SAMP/BACK .975/.981 .977/.981 3.65 (5.87) 560.1 (15.86) 3.90 (6.27) 560.3 (15.87) 3.65 (5.88) 559.3 (15.84) MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) .27 (.01) 4723. (133.7) .28 (.01) 8101. (229.4) .27 (.01) 4723. (133.8) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM) HC SAMPLE METER/RANGE/PPM (BAG) 20.0/ 3/ 199.56 15.1/ 3/ 150.66 16.8/ 3/ 167.63 HC BCKGRD METER/RANGE/PPM .9/ 3/ 8.98 1.0/ 3/ 9.98 3/ 10.98 1.1/ SAMPLE METER/RANGE/PPM 60.3/ 3/2740.91 80.9/ 2/2135.88 61.6/ 3/2841.46 .2/ 3/ 4.66 77.0/ 14/ .6068 .4/ 3/ 9.34 71.3/ 14/ .5181 .4/ CO BCKGRD METER/RANGE/PPM .5/ 2/ 7.83 CO2 SAMPLE METER/RANGE/PCT 61.8/ 14/ .3943 13.5/ 14/ .0458 21.2/ 1/ 5.37 13.2/ 14/ .0446 57.1/ 1/ 14.32 CO2 BCKGRD METER/RANGE/PCT 13.3/ 14/ .0450 NOX SAMPLE METER/RANGE/PPM (BAG) (D) 1/1/ 38.2/ 1/1/ 9.61 .7/ .10 NOX BCKGRD METER/RANGE/PPM .4/ 1/ .18 1.3/ .34 17.16 CH4 SAMPLE PPM (1.120) 16.40 CH4 BCKGRD PPM 3.59 3.64 2.95 DILUTION FACTOR 14.83 21.44 16.32 CONCENTRATION PPM HC 191.18 2648.35 141.15 2068.76 157.32 2746.33 CO CONCENTRATION PPM C02 CONCENTRATION PCT .5652 .3506 .4758 NOX CONCENTRATION PPM 14.22 5.20 9.30 CH4 CONCENTRATION PPM 14.11 12.93 14.39 NMHC CONCENTRATION PPM 175 38 126.67 141 20 THC MASS GRAMS 15.202 19.202 12.515 co MASS GRAMS 412.367 552.536 427.664 CO2 MASS GRAMS 1384.07 1472.74 1165.28 NOX MASS GRAMS 3.796 2.381 2.482 CH4 MASS GRAMS 1.258 1.977 1.283 MASS GRAMS (FID) 16.757 NMHC 13.525 10.891 .675 MASS KG .779 FUEL .609 15.17 (15.51) FUEL ECONOMY MPG (L/100KM) 14.04 (16.75) 16.83 (13.97) 3-BAG COMPOSITE RESULTS THC G/MI 4.355 G/MI .430 CO G/MI 128.971 NMHC G/MI 3.813 .719 .083 CARBONYL G/MI NOX G/MI ALCOHOL G/MI .029 FUEL ECONOMY MPG (L/100KM) 14.96 (15.72)

GASOLINE PHASE II EM-1701-F

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT N COMPUTER PROGRAM LDT 1.5-R PROJECT NO. 08-6068-001 TEST L-PH2-1.2-C1

DATE 4/18/94 RUN 1
DYNO 2 BAG CART 2
ACTUAL ROAD LOAD 6.50 HP (4.85 KW)
TEST WEIGHT 4000 LBS (1814 KG) FUEL DENSITY 6.186 LB/GAL H .139 C .841 O .020 X .000 3.1 L (189 CID)-V-6 TRANSMISSION L4 6736 MILES (10838 KM) ODOMETER BAROMETER 29.35 IN HG (745.5 MM HG) DRY BULB TEMPERATURE 77.0°F (25.0°C) NOX HUMIDITY C.F. .933 RELATIVE HUMIDITY 42.3 PCT. BAG NUMBER BAG DESCRIPTION COLD TRANSIENT STABILIZED HOT TRANSIENT (0- 505 SEC.) (0-505 SEC.) (505-1372 SEC.) RUN TIME SECONDS 505.5 866.8 505.8 DRY/WET CORRECTION FACTOR, SAMP/BACK .980/.986 .982/.986 .981/.986 3.63 (5.84) 560.2 (15.86) .27 (.01) 4722. (133.7) MEASURED DISTANCE MILES (KM) 3.89 (6.25) 3.63 (5.85) 562.3 (15.92) .28 (.01) 8127. (230.2) 560.9 (15.89) .27 (.01) 4731. (134.0) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM) 18.0/ 3/ 179.60 HC SAMPLE METER/RANGE/PPM (BAG) 13.8/ 3/ 137.69 15.0/ 3/ 149.67 BCKGRD METER/RANGE/PPM .8/ 95.0/ .9/ HC .7/ 3/ 6.98 2/2589.53 .8/ 3/ 7.98 2/2068.74 3/ 7.98 2/2773.18 SAMPLE METER/RANGE/PPM 91.1/ 79.3/ CO .5/ 2/ 7.83 76.9/ 14/ .6051 13.7/ 14/ .0466 51.3/ 1/ 12.87 .7/ 1/ .18 .6/ 2/ 9.40 61.8/ 14/ .3943 .9/ 2/ 14.12 71.1/ 14/ .5152 BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT 14.0/ 14/ .0478 14.3/ 14/ .0490 8.1/ 1/ 1.0/ 1/ NOX SAMPLE METER/RANGE/PPM (BAG) (D) 21.9/ 1/ 2.07 5.55 1.0/ NOX BCKGRD METER/RANGE/PPM 1/ 1.4/ .7/ .18 .26 .36 CH4 SAMPLE PPM (1.120) 16.21 15.57 16.05 CH4 BCKGRD PPM 3.48 3.34 3.20 DILUTION FACTOR 15.11 21.66 16.51 130.08 2015.41 CONCENTRATION PPM HC 173.08 142.17 CO CONCENTRATION PPM 2515.80 2693.81 .3487 CONCENTRATION PCT .5616 .4691 5.21 CONCENTRATION PPM 12.70 1.83 CH4 CONCENTRATION PPM 12.96 12.38 13.04 NMHC CONCENTRATION PPM 158.56 116.21 127.57 THC MASS GRAMS 13.809 17.864 11.458 CO MASS GRAMS 391.639 540.009 420.193 C02 MASS GRAMS 1374.99 1469.29 1150.80 .751 NOX MASS GRAMS 3.032 1.246 1.900 CH4 MASS GRAMS 1.155 1.164 NMHC MASS GRAMS (FID) 12.226 15.422 9.856 FUEL MASS KG .660 .770 .599 FUEL ECONOMY MPG (L/100KM) 15.42 (15.25) 14.16 (16.62) 17.01 (13.83) 3-BAG COMPOSITE RESULTS THC G/MI 4.035 CH4 G/MI .407 CO G/MI 126.102 NMHC G/MI 3.498 NOX G/MI .368 CARBONYL G/MI .058 ALCOHOL G/MI .071 FUEL ECONOMY MPG (L/100KM) 15.12 (15.56)

VEHICLE NUMBER 53M

93 CHEVY LUMINA

VEHICLE MODEL

ENGINE

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH 9ROJECT NO. 08-6068-001 COMPUTER PROGRAM LDT 1.5-R

COMPUTER PROGRAM LDT 1.5-R 3-E	AG CARB FTP VEHICLE	EMISSION RESULTS	PROJECT NO. 08-6068-001
VEHICLE NUMBER 53M VEHICLE MODEL 93 CHEVY LUMINA ENGINE 3.1 L (189 CID) -V-6 TRANSMISSION L4 ODOMETER 6747 MILES (10855 KM)	meem I_Du3.1 2	C3	GASOLINE PHASE II EM-1701-F
VEHICLE MODEL 93 CUEVY LUMINA	TEST L-FR2-1.2-C2 That A/10/04 DIBI 1		DIET DENCTOV 6 196 ID/ONT
ENGINE 3 1 1. (189 CTD)_W_6	מלם ל האלום	CAPT 2	u 139 C 841 O 020 V 000
TRANSMISSION I.A	ACTITAL POAD LO	שה או	1 .135 C .041 O .020 A .000
ODOMETER 6747 MILES (10855 KM)	TEST WEIGHT A	000 1BS (1814 KG)	,
0747 MILLE (10055 IM)	1201 1121111 4	000 BBS (1014 RG)	
BAROMETER 29.28 IN HG (743.7 MM HG)	DRY BULB TEMPERATURE	72.0°F (22.2°C)	NOX HUMIDITY C.F991
RELATIVE HUMIDITY 60.9 PCT.			
BAG NUMBER	1	2	3
BAG DESCRIPTION	COLD TRANSIENT	STABILIZED	HOT TRANSIENT
	(0-505 SEC.)	(505-1372 SEC.)	(0- 505 SEC.)
RUN TIME SECONDS	505.6	867.0	505.5
DRY/WET CORRECTION FACTOR, SAMP/BACK	.977/.983	.980/.983	.978/.983
MEASURED DISTANCE MILES (KM)	3.62 (5.82)	3.89 (6.26)	3.62 (5.83)
BLOWER FLOW RATE SCFM (SCMM)	558.2 (15.81)	559.7 (15.85)	561.0 (15.89)
GAS METER FLOW RATE SCFM (SCMM)	.27 (.01)	.28 (.01)	.28 (.01)
TOTAL FLOW SCF (SCM)	4706. (133.3)	8092. (229.2)	4728. (133.9)
BAROMETER 29.28 IN HG (743.7 MM HG) RELATIVE HUMIDITY 60.9 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM) HC SAMPLE METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (BAG) NOX BCKGRD METER/RANGE/PPM CH4 SAMPLE PPM (1.120) CH4 BCKGRD PPM			
HC SAMPLE METER/RANGE/PPM (BAG)	19.3/ 3/ 192.57	13.8/ 3/ 137.69	15.4/ 3/ 153.66
HC BCKGRD METER/RANGE/PPM	.8/ 3/ 7.98	.8/ 3/ 7.98	.8/ 3/ 7.98
CO SAMPLE METER/RANGE/PPM	91.2/ 2/2594.18	77.97 2/2010.95	94.7/ 2/2/58.89
CO BURGRU METER/RANGE/PPM	.5/ 2/ /.83	.5/ 2/ /.83	.4/ 2/ 6.26
CO2 DOVODD MEMBER/RANGE/PCT	12 7/ 14/ .0035	13 6/ 14/ .3919	12 7/ 14/ .5100
NOV CAMBLE METER/RANGE/FCI	13.7/ 14/ .0400	77/ 1/ 1 07	19 4/ 1/ 4 92
NOX BOKORD METER/RANGE/PPM	4/ 1/ 10.38	3/ 1/ 08	5/ 1/ 13
CH4 SAMPLE PPM (1 120)	16 68	15 36	16 16
CH4 BCKGRD PPM	3.37	3.20	3.05
CH4 BCKGRD PPM DILUTION FACTOR HC CONCENTRATION PPM CO CONCENTRATION PPM CO2 CONCENTRATION PPM CO4 CONCENTRATION PPM NMC CONCENTRATION PPM NMHC CONCENTRATION PPM THC MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS CO2 MASS GRAMS CO4 MASS GRAMS NOX MASS GRAMS			
DILUTION FACTOR	15.13	21.99	16.54
HC CONCENTRATION PPM	185.12	130.07	146.16
CO CONCENTRATION PPM	2504.90	1948.41	2670.56
CO2 CONCENTRATION PCT	.5600	.3479	. 4728
NOX CONCENTRATION PPM	10.88	1.90	4.80
CH4 CONCENTRATION PPM	13.53	12.31	13.30
NMHC CONCENTRATION PPM	169.96	116.29	131.27
THE MASS CRAMS	14 753	17 827	11 767
CO MASS GRAMS	388 639	519 831	416 323
CO2 MASS GRAMS	1366.32	1459.54	1159.24
NOX MASS GRAMS	2.750	. 824	1.219
CH4 MASS GRAMS	1.202	1.881	1.187
NMHC MASS GRAMS (FID)	13.061	15.367	10.136
FUEL MASS KG	. 657	.757	. 600
FUEL ECONOMY MPG (L/100KM)	15.47 (15.21)	14.43 (16.30)	16.92 (13.90)
3-BAG COMPOSITE RESULTS			
THC G/MI 4.: CO G/MI 123.: NOX G/MI .: FUEL ECONOMY MPG (L/10	110	CHA G/MT	409
CO G/MI 123.0	331	NMHC G/MT	3.562
NOX G/MI	360	CARBONYL G/MT	.067
		ALCOHOL G/MI	.072
FUEL ECONOMY MPG (L/10	00KM) 15.27 (15.41)		

APPENDIX F

COMPUTER PRINTOUTS OF EMISSIONS DATA WITH ETHANOL

Page F-	Test Number	Operating Condition	Catalyst Installation
1	L-ETH-0.8-E1	Lean	Without Catalyst
2	L-ETH-0.8-E2	Lean	Without Catalyst
3	L-ETH-0.8-C1	Lean	With Catalyst
4	L-ETH-0.8-C2	Lean	With Catalyst
5	L-ETH-1.0-E1	Stoich	Without Catalyst
6	L-ETH-1.0-E2	Stoich	Without Catalyst
7	L-ETH-1.0-C2	Stoich	With Catalyst
8	L-ETH-1.0-C3	Stoich	With Catalyst
9	L-ETH-1.2-E1	Rich	Without Catalyst
10	L-ETH-1.2-E2	Rich	Without Catalyst
11	L-ETH-1.2-C1	Rich	With Catalyst
12	L-ETH-1.2-C2	Rich	With Catalyst

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH
COMPUTER PROGRAM LDT 1.5-R

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH
PROJECT NO. 08-6068-001 ETHANOL E100 EM-1803-F FUEL DENSITY 6.514 LB/GAL .131 C .521 O .347 X .000 VEHICLE NUMBER 601
VEHICLE MODEL 88 CHEVY CORSICA TEST C-ETH-0.8-E1 DATE 6/30/94 RUN

ENGINE 2.8 L (171 CID) -V-6 DYNO 2 BAG CART 2 H .131 C .521 O TRANSMISSION M5 ACTUAL ROAD LOAD 4.50 HP (3.36 KW) TEMP. FUEL FRAC ODOMETER 14994 MILES (24125 KM) TEST WEIGHT 3500 LBS (1587 KG)	CTIONS
BAROMETER 29.17 IN HG (740.9 MM HG) DRY BULB TEMPERATURE 74.0°F (23.3°C) NOX HUMIDITY C. RELATIVE HUMIDITY 54.4 PCT. 1 2 3 BAG NUMBER 1 2 3 BAG DESCRIPTION (0-505 SEC.) (505-1372 SEC.) (0-505 SEC.) RUN TIME SECONDS 505.3 867.3 505.5 DRY/WET CORRECTION FACTOR, SAMP/BACK .974/.984 .976/.984 .975/.984 MEASURED DISTANCE MILES (KM) 3.62 (5.82) 3.86 (6.21) 3.62 (5.82) BLOWER FLOW RATE SCFM (SCMM) 556.6 (15.76) 557.2 (15.78) 556.1 (15.75) GAS METER FLOW RATE SCFM (SCMM) .27 (.01) .28 (.01) .27 (.01) TOTAL FLOW SCF (SCM) 4690. (132.8) 8058. (228.2) 4688. (132.8)	F978
BAG NUMBER 1 2 3	
BAG DESCRIPTION COLD TRANSIENT STABILIZED HOT TRANSIENT	
(0-505 SEC.) (505-1372 SEC.) (0- 505 SEC.)	
RUN TIME SECONDS 505.3 867.3 505.5	
DRY/WET CORRECTION FACTOR, SAMP/BACK .974/.984 .976/.984 .975/.984	
MEASURED DISTANCE MILES (KM) 3.62 (5.82) 3.86 (6.21) 3.62 (5.82)	
BLOWER FLOW RATE SCFM (SCMM) 556.6 (15.76) 557.2 (15.78) 556.1 (15.75)	
GAS METER FLOW RATE SCFM (SCMM) .27 (.01) .28 (.01) .27 (.01)	
TOTAL FLOW SCF (SCM) 4690. (132.8) 8058. (228.2) 4688. (132.8)	
HC SAMPLE METER/RANGE/PPM (BAG) 22.8/ 3/227.49 22.3/ 3/222.50 13.0/ 3/129.71	
HC BCKGRD METER/RANGE/PPM .9/ 3/ 8.98 .8/ 3/ 7.98 .9/ 3/ 8.98	
CO SAMPLE METER/RANGE/PPM 63.6/ 1/595.51 79.1/ 12/ 78.37 46.8/ 13/ 107.48	
CO BCKGRD METER/RANGE/PPM .0/ 1/ .00 1.0/ 12/ .95 .5/ 13/ 1.09	
CO2 SAMPLE METER/RANGE/PCT 78.9/ 14/ .6393 71.1/ 14/ .5152 77.3/ 14/ .6118	
CO2 BCKGRD METER/RANGE/PCT 12.7/ 14/ .0426 13.1/ 14/ .0442 13.3/ 14/ .0450	
NOX SAMPLE METER/RANGE/PPM (BAG) (D) 45.9/ 1/ 11.47 14.4/ 1/ 3.60 52.1/ 1/ 13.02	
NOX BCKGRD METER/RANGE/PPM .6/ 1/ .15 .2/ 1/ .05 .6/ 1/ .15	
CH4 SAMPLE PPM (1.140) 14.65 6.94 6.47	
TOTAL FLOW SCF (SCM) ### 4690. (132.8) ### 8058. (228.2) ### 4688. (132.8) ### 122.37 ### 127.73 ### 127.73 ### 127.73 ### 127.73 ### 1.09 ### 1.00 ### 1	
DILUTION FACTOR 17.24 22.85 19.49	
HC CONCENTRATION PPM 219.03 214.87 121.19	
CO CONCENTRATION PPM 575.54 75.09 102.93	
CO2 CONCENTRATION PCT .5992 .4729 .5692	
NOX CONCENTRATION PPM 11.33 3.55 12.88	
CH4 CONCENTRATION PPM 11.78 4.01 3.56	
NMHC CONCENTRATION PPM 31.63 24.61 1.41	
THC MASS GRAMS 35.189 62.212 22.577	
CO MASS GRAMS 88.988 19.949 15.908	
CO2 MASS GRAMS 1456.91 1975.78 1383.36	
NOX MASS GRAMS 2.813 1.515 3.197	
CH4 MASS GRAMS 1.043 .611 .315	
NMHC MASS GRAMS (FID) 2.422 3.238 .108	
FUEL MASS KG .871 1.113 .760	
FUEL ECONOMY MPG (L/100KM) 12.28 (19.16) 10.24 (22.97) 14.06 (16.73)	
3-BAG COMPOSITE RESULTS	
THC G/MI 12.068 CH4 G/MT 166	
CO G/MI 8.999 NMHC G/MT 5.81	
NOX G/MI .608 CARRONYI G/MI 1.539	
ALCOHOT, G/MT 9 783	
THC G/MI 12.068 CH4 G/MI .166 CO G/MI 8.999 NMHC G/MI .581 NOX G/MI .608 CARBONYL G/MI 1.539 ALCOHOL G/MI 9.783 FUEL ECONOMY MPG (L/100KM) 11.51 (20.44)	

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001 COMPUTER PROGRAM LDT 1.5-R

VEHICLE NUMBER 601 VEHICLE MODEL 88 CHEVY CORSICA ENGINE 2.8 L (171 CID) -V-6 TRANSMISSION M5 ODOMETER 15005 MILES (24143 KM)	TEST C-ETH-0.8-E2 DATE 7/ 1/94 RUN DYNO 2 BAG CART 2 ACTUAL ROAD LOAD 4.50 HP (3.36 TEST WEIGHT 3500 LBS (1587 KG)	ETHANOL E100 EM-1803-F FUEL DENSITY 6.514 LB/GAL H .131 C .521 O .347 X .000 KW) TEMP. FUEL FRACTIONS
BAROMETER 29.16 IN HG (740.7 MM HG) RELATIVE HUMIDITY 50.8 PCT. BAG NUMBER BAG DESCRIPTION	DRY BULB TEMPERATURE 74.0°F (23.3°C) 1 2 COLD TRANSIENT 2 STABILIZED	NOX HUMIDITY C.F957 3 HOT TRANSIENT
BAROMETER 29.16 IN HG (740.7 MM HG) RELATIVE HUMIDITY 50.8 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)	(0-505 SEC.) (505-1372 SEC.) 505.2 867.5	(0- 505 SEC.) 505.4 .976/.985 3.62 (5.82) 556.4 (15.76) .27 (.01) 4689. (132.8)
TOTAL FLOW SCF (SCM) HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 BCKGRD METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM CH4 SAMPLE PPM (1.140) CH4 BCKGRD PPM DILUTION FACTOR HC CONCENTRATION PPM CO2 CONCENTRATION PPM CO2 CONCENTRATION PPM CO4 CONCENTRATION PPM CH4 CONCENTRATION PPM THC CONCENTRATION PPM THC MASS GRAMS CO MASS GRAMS CO MASS GRAMS CO4 MASS GRAMS NOX MASS GRAMS NO	22.3/ 3/222.50 16.4/ 3/163.64 .8/ 3/ 7.98 .8/ 3/ 7.98 64.7/ 1/608.21 76.0/ 12/ 75.09 .3/ 1/ 2.30 1.1/ 12/ 1.04 79.4/ 14/ .6481 70.6/ 14/ .5080 12.6/ 14/ .0422 12.9/ 14/ .0434 52.5/ 1/ 13.12 14.9/ 1/ 3.72 .6/ 1/ .15 .9/ 1/ .22 3.27 3.21	13.0/ 3/ 129.71 .8/ 3/ 7.98 49.2/ 13/ 113.36 .4/ 13/ .87 77.3/ 14/ .6118 13.3/ 14/ .0450 48.0/ 1/ 12.00 .8/ 1/ .20 6.23 2.96
DILUTION FACTOR HC CONCENTRATION PPM CO CONCENTRATION PPM CO2 CONCENTRATION PCT NOX CONCENTRATION PPM CH4 CONCENTRATION PPM NMHC CONCENTRATION PPM	17.04 23.34 214.99 156.00 586.26 71.93 .6084 .4664 12.98 3.51 12.52 3.66 .22 24.04	19.46 122.14 108.96 .5692 11.81 3.43 9.10
THC MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS CH4 MASS GRAMS NMHC MASS GRAMS FUEL MASS KG FUEL ECONOMY MPG (L/100KM)	37.104 45.488 90.809 19.129 1482.00 1950.83 3.160 1.467 1.110 .558 .017 3.167 .888 1.082 12.04 (19.54) 10.57 (22.26)	21.605 16.845 1383.76 2.869 .303 .697 .760
THC G/MI 9.1 CO G/MI 9.1 NOX G/MI .5	851 CH4 G/MI 052 NMHC G/MI 596 CARBONYL G/MI ALCOHOL G/MI	

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH
COMPUTER PROGRAM LDT 1.5-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001

COMPUTER PROGRAM LDT 1.5-R 3-1	BAG CARB FTP VEHICLE	EMISSION RESULTS	PROJECT NO. 08-6068-001
VEHICLE NUMBER VEHICLE MODEL 88 CHEVY CORSICA ENGINE 2.8 L (171 CID)-V-6 TRANSMISSION M5 ODOMETER 15023 MILES (24172 KM)	TEST C-ETH-0.8- DATE 7/ 5/94 DYNO 2 BAG	-C1 RUN CART 2	ETHANOL E100 EM-1803-F FUEL DENSITY 6.514 LB/GAL H .131 C .521 O .347 X .000
TRANSMISSION M5 ODOMETER 15023 MILES (24172 KM)	ACTUAL ROAD LO TEST WEIGHT 3	AD 4.50 HP (3.36 KW) 500 LBS (1587 KG)	TEMP. FUEL FRACTIONS
BAROMETER 29.22 IN HG (742.2 MM HG) RELATIVE HUMIDITY 60.4 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)			
BAG NUMBER	1	2	3
BAG DESCRIPTION	COLD TRANSIENT	STABILIZED	HOT TRANSIENT
TITL MINT GROWING	(0-505 SEC.)	(505-1372 SEC.)	(0- 505 SEC.)
RUN TIME SECONDS	505.7	866.8	505.5
DRY/WET CORRECTION FACTOR, SAMP/BACK	.973/.984	.975/.984	.9747.984
MEASURED DISTANCE MILES (KM)	3.03 (3.85)	3.88 (0.23)	3.03 (3.87)
CAS MEMBER BLOW RATE SCHILL (SCHILL)	20 (12.01)	20 / 01)	337.9 (13.80)
TOTAL FLOW COF (COM)	1700 (123 3)	20 (.01)	4703 / 133 3\
TOTAL FLOW SCF (SCH)	4,08. (155.5)	0073. (228.8)	4703. (133.2)
HC SAMPLE METER/RANGE/PPM (BAG)	11.2/ 3/111.75	6.7/ 2/ 6.70	7.4/ 2/ 7.40
HC BCKGRD METER/RANGE/PPM	.7/ 3/ 6.98	6.6/ 2/ 6.60	5.9/ 2/ 5.90
CO SAMPLE METER/RANGE/PPM	62.0/ 14/ 285.15	1.1/ 12/ 1.04	1.8/ 12/ 1.71
CO BCKGRD METER/RANGE/PPM	.0/ 14/ .00	.4/ 12/ .38	.4/ 12/ .38
CO2 SAMPLE METER/RANGE/PCT	83.1/ 14/ .7172	74.7/ 14/ .5695	80.1/ 14/ .6607
CO2 BCKGRD METER/RANGE/PCT	12.6/ 14/ .0422	13.1/ 14/ .0442	13.3/ 14/ .0450
NOX SAMPLE METER/RANGE/PPM (BAG) (D)	43.2/ 1/ 10.80	15.1/ 1/ 3.77	41.1/ 1/ 10.27
NOX BCKGRD METER/RANGE/PPM	.6/ 1/ .15	.8/ 1/ .20	.4/ 1/ .10
CH4 SAMPLE PPM (1.180)	11.52	3.19	4.24
CH4 BCKGRD PPM	3.12	3.09	2.89
DILUTTON FACTOR	16.34	21 56	18 58
HC CONCENTRATION PPM	105.19	.41	1.82
CO CONCENTRATION PPM	274.48	. 65	1.30
CO2 CONCENTRATION PCT	.6776	.5273	.6181
NOX CONCENTRATION PPM	10.66	3.58	10.18
CH4 CONCENTRATION PPM	8.59	24	1.50
HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (BAG) (D) NOX BCKGRD METER/RANGE/PPM CH4 SAMPLE PPM (1.180) CH4 BCKGRD PPM DILUTION FACTOR HC CONCENTRATION PPM CO2 CONCENTRATION PPM CO2 CONCENTRATION PPM CH4 CONCENTRATION PPM CH4 CONCENTRATION PPM NMHC CONCENTRATION PPM NMHC CONCENTRATION PPM	6.81	-1.32	54
THC MASS CRAMS	16 417	439	230
CO MASS GRAMS	42.601	.174	.201
CO2 MASS GRAMS	1653.85	2209.12	1507.16
NOX MASS GRAMS	2.657	1.534	2.535
CH4 MASS GRAMS	.764	.036	.134
NMHC MASS GRAMS (FID)	.523	.000	.000
FUEL MASS KG	.917	1.157	.789
THC MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS CH4 MASS GRAMS NMHC MASS GRAMS FUEL MASS KG FUEL ECONOMY MPG (L/100KM)	11.70 (20.10)	9.92 (23.71)	13.66 (17.23)
3-BAG COMPOSITE RESULTS			
PUC C/MT 1	015	CHA G/MT	050
CO G/MT 2	475	NMHC G/MI	030
NOX G/MI	548	CARBONYL G/MT	. 061
THC G/MI 1.0 CO G/MI 2.0 NOX G/MI		ALCOHOL G/MI	.865
FUEL ECONOMY MPG (L/1	00KM) 11.12 (21.15)		

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH
COMPUTER PROGRAM LDT 1.5-R

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH
PROJECT NO. 08-6068-001

VEHICLE NUMBER VEHICLE MODEL ENGINE TRANSMISSION ODOMETER 601 88 CHEVY CORSICA 2.8 L (171 CID) -V-6 TABLES (24189 KM)	TEST C-ETH-0.8- DATE 7/ 6/94 DYNO 2 BAG ACTUAL ROAD LOA TEST WEIGHT 35	C2 RUN CART 2 AD 4.50 HP (3.36 KW) 500 LBS (1587 KG)	ETHANOL E100 EM-1803-F FUEL DENSITY 6.514 LB/GAL H .131 C .521 O .347 X .000 TEMP. FUEL FRACTIONS
BAROMETER 29.18 IN HG (741.2 MM HG) RELATIVE HUMIDITY 60.4 PCT. BAG NUMBER	DRY BULB TEMPERATURE	71.0°F (21.7°C)	NOX HUMIDITY C.F979
BAG DESCRIPTION	COLD TRANSIENT	STABILIZED	HOT TRANSIENT
RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)	505.4 .974/.984 3.63 (5.84) 557.5 (15.79) .28 (.01) 4698. (133.1)	867.1 .976/.984 3.89 (6.25) 557.8 (15.80) .28 (.01) 8066. (228.4)	505.3 .974/.984 3.63 (5.84) 557.6 (15.79) .27 (.01) 4699. (133.1)
BAROMETER 29.18 IN HG (741.2 MM HG) RELATIVE HUMIDITY 60.4 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) ELOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM) HC SAMPLE METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO ECKGRD METER/RANGE/PCT CO2 ECKGRD METER/RANGE/PCT CO2 ECKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PCT NOX SAMPLE METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (BAG) NOX BCKGRD METER/RANGE/PPM CH4 SAMPLE PPM (1.190) CH4 BCKGRD PPM	11.1/ 3/110.75 .7/ 3/ 6.98 70.7/ 14/ 333.41 .2/ 14/ .81 81.7/ 14/ .6903 12.9/ 14/ .0434 45.7/ 1/ 11.42 .8/ 1/ .20 11.94 2.71	5.9/ 2/ 5.90 6.1/ 2/ 6.10 1.1/ 12/ 1.04 .8/ 12/ .76 74.1/ 14/ .5601 13.4/ 14/ .0454 15.6/ 1/ 3.90 .7/ 1/ .17 2.84 2.67	6.9/ 2/ 6.90 5.3/ 2/ 5.30 2.5/ 12/ 2.38 .7/ 12/ .66 79.3/ 14/ .6464 13.5/ 14/ .0458 49.1/ 1/ 12.27 .9/ 1/ .22 3.84 2.50
DILUTION FACTOR HC CONCENTRATION PPM CO CONCENTRATION PPM CO2 CONCENTRATION PCT NOX CONCENTRATION PPM CH4 CONCENTRATION PPM NMHC CONCENTRATION PPM	16.85 104.18 320.41 .6494 11.23 9.39 38	21.92 .08 .30 .5168 3.73 .29	19.00 1.88 1.68 .6030 12.06 1.47
CH4 BCKGRD PPM DILUTION FACTOR HC CONCENTRATION PPM CO CONCENTRATION PPM CO2 CONCENTRATION PPM CO4 CONCENTRATION PPM CH4 CONCENTRATION PPM NMHC CONCENTRATION PPM NMHC CONCENTRATION PPM THC MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS CO2 MASS GRAMS CO4 MASS GRAMS CO5 MASS GRAMS CO4 MASS GRAMS CO5 MASS GRAMS CO6 MASS GRAMS CO6 MASS GRAMS CO7 MASS GRAMS	16.726 49.631 1582.05 2.798 .833 .000 .886 12.12 (19.41)	.052 .079 2161.24 1.595 .045 .000 1.131	.167 .260 1469.01 3.003 .131 .000 .769 13.94 (16.87)
3-BAG COMPUSITE RESULTS			
THC G/MI CO G/MI 2 NOX G/MI	976 869 600	CH4 G/MI NMHC G/MI CARBONYL G/MI	.063 .000 .059
FUEL ECONOMY MPG (L/1	00KM) 11.40 (20.64)	ALCONOL G/MI	.034

F-4

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH
3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001 COMPUTER PROGRAM LDT 1.5-R

VEHICLE NUMBER 601 VEHICLE MODEL 88 CHEVY CORSICA ENGINE 2.8 L (171 CID) -V-6 TRANSMISSION M5 ODOMETER 14940 MILES (24038 KM)	ETHANOL E100 EM-1803-F		
FNGINE 2 8 I. (171 CID) -V-6	DVNO 2 BAG	CART 2	H 131 C 521 O 347 X 000
TRANSMISSION M5	ACTUAL ROAD LO	AD 4.50 HP (3.36 KW) TEMP. FUEL FRACTIONS
ODOMETER 14940 MILES (24038 KM)	TEST WEIGHT 3	500 LBS (1587 KG)	
מאסטעבייים אין	DOV BITTO WEMBERATION	72 0°5 / 22 2°0\	NOV DIMINITATIV C P 971
BAG NIMBER	7	2	3
BAG DESCRIPTION	COLD TRANSTENT	STABILIZED	HOT TRANSTENT
3.10 DDD31121 22011	(0~505 SEC.)	(505-1372 SEC)	(0~ 505 SEC.)
RUN TIME SECONDS	505.7	867.4	505.7
DRY/WET CORRECTION FACTOR, SAMP/BACK	.975/.984	.977/.984	- 9767.984
MEASURED DISTANCE MILES (KM)	3.61 (5.81)	3.91 (6.29)	3.61 (5.82)
BLOWER FLOW RATE SCFM (SCMM)	556.7 (15.77)	558.7 (15.82)	558.1 (15.81)
GAS METER FLOW RATE SCFM (SCMM)	.27 (.01)	.28 (.01)	.27 (.01)
TOTAL FLOW SCF (SCM)	4694. (132.9)	8082. (228.9)	4706. (133.3)
RELATIVE HUMIDITY 57.0 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)		·	
HC SAMPLE METER/RANGE/PPM (BAG)	22.1/ 3/ 220.51	76.3/ 2/ 76.26	88.0/ 2/ 87.95
HC BCKGRD METER/RANGE/PPM	.8/ 3/ 7.98	7.1/ 2/ 7.10	7.1/ 2/ 7.10
CO SAMPLE METER/RANGE/PPM	66.7/ 1/ 631.54	84.7/ 13/ 205.76	57.3/ 14/ 259.94
CO BCKGRD METER/RANGE/PPM	.0/ 1/ .00	.5/ 13/ 1.09	.3/ 14/ 1.21
CO2 SAMPLE METER/RANGE/PCT	78.8/ 14/ .6376	68.6/ 14/ .4801	75.3/ 14/ .5790
CO2 BCKGRD METER/RANGE/PCT	12.9/ 14/ .0434	13.2/ 14/ .0446	13.4/ 14/ .0454
NOX SAMPLE METER/RANGE/PPM (BAG) (D)	48.9/ 1/ 12.22	17.2/ 1/ 4.30	55.8/ 1/ 13.95
NOX BCKGRD METER/RANGE/PPM	.7/ 1/ .17	.7/ 1/ .17	.5/ 1/ .12
CH4 SAMPLE PPM (1.140)	16.28	7.02	7.36
CH4 BCKGRD PPM	3.04	3.00	2.94
HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (BAG) (D) NOX BCKGRD METER/RANGE/PPM CH4 SAMPLE PPM (1.140) CH4 BCKGRD PPM DILUTION FACTOR HC CONCENTRATION PPM CO2 CONCENTRATION PPM CO4 CONCENTRATION PPM CH4 CONCENTRATION PPM NMC CONCENTRATION PPM NMC CONCENTRATION PPM NMC CONCENTRATION PPM	17.24	24.31	20.14
HC CONCENTRATION PPM	212.99	69.45	81.21
CO CONCENTRATION PPM	609.84	198.48	250.26
CO2 CONCENTRATION PCT	.5967	.4373	.5359
NOX CONCENTRATION PPM	12.06	4.13	13.83
CH4 CONCENTRATION PPM	13.41	4.14	4.56
NMHC CONCENTRATION PPM	4.64	13.31	10.72
THC MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS CH4 MASS GRAMS NMHC MASS GRAMS FUEL MASS GRAMS FUEL ECONOMY MPG (L/100KM)	35 182	19 184	13 392
CO MASS GRAMS	94 384	52 884	38 831
CO2 MASS GRAMS	1452.27	1832.53	1307 65
NOX MASS GRAMS	2.977	1.756	3.423
CH4 MASS GRAMS	1.189	.632	.405
NMHC MASS GRAMS (FID)	.356	1.756	.824
FUEL MASS KG	.873	1.022	.730
FUEL ECONOMY MPG (L/100KM)	12.21 (19.26)	11.30 (20.81)	14.63 (16.08)
3-BAG COMPOSITE RESULTS			
miro o (set	- 77	OTIA CONT	102
THE G/MI 5.1	270	MMIC C/MI	.103
NOV C/MT	570	NAME CARROLL CAR	.310
THC G/MI 5.1 CO G/MI 15.1 NOX G/MI .1	J03	ALCOHOL G/MI	4 421
FUEL ECONOMY MPG (L/1	OOKM) 12.28 (19.16)	ALCOROL G/HI	4.404

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001 COMPUTER PROGRAM LDT 1.5-R

VEHICLE NUMBER VEHICLE MODEL ENGINE TRANSMISSION ODOMETER 601 88 CHEVY CORSICA 2.8 L (171 CID) -V-6 M5 14951 MILES (24056 KM)	TEST C-ETH-1.0 DATE 6/29/94 DYNO 2 BA ACTUAL ROAD LO TEST WEIGHT	-E2 RUN G CART 2 DAD 4.50 HP (3.36 KW 3500 LBS (1587 KG)	ETHANOL E100 EM-1803-F FUEL DENSITY 6.514 LB/GAL H .131 C .521 O .347 X .000 TEMP. FUEL FRACTIONS
BAROMETER 29.26 IN HG (743.2 MM HG) RELATIVE HUMIDITY 57.6 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)	DRY BULB TEMPERATURE	E 73.0°F (22.8°C)	NOX HUMIDITY C.F984
RELATIVE HUMIDITI 57.0 PCI.	1	2	2
BAG DESCRIPTION	COLD TRANSIENT	STABILIZED	HOT TRANSIENT
	(0-505 SEC.)	(505-1372 SEC.)	(0~ 505 SEC.)
RUN TIME SECONDS	505.0	867.2	505.2
DRY/WET CORRECTION FACTOR, SAMP/BACK	.974/.984	.976/.984	.975/.984
MEASURED DISTANCE MILES (KM)	3.61 (5.80)	3.83 (6.17)	3.61 (5.81)
BLOWER FLOW RATE SCFM (SCMM)	558.9 (15.83)	560.0 (15.86)	559.2 (15.84)
TOTAL FLOW SCF (SCM)	4706. (133.3)	8098 (229.3)	4711 (133.4)
TOTAL FLOW DOT (DOT)	4,00. (255.5)	0030. (223.37	3/11. (155.4)
HC SAMPLE METER/RANGE/PPM (BAG)	19.8/ 3/ 197.56	68.1/ 2/ 68.06	75.3/ 2/ 75.26
HC BCKGRD METER/RANGE/PPM	.8/ 3/ 7.98	8.9/ 2/ 8.89	9.1/ 2/ 9.09
CO SAMPLE METER/RANGE/PPM	64.4/ 1/ 604.73	91.0/ 13/ 223.24	58.4/ 14/ 265.78
CO BCKGRD METER/RANGE/PPM	.3/ 1/ 2.30	.7/ 13/ 1.52	.4/ 14/ 1.62
CO2 SAMPLE METER/RANGE/PCT	12 8/ 14/ .0/30	13 2/ 14/ .513/	13 3 / 14 / .388 /
NOX SAMPLE METER/RANGE/PPM (BAG) (D)	68.6/ 1/ 17.15	21.6/ 1/ 5.40	62.3/ 1/ 15.57
NOX BCKGRD METER/RANGE/PPM	.8/ 1/ .20	1.5/ 1/ .37	2.2/ 1/ .55
CH4 SAMPLE PPM (1.140)	15.16	7.06	7.27
CH4 BCKGRD PPM	3.42	3.28	3.25
DILIMION PACEOR	16 39	22 75	10.04
HC CONCENTRATION PPM	190.06	22.73 59 56	66 62
CO CONCENTRATION PPM	581.12	214.80	255.42
CO2 CONCENTRATION PCT	.6386	.4711	.5460
NOX CONCENTRATION PPM	16.96	5.04	15.05
CH4 CONCENTRATION PPM	11.96	3.92	4.19
NMHC CONCENTRATION PPM	10.50	13.31	2.40
TOTAL FLOW SCF (SCM) HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (BAG) (D) NOX BCKGRD METER/RANGE/PPM CH4 SAMPLE PPM (1.140) CH4 BCKGRD PPM DILUTION FACTOR HC CONCENTRATION PPM CO CONCENTRATION PCM CO2 CONCENTRATION PCM CO4 CONCENTRATION PPM CH4 CONCENTRATION PPM NMHC CONCENTRATION PPM THC MASS GRAMS CO MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS NOX MASS GRAMS NOX MASS GRAMS CH4 MASS GRAMS NOX MASS GRAMS CH4 MASS GRAMS CH4 MASS GRAMS NMC MASS GRAMS NMC MASS GRAMS NMC MASS GRAMS CH4 MASS GRAMS NMC MASS G	31.309	16.507	11.563
CO MASS GRAMS	90.167	57.350	39.669
CO2 MASS GRAMS	1558.36	1978.06	1333.51
NOX MASS GRAMS	4.253	2.175	3.778
CH4 MASS GRAMS	1.063	.599	.373
NMHC MASS GRAMS (FID)	.807	1.761	. 185
FUEL FIGNOMY MPG (I./100KM)	17 57 (20 34)	10 30 (22 83)	./44
TODE ECONOMI MIG (E) TOOM!	11.37 (10.34)	10.30 (22.03)	14.50 (10.58)
THC G/MJ 4	914	CH4 G/MT	.170
CO G/MI 15.	960	NMHC G/MI	.297
NOX G/MI .	828	CARBONYL G/MI	. 646
THC G/MI 4. CO G/MI 15. NOX G/MI .	00mm) 11 10 /00 101	ALCOHOL G/MI	3.801
FUEL ECONOMY MPG (L/1	UUKM) 11.48 (20.48)		

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001

COMPUTER PROGRAM LDT 1.2-R

COMPUTER PROGRAM LDT 1.2-R 3-			
VEHICLE NUMBER 601 VEHICLE MODEL 88 CHEVY CORSICA ENGINE 2.8 L (171 CID) -V-6 TRANSMISSION M5 ODOMETER 14903 MILES (23978 KM)	TEST C-ETH-1.0- DATE 6/24/94 DYNO 2 BAG ACTUAL ROAD LO TEST WEIGHT 3	-C2 RUN 2 CART 2 AD 4.50 HP (3.36 KW) 500 LBS (1587 KG)	ETHANOL E100 EM-1803-F FUEL DENSITY 6.514 LB/GAL H .131 C .521 O .347 X .000 TEMP. FUEL FRACTIONS
BAROMETER 29.06 IN HG (738.1 MM HG) RELATIVE HUMIDITY 56.5 PCT. BAG NUMBER BAG DESCRIPTION	DRY BULB TEMPERATURE 1 COLD TRANSIENT (0-505 SEC.)	2 71.0°F (21.7°C) 2 STABILIZED (505-1372 SEC.)	NOX HUMIDITY C.F960 3 HOT TRANSIENT (0- 505 SEC.)
RELATIVE HUMIDITY 56.5 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)	504.3 .974/.985 3.62 (5.82) 557.8 (15.80) .28 (.01) 4691. (132.8)	867.3 .976/.985 3.89 (6.26) 556.1 (15.75) .28 (.01) 8042. (227.8)	505.6 .975/.985 3.61 (5.81) 554.0 (15.69) .27 (.01) 4671. (132.3)
HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT NOX SAMPLE METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM CO4 SAMPLE PM (1.140) CH4 BCKGRD METER/RANGE/PPM CH4 SAMPLE PPM (1.140) CH4 BCKGRD PPM DILUTION FACTOR HC CONCENTRATION PPM CO2 CONCENTRATION PPM CO2 CONCENTRATION PPM NMC CONCENTRATION PPM NMHC CONCENTRATION PPM	9.9/ 3/ 98.78 1.1/ 3/ 10.98 74.7/ 14/ 356.19 .6/ 14/ 2.43 83.7/ 14/ .7291 14.4/ 14/ .0494 52.6/ 1/ 13.15 .7/ 1/ .17 13.59	8.5/ 2/ 8.50 8.0/ 2/ 8.00 2.4/ 12/ 2.28 74.8/ 14/ .5711 14.8/ 14/ .0510 14.1/ 1/ 3.52 .6/ 1/ .15	10.1/ 2/ 10.09 7.2/ 2/ 7.20 26.0/ 12/ 25.15 2.0/ 12/ 1.90 79.9/ 14/ .6571 15.3/ 14/ .0531 42.0/ 1/ 10.50 1.3/ 1/ .32 6.44
CH4 BCKGRD PPM DILUTION FACTOR HC CONCENTRATION PPM CO CONCENTRATION PPM CO2 CONCENTRATION PCT NOX CONCENTRATION PPM CH4 CONCENTRATION PPM NMHC CONCENTRATION PPM	4.13 15.96 88.49 340.97 .6828 12.98 9.72	4.13 21.49 .87 .07 .5224 3.38 .33	3.94 18.61 3.28 22.51 .6068 10.19 2.70 .20
THC MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS CH4 MASS GRAMS NMHC MASS GRAMS (FID) FUEL MASS KG FUEL ECONOMY MPG (L/100KM)	14.217 52.730 1660.55 3.165 .861 .022 .927 11.54 (20.39)	.120 .019 2178.35 1.413 .050 .065 1.140	.256 3.467 1469.66 2.473 .238 .016 .772
3-BAG COMPOSITE RESULTS THC G/MI . CO G/MI 3. NOX G/MI . FUEL ECONOMY MPG (L/1	850 286 557		

COMPUTER PROGRAM LDT 1.5-R 3-B	AG CARB FTP VEHICLE	EMISSION RESULTS	
VEHICLE NUMBER VEHICLE MODEL ENGINE TRANSMISSION ODOMETER 601 88 CHEVY CORSICA 2.8 L (171 CID)-V-6 TANSMISSION M5 14921 MILES (24007 KM)	TEST C-ETH-1.0- DATE 6/27/94 DYNO 2 BAG ACTUAL ROAD LOA TEST WEIGHT 3	C3 RUN 2 CART 2 AD 4.50 HP (3.36 KW 500 LBS (1587 KG)	ETHANOL E100 EM-1803-F FUEL DENSITY 6.514 LB/GAL H .131 C .521 O .347 X .000 TEMP. FUEL FRACTIONS
DADOMERED 20 10 TM UC /7/1 2 NO UC)	DON BILL B BEMDESAGIDE	72 0°F (22 2°C)	MOV HIMITOTOM O D 071
BAG NUMBER BAG DESCRIPTION	1 COLD TRANSIENT	2 STABILIZED	3 HOT TRANSIENT
RELATIVE HUMIDITY 57.0 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)	506.0 .974/.984 3.62 (5.82) 557.7 (15.79)	867.1 .976/.984 3.87 (6.23) 558.5 (15.82)	506.1 .975/.984 3.63 (5.84) 558.2 (15.81)
GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)	4705. (133.3)	.28 (.01) 8076. (228.7)	.27 (.01) 4711. (133.4)
GAS METER FLOW RATE SCPM (SCMM) TOTAL FLOW SCF (SCM) HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (BAG) (D) NOX BCKGRD METER/RANGE/PPM CH4 SAMPLE PPM (1.140) CH4 BCKGRD PPM DILUTION FACTOR HC CONCENTRATION PPM CO2 CONCENTRATION PPM CO2 CONCENTRATION PPM CO4 CONCENTRATION PPM CH4 CONCENTRATION PPM CH4 CONCENTRATION PPM THC MASS GRAMS CO MASS GRAMS CO MASS GRAMS CO MASS GRAMS CH4 MASS GRAMS CH4 MASS GRAMS CH4 MASS GRAMS CH6 MASS GRAMS CH6 MASS GRAMS CH7 MASS GRAMS CH7 MASS GRAMS CH7 MASS GRAMS CH8 MASS GRAMS CH9 MASS GRAMS CH1 MASS GRAMS CH1 MASS GRAMS CH2 MASS GRAMS CH4 MASS GRAMS CH4 MASS GRAMS CH4 MASS GRAMS CH4 MASS GRAMS CH6 MASS GRAMS CH7 MASS GRAMS CH7 MASS GRAMS CH8 MASS GRAMS CH9 MAS	12.2/ 3/ 121.73 .9/ 3/ 8.98 86.0/ 14/ 421.87 .4/ 14/ 1.62 82.0/ 14/ .6960 13.7/ 14/ .0466 43.2/ 1/ 10.80 .8/ 1/ .20 16.56 3.01	61.6/ 1/ 6.18 60.6/ 1/ 6.08 1.0/ 12/ .95 .8/ 12/ .76 72.6/ 14/ .5372 13.9/ 14/ .0474 13.5/ 1/ 3.37 .6/ 1/ .15 3.12 2.90	74.3/ 1/ 7.45 55.9/ 1/ 5.61 10.3/ 12/ 9.87 .8/ 12/ .76 78.1/ 14/ .6254 14.0/ 14/ .0478 45.2/ 1/ 11.30 .9/ 1/ .22 4.45 2.85
DILUTION FACTOR HC CONCENTRATION PPM CO CONCENTRATION PPM CO2 CONCENTRATION PCT NOX CONCENTRATION PPM CH4 CONCENTRATION PPM NMHC CONCENTRATION PPM THC MASS GRAMS	16.50 113.29 405.27 .6522 10.61 13.72 .02	22.86 .37 .21 .4919 3.23 .34 01	19.60 2.13 8.83 .5801 11.08 1.74 .17
CO MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS CH4 MASS GRAMS NMHC MASS GRAMS (FID) FUEL MASS KG FUEL ECONOMY MPG (L/100KM)	62.871 1591.16 2.626 1.219 .002 .903 11.84 (19.87)	.055 2059.77 1.372 .052 .000 1.078 10.61 (22.17)	1.371 1416.85 2.746 .155 .013 .743 14.43 (16.30)
THC G/MI 1.0 CO G/MI 3.7 NOX G/MI .5 FUEL ECONOMY MPG (L/10	071 720 542 00KM) 11 74 (20 04)	CH4 G/MI NMHC G/MI CARBONYL G/MI ALCOHOL G/MI	.089 .001 .087 .894
FORD ECONOMI MFG (D/IC	JOINES, III.14 (20.04)		

PROJECT NO. 08-6068-001 COMPUTER PROGRAM LDT 1.5-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS

TEST C-ETH-1.2-E1
DATE 9/22/94 RUN
DYNO 2 BAG CART 2
ACTUAL ROAD LOAD 4.50 HP (3.36 KW)
TEST WEIGHT 3500 LBS (1587 KG) ETHANOL E100 EM-1803-F FUEL DENSITY 6.514 LB/GAL H .131 C .521 O .347 X .000 VEHICLE NUMBER 601 VEHICLE MODEL 88 88 CHEVY CORSICA 2.8 L (171 CID)-V-6 ENGINE TRANSMISSION М5 15441 MILES (24844 KM) ODOMETER

BAROMETER 29.16 IN HG (740.7 MM HG)	DRY BULB TEMPERATURE	72.0°F (22.2°C)	NOX HUMIDITY C.F993
RELATIVE HUMIDITY 61.0 PCT.		_	
BAG NUMBER	1	2	3
BAG DESCRIPTION	COLD TRANSIENT	STABILIZED	HOT TRANSIENT
•	(0-505 SEC.)	(505-1372 SEC.)	(0- 505 SEC.)
RUN TIME SECONDS	505.1	867.4	504.4
DRY/WET CORRECTION FACTOR, SAMP/BACK	.973/.983	.975/.983	.974/.983
MEASURED DISTANCE MILES (KM)	3.60 (5.80)	3.86 (6.21)	3.61 (5.82)
BLOWER FLOW RATE SCFM (SCMM)	554.6 (15.71)	557.6 (15.79)	556.3 (15.76)
GAS METER FLOW RATE SCFM (SCMM)	.28 (.01)	.28 (.01)	.28 (.01)
BAROMETER 29.16 IN HG (740.7 MM HG) RELATIVE HUMIDITY 61.0 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)	4671. (132.3)	8065. (228.4)	4679. (132.5)
HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (BAG) (D) NOX BCKGRD METER/RANGE/PPM CH4 SAMPLE PPM (1.150) CH4 BCKGRD PPM	23.3/ 3/232.48	78.8/ 2/ 78.75	11.6/ 3/115.74
HC BCKGRD METER/RANGE/PPM	.9/ 3/ 8.98	6.4/ 2/ 6.40	8/ 3/ 7.98
CO SAMPLE METER/RANGE/PPM	63 1/ 1/ 589.78	79.9/ 14/ 386.24	79.8/ 14/ 385.65
CO BCKGRD METER/RANGE/PPM	0/ 1/ 00	5/ 14/ 2.02	4/ 14/ 1.62
CO2 SAMPLE METER/RANGE/PCT	82 7/ 14/ 7094	71 5/ 14/ 5210	76 3/ 14/ 5952
CO2 BCKGRD METER/RANGE/PCT	13.6/ 14/ .0462	13.6/ 14/ 0462	13.3/ 14/ .0450
NOX SAMPLE METER/RANGE/PPM (BAG) (D)	82 0/ 1/ 20 49	28 7/ 1/ 7 17	45 2/ 1/ 11 30
NOX BOKGRD METER/RANGE/PPM	1/ 1/ 02	0/ 1/ 00	0/ 1/ 00
CHA SAMPLE PPM (1 150)	13 43	7 90	9.48
CH4 BCKGRD PPM	2.86	2.75	2.52
DILUTION FACTOR	15.73	21.80	19.19
HC CONCENTRATION PPM	224.07	72.65	108.18
CO CONCENTRATION PPM	567.71	371.71	370.82
CO2 CONCENTRATION PCT	.6662	.4769	.5526
NOX CONCENTRATION PPM	20.47	7.17	11.30
CH4 CONCENTRATION PPM	10.76	5.28	7.09
NMHC CONCENTRATION PPM	1.96	10.23	15.56
TUC MASS CRAMS	27 210	10 042	17 242
CO MAGG CDAMG	07 420	20.045	57 207
CO MAGG CRAMG	1613 30	1001 27	1240 63
NOV MACC CDAMC	6 1/3	2 110	2 243
CUA MACC CRAMC	2.143	2.112	627
NAME MAGG CRAMG (ELD)	- 543 150	1 347	1 199
MING MASS GRAND (FID)	.130	1.34/	766
FUEL MASS AG	11 16 / 21 00)	1.143	12 04 / 16 07)
CH4 BCKGRD PPM DILUTION FACTOR HC CONCENTRATION PPM CO COMCENTRATION PPM CO2 CONCENTRATION PPM NOX CONCENTRATION PPM CH4 CONCENTRATION PPM NMHC CONCENTRATION PPM THC MASS GRAMS CO MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS CO2 MASS GRAMS CO4 MASS GRAMS NOX MASS GRAMS NOX MASS GRAMS CH4 MASS GRAMS THE MASS G	11.16 (21.08)	9.96 (23.63)	13.94 (16.8/)
3-BAG COMPOSITE RESULTS			
THC G/MI 6 CO G/MI 22.	130	CH4 G/MI	.210
CO G/MI 22.	636	NMHC G/MI	.280

CARBONYL G/MI ALCOHOL G/MI .639 5.001 G/MI NOX .930

FUEL ECONOMY MPG (L/100KM) 11.10 (21.19)

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001 COMPUTER PROGRAM LDT 1.5-R

VEHICLE NUMBER	601	TEST C-ETH-1.2-	-E2	ETHANOL E100 EM-1803-F
VEHICLE MODEL	88 CHEVY CORSICA	DATE 9/23/94	RUN	FUEL DENSITY 6.514 LB/GAL
ENGINE	2.8 L (171 CID)-V-6	DYNO 2 BAG	CART 2	H .131 C .521 O .347 X .000
TRANSMISSION	M5	ACTUAL ROAD LO	AD 4.50 HP (3.36 KW	1)
ODOMETER	15454 MILES (24865 KM)	TEST WEIGHT 3	500 LBS (1587 KG)	ETHANOL E100 EM-1803-F FUEL DENSITY 6.514 LB/GAL H .131 C .521 O .347 X .000
BAROMETER 29.2	24 IN HG (742.7 MM HG) ITY 42.7 PCT. ION ONDS ECTION FACTOR, SAMP/BACK FANCE MILES (KM) RATE SCFM (SCMM) OW RATE SCFM (SCMM) CF (SCM)	DRY BULB TEMPERATURE	68.0°F (20.0°C)	NOX HUMIDITY C.F875
BAG NUMBER		1	2	3
BAG DESCRIPT	ION	COLD TRANSIENT	STABILIZED	HOT TRANSIENT
		(0-505 SEC.)	(505-1372 SEC.)	(0- 505 SEC.)
RUN TIME SECO	ONDS	505.4	867.0	505.2
DRY/WET CORRI	ECTION FACTOR, SAMP/BACK	.979/.990	.982/.990	.981/.990
MEASURED DIST	PANCE MILES (KM)	3.60 (5.79)	3.88 (6.24)	3.61 (5.81)
BLOWER FLOW I	RATE SCFM (SCMM)	557.5 (15.79)	559.5 (15.85)	558.5 (15.82)
GAS METER FLO	OW RATE SCFM (SCMM)	.28 (.01)	.28 (.01)	.27 (.01)
TOTAL FLOW SO	CF (SCM)	4698. (133.0)	8089. (229.1)	4705. (133.2)
UC CAMPLE M	EMED (DANCE (DOM (DAC)	22 17 27 220 40	71 07 27 71 96	0.0/ 3/ 07.70
NC SWILTE N	ETER/RANGE/FFN (DAG)	27.1/ 3/ 230.49	64/ 2/ 640	7.0/ 3/ 3/./0
CO SAMPLE M	ETER/RANGE/PPM	59 3/ 1/ 546 84	71 6/ 14/ 338 51	74 3/ 14/ 353 90
CO BUMPED M	ETER/IGHGE/FIM	2/ 1/ 153	8/ 14/ 3 23	6/ 14/ 2/43
CO2 SAMPLE M	ETER/RANCE/PCT	82 9/ 14/ 7133	72 0/ 14/ 5283	75 7/ 14/ 5855
CO2 BCKGRD M	ETER/RANGE/PCT	13.5/ 14/ .0458	13.6/ 14/ .0462	12.7/ 14/ .0426
NOX SAMPLE M	ETER/RANGE/PPM (BAG) (D)	24.4/ 2/ 24.41	40.9/ 1/ 10.22	51.8/ 1/ 12.95
NOX BCKGRD M	ETER/RANGE/PPM	.1/ 2/ .10	.8/ 1/ .20	.9/ 1/ .22
CH4 SAMPLE P	PM (1.150)	13.54	6.81	7.65
CH4 BCKGRD P	ETER/RANGE/PPM (BAG) ETER/RANGE/PPM ETER/RANGE/PPM ETER/RANGE/PCT ETER/RANGE/PCT ETER/RANGE/PPM (BAG) (D) ETER/RANGE/PPM PM (1.150) PM	2.46	2.59	2.22
DILIPION FAC	TIOD .	15 73	21 70	19 61
HC CONCENT	PATION PPM	223 01	65.76	91 15
CO CONCENT	RATION PPM	528-13	326.33	341 57
CO2 CONCENT	RATION PCT	.6704	. 4843	.5450
NOX CONCENT	RATION PPM	24.32	10.03	12.73
CH4 CONCENT	RATION PPM	11.23	4.34	5.54
NMHC CONCENT	RATION PPM	12.10	13.97	14.17
THC MAGE	PM TOR RATION PPM RATION PPM RATION PCT RATION PPM RATION PPM RATION PPM GRAMS GRAM	36 424	17 689	14 816
CO Mycc	CDAMC	21 203	97 039	50 001
CO2 MASS	CRAMS	1633 09	2031 00	1329 44
NOX MASS	GRAMS	5.412	3 844	2 838
CH4 MASS	GRAMS	.996	.662	. 492
NMHC MASS	GRAMS (FID)	.928	1.845	1.089
FUEL MASS	KG	.959	1.152	.754
FUEL ECONOMY	MPG (L/100KM)	11.09 (21.21)	9.94 (23.66)	14.15 (16.63)
3-BAG COMPOSIT	E RESULTS			
	mio 0.047 5	.586 .365 .041 .00KM) 11.12 (21.16)	0114 0/2-7	102
	THU G/MI 5.	. 200 265	CH4 G/MI	,183 202
	NOV G/MI 20.	041	CAPPONTI C/MI	, , , , , , , , , , , , , , , , , , , ,
	NOV GAMT T	.041	ALCOHOL G/MI	4.387
	FUEL ECONOMY MPG (L/	100KM) 11.12 (21.16)		

ETHANOL E100

EM-1803-F

COMPUTER PROGRAM LDT 1.5-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001 TEST C-ETH-1.2-C1

DATE 9/26/94 RUN
DYNO 2 BAG CART 2
ACTUAL ROAD LOAD 4.50 HP (3.36 KW)
TEST WEIGHT 3500 LBS (1587 KG) FUEL DENSITY 6.514 LB/GAL H .131 C .521 O .347 X .000 VEHICLE MODEL 88 CHEVY CORSICA 2.8 L (171 CID)-V-6 ENGINE TRANSMISSION M5 15473 MILES (24896 KM) ODOMETER BAROMETER 29.22 IN HG (742.2 MM HG) DRY BULB TEMPERATURE 71.0°F (21.7°C) NOX HUMIDITY C.F. .903 RELATIVE HUMIDITY 45.0 PCT. BAG NUMBER BAG DESCRIPTION COLD TRANSIENT STABILIZED HOT TRANSIENT (0-505 SEC.) (0- 505 SEC.) (505-1372 SEC.) RUN TIME SECONDS 505.8 867.2 505.0 DRY/WET CORRECTION FACTOR, SAMP/BACK .976/.988 .979/.988 .978/.988 3.88 (6.24) 562.5 (15.93) .28 (.01) 8133. (230.3) 3.56 (5.74) 561.5 (15.90) .27 (.01) 4728. (133.9) 3.59 (5.78) 562.2 (15.92) MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) .28 (.01) 4742. (134.3) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM) 11.4/ SAMPLE METER/RANGE/PPM (BAG) 3/ 113.75 7.8/ 2/ 27.4/ 2/ 27.38 3/ 7.98 1/ 229.01 BCKGRD METER/RANGE/PPM .8/ 6.8/ 2/ 6.80 6.6/ 2/ 6.60 48.9/ 13/ 113.50 27.6/ CO SAMPLE METER/RANGE/PPM 11.5/ 12/ 11.32 13/ 3.68 14/ .6865 1/ .00 14/ .8004 BCKGRD METER/RANGE/PPM 2.2/ 12/ 2.18 1.6/ co .0/ 87.1/ .5969 CO2 SAMPLE METER/RANGE/PCT 76.4/ 81.5/ 14/ 14/ .0486 CO2 BCKGRD METER/RANGE/PCT 14.5/ 14/ .0498 14.7/ 14/ .0506 14.2/ 1/ 1/ 12.40 NOX SAMPLE METER/RANGE/PPM (BAG) (D) 49.6/ 11.1/ 1/ 2.77 24.9/ 6.22 NOX BCKGRD METER/RANGE/PPM .5/ 1/ .3/ 1/ .07 .2/ 1/ .05 CH4 SAMPLE PPM (1.150) 13.71 4.35 6.80 CH4 BCKGRD PPM 3.53 3.75 2.95 DILUTION FACTOR 14.81 20.53 17.56 CONCENTRATION PPM 106.30 221.10 1.33 8.93 21.16 106.49 HC CO CONCENTRATION PPM CONCENTRATION PCT .7539 .5487 .6407 CONCENTRATION PPM 2.70 NOX 12.28 CH4 CONCENTRATION PPM 10.22 .99 4.02 NMHC CONCENTRATION PPM 1.98 .26 12.24 THC MASS GRAMS 16.916 .189 2.601 2.396 CO MASS GRAMS 34.565 16.601 C02 1853.48 2313.95 MASS GRAMS 1570.66 1.075 2.848 NOX MASS GRAMS 1.428 .152 .915 CH4 MASS GRAMS .359 MASS GRAMS (FID) .035 .945 NMHC .153 1.213 MASS KG 1.016 FUEL .838 FUEL ECONOMY MPG (L/100KM) 10.44 (22.53) 9.45 (24.89) 12.56 (18.73) 3-BAG COMPOSITE RESULTS G/MI THC .101 1.198 CH4 G/MI co G/MI 3.582 NMHC G/MI .086 NOX G/MI CARBONYL G/MI .102 ALCOHOL G/MI .910 FUEL ECONOMY MPG (L/100KM) 10.37 (22.69)

VEHICLE NUMBER 601

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001 COMPUTER PROGRAM LDT 1.5-R TEST C-ETH-1.2-C2

VEHICLE NUMBER VEHICLE MODEL ENGINE TRANSMISSION ODOMETER 601 88 CHEVY CORSICA 2.8 L (171 CID) -V-6 M5 15484 MILES (24913 KM)	TEST C-ETH-1.2- DATE 9/27/94 DYNO 2 BAG ACTUAL ROAD LO TEST WEIGHT 3	-C2 RUN CART 2 AD 4.50 HP (3.36 KW 500 LBS (1587 KG)	ETHANOL E100 EM-1803-F FUEL DENSITY 6.514 LB/GAL H .131 C .521 O .347 X .000
BAROMETER 29.16 IN HG (740.7 MM HG) RELATIVE HUMIDITY 46.5 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)			
REMATIVE HUMIDITI 40.5 FCT.	1	2	,
DAG NUMBER	COLD MDANGTERM	CONTRACTO	IIOM mpaatormim
BAG DESCRIPTION	(0 SOE SEC.)	STABILIZED	NOT TRANSIENT
DINI MINE CECONIC	(0-505 SEC.)	(505-1372 SEC.)	(U- 303 SBC.)
RUN TIME SECONDS	0767.007	807.3	303.2
DRY/WET CORRECTION FACTOR, SAMP/BACK	.9/0/.98/	.9/8/.98/	.9///.98/
MEASURED DISTANCE MILES (KM)	3.59 (5.78)	3.88 (6.24)	3.63 (5.83)
BLOWER FLOW RATE SCFM (SCMM)	562.8 (15.94)	566.2 (16.03)	503.1 (15.95)
GAS METER FLOW RATE SCFM (SCMM)	.28 (.01)	.28 (.01)	.27 (.01)
TOTAL FLOW SCF (SCM)	4/42. (134.3)	8188. (231.9)	4744. (134.3)
NO CAMPLE MEMBER (DAMOR (DAM)	15 0/ 3/ 150 65	8 3 / 3 / 8 33	10 4/ 2/ 10 20
HC SAMPLE METER/RANGE/PPM (BAG)	15.9/ 3/ 158.65	6.2/ 2/ 6.20	19.4/ 2/ 19.39
HC BUNGED METER/RANGE/PPM	1.0/ 3/ 9.90	0.7/ 2/ 0.70	0.2/ 2/ 0.20
CO SAMPLE METER/RANGE/PPM	55.0/ 1/ 4/8.11	21.5/ 12/ 21.04	13/ 12/ 95.62
CO SCREED METER/RANGE/PPM	.2/ 1/ 1.53	1.5/ 12/ 1.49	1.// 12/ 1.09
CO2 SAMPLE METER/RANGE/PCT	13 5/ 14/ .7452	10.0/ 14/ .0822	13 1 / 14 / 0443
CUZ BCKGKD METEK/RANGE/PCT	13.6/ 14/ .0462	12.9/ 14/ .0434	13.1/ 14/ .0442
NOX SAMPLE METER/RANGE/PPM (BAG) (D)	34.9/ 1/ 8.72	8.8/ 1/ 2.20	32.8/ 1/ 8.20
NOX BCKGRD METEK/RANGE/PPM	.67 .17 .03.	.4/ 1/ .10	.5/ 1/ .14
CH4 SAMPLE PPM (1.150)	23.09	4.19	11.4/
CH4 BCKGRD PPM	3.83	2.76	2.53
DILLIPION FACTOR	15 22	21 01	17 06
HC CONCERNED ACTON DOM	140 22	1 02	12 64
CO CONCENTRATION FER	160 60	10.02	91 20
CO CONCENTRATION PER	7021	19.02	6217
NOV CONCENTRATION FCI	9 50	2 10	0.00
CUA CONCENTRATION PPM	10.51	1 56	0.00
NAME CONCENTRATION PPM	19.51	1.50	9.08
NMAC CONCENTRATION PPM	11.45	.03	2.59
THE MACC CRAMC	22 212	251	1 126
CO MACC CRAMC	72 016	5 134	14 262
CO MACC CRAMC	1726 22	2.134	1552 77
NOV MACCODAMC	2.040	2290.33	1 921
CUA MACC CRAMC	1 747	241	012
NMUC MACCODAMC /RTD\	1.747	-241	.013
PIDI. MASS VC	- 090	1 207	926
FUEL PONOMY MOC (I (100KM)	10 77 / 21 05)	9 50 (24 77)	12 67 (10 14)
FOED ECONOMI MEG (D) TOOKM)	10.77 (21.03)	J.30 (24.77)	12.31 (10.14)
TOTAL FLOW SCF (SCM) HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO EXAMPLE METER/RANGE/PCT CO2 SAMPLE METER/RANGE/PCT NOX SAMPLE METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (BAG) (D) NOX BCKGRD METER/RANGE/PPM CH4 SAMPLE PPM (1.150) CH4 BCKGRD PPM DILUTION FACTOR HC CONCENTRATION PPM CO2 CONCENTRATION PPM CO2 CONCENTRATION PPM CO4 CONCENTRATION PPM CM4 CONCENTRATION PPM CM5 CONCENTRATION PPM CM6 CONCENTRATION PPM THC MASS GRAMS CO MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS CO3 MASS GRAMS CH4 MASS GRAMS NOX			
ጥዝር ር/ዘፓ 1	404	CHA CAME	195
CO G/MT 5	915	NMHC G/MI	067
MOV C/MT	379	CARRONVI C/MI	067
THC G/MI 1 CO G/MI 5 NOX G/MI		ALCOHOL G/MI	1 075
FUEL ECONOMY MPG (L/1	00KM) 10 55 (22 30)	ALCOHOL G/MI	4.013
FORD ECONOMI MEG (D/I)	20.33 (22.30)		

APPENDIX G

COMPUTER PRINTOUTS OF EMISSIONS DATA WITH METHANOL

			<u></u>
Page G-	Test Number	Operating Condition	Catalyst Installation
1	L-MTH-0.8-E1	Lean	Without Catalyst
2	L-MTH-0.8-E3	Lean	Without Catalyst
3	L-MTH-0.8-C1	Lean	With Catalyst
4	L-MTH-0.8-C2	Lean	With Catalyst
5	L-MTH-1.0-E1	Stoich	Without Catalyst
6	L-MTH-1.0-E2	Stoich	Without Catalyst
7	L-MTH-1.0-C2	Stoich	With Catalyst
8	L-MTH-1.0-C2	Stoich	With Catalyst
9	L-MTH-1.2-E1	Rich	Without Catalyst
10	L-MTH-1.2-E2	Rich	Without Catalyst
11	L-MTH-1.2-C2	Rich	With Catalyst
12	L-MTH-1.2-C3	Rich	With Catalyst

COMPUTER PROGRAM LDT 1.5-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001

VEHICLE NUMBER 601 TEST C-MTH-0.8-E1 METHANOL EM-1791-F DATE 9/ 2/94 RUN 1
DYNO 2 BAG CART 2
ACTUAL ROAD LOAD 4.50 HP (3.36 KW)
TEST WEIGHT 3500 LBS (1587 KG) FUEL DENSITY 6.610 LB/GAL H .123 C .375 O .502 X .000 VEHICLE MODEL 88 CHEVY CORSICA ENGINE 2.8 L (171 CID)-V-6 TRANSMISSION М5 15233 MILES (24509 KM) ODOMETER BAROMETER 29.35 IN HG (745.5 MM HG) DRY BULB TEMPERATURE 75.0°F (23.9°C) NOX HUMIDITY C.F. 1.013 RELATIVE HUMIDITY 58.6 PCT.

BAG NUMBER HOT TRANSIENT COLD TRANSTENT STABILIZED BAG DESCRIPTION (0- 505 SEC.) (0-505 SEC.) (505-1372 SEC.) RUN TIME SECONDS 505.6 866.6 504.6 DRY/WET CORRECTION FACTOR, SAMP/BACK .970/.982 .973/.982 .972/.982 MEASURED DISTANCE MILES (KM) 3.62 (5.82) 3.88 (6.25) 3.58 (5.76) 563.0 (15.94) .28 (.01) 4747. (134.4) BLOWER FLOW RATE SCFM (SCMM) 564.1 (15.97) 562.3 (15.93) .28 (.01) 8151. (230.8) .28 (.01) 4732. (134.0) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM) HC SAMPLE METER/RANGE/PPM (BAG) 12.1/ 3/ 120.73 11.2/ 3/ 111.75 9.9/ 3/ 98.78 .9/ 3/ 8.98 67.2/ 13/ 159.81 .8/ 3/ 7.98 74.4/ 14/ 354.47 BCKGRD METER/RANGE/PPM .9/ 3/ 8.98 58.1/ 13/ 136.45 SAMPLE METER/RANGE/PPM BCKGRD METER/RANGE/PPM CO 1.61 .7/ 13/ 67.2/ 14/ .7/ 13/ 73.2/ 14/ CO .4/ 14/ 1.62 .6152 1.61 77.5/ .5463 CO2 SAMPLE METER/RANGE/PCT 14/ .4613 CO2 BCKGRD METER/RANGE/PCT 13.2/ 14.0/ 14/ .0446 13.5/ 14/ 14/ .0478 1/ 10.15 1/ 1/1/ NOX SAMPLE METER/RANGE/PPM (BAG) (D) 40.6/ 14.3/ 3.57 38.4/ 9.60 NOX BCKGRD METER/RANGE/PPM 1.0/ 1/ .25 .5/ .12 .6/ .15 4.66 3.65 CH4 SAMPLE PPM (1.150) 4.00 3.94 CH4 BCKGRD PPM 3.72 3.67 DILUTION FACTOR 17.66 24.13 20.50 HC CONCENTRATION PPM 113.20 103.14 90.24 130.49 CONCENTRATION PPM CO 339.83 152.71 .5731 CONCENTRATION PCT CO2 .5008 3.45 CONCENTRATION PPM 9.91 9.45 CONCENTRATION PPM 1.22 NMHC CONCENTRATION PPM -80.01 22.55 -7.27 37.723 THC 45.540 23 717 MASS GRAMS MASS GRAMS CO 53.182 35.067 23.822 C02 MASS GRAMS 1410.59 1764.15 1228.66 NOX MASS GRAMS 1.545 2.581 2.454 CH4 MASS GRAMS .109 .067 .040 NMHC MASS GRAMS (FID) .000 3.002 .000 FUEL MASS KG 1.133 1.362 .945 FUEL ECONOMY MPG (L/100KM) 9.57 (24.57) 8.54 (27.53) 11.36 (20.72)

3-BAG COMPOSITE RESULTS

THC	G/MI	9.467	CH4	G/MI	.018
CO	G/MI	9.558	NMHC	G/MI	.401
NOX	G/MI	. 542	CARBONYL	G/MI	.813
			ALCOHOL	G/MI	8.234

FUEL ECONOMY MPG (L/100KM) 9.40 (25.02)

COMPUTER PROGRAM LDT 1.5-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001

 VEHICLE NUMBER
 601
 TEST C-MTH-0.8-E3
 METHANOL
 EM-1791-F

 VEHICLE MODEL
 88 CHEVY CORSICA
 DATE 9/7/94 RUN 1
 FUEL DENSITY 6.610 LB/GAL

 ENGINE
 2.8 L (171 CID)-V-6
 DYNO 2 BAG CART 2
 H .123 C .375 O .502 X .000

 TRANSMISSION
 M5
 ACTUAL ROAD LOAD 4.50 HP (3.36 KW)

 ODOMETER
 15267 MILES (24564 KM)
 TEST WEIGHT 3500 LBS (1587 KG)

ODOMETER 15267 MILES (24564 KM) BAROMETER 29.29 IN HG (744.0 MM HG) RELATIVE HUMIDITY 61.4 PCT. DRY BULB TEMPERATURE 73.0°F (22.8°C) NOX HUMIDITY C.F. 1.006 BAG NUMBER BAG DESCRIPTION COLD TRANSIENT STABILIZED HOT TRANSIENT (0-505 SEC.) (505-1372 SEC.) (0- 505 SEC.) 867.1 RUN TIME SECONDS 504.7 505.1 DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) .971/.983 .974/.983 .972/.983 3.61 (5.80) 565.5 (16.02) .27 (.01) 4759. (134.8) 3.86 (6.22) 564.6 (15.99) .29 (.01) 8163. (231.2) 3.61 (5.81) 565.1 (16.00) .27 (.01) 4760. (134.8) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM) HC SAMPLE METER/RANGE/PPM (BAG) 14.5/ 3/ 144.68 10.6/ 3/ 105.76 9.9/ 3/ 98.78 HC BCKGRD METER/RANGE/PPM 1.0/ 3/ 9.98 .9/ 3/ 8.98 3/ 8.98 .9/ co SAMPLE METER/RANGE/PPM 75.6/ 14/ 361.36 52.5/ 13/ 122.40 64.3/ 13/ 152.30 .9/ 14/ 77.0/ 14/ 1.2/ 66.7/ 13.8/ CO BCKGRD METER/RANGE/PPM 3.64 13/ 2.76 1.2/ 13/ 2.76 CO2 SAMPLE METER/RANGE/PCT .6068 14/ .4548 72.4/ 14/ .5342 13.7/ 14/ 39.6/ 1/ CO2 BCKGRD METER/RANGE/PCT .0466 14/ .0470 14.0/ 14/ .0478 14.1/ NOX SAMPLE METER/RANGE/PPM (BAG) (D) 9.90 1/ 3.52 43.8/ 1/ 10.95

NOX BCKGRD METER/RANGE/PPM	.3/ 1/ .07	.4/ 1/ .10	.3/ 1/ .0
CH4 SAMPLE PPM (1.150)	5.87	5.02	5.05
CH4 BCKGRD PPM	5.09	4.82	4.80
DILUTION FACTOR	17.85	24.56	20.98
HC CONCENTRATION PPM	135.26	97.15	90.23
CO CONCENTRATION PPM	344.35	115.73	144.30
CO2 CONCENTRATION PCT	.5628	.4097	.4887
NOX CONCENTRATION PPM	9.83	3.43	10.88
CH4 CONCENTRATION PPM	1.07	. 40	.48
NMHC CONCENTRATION PPM	1.36	14.01	1.66
THC MASS GRAMS	32.270	36.853	21.643
CO MASS GRAMS	54.033	31.147	22.644
CO2 MASS GRAMS	1388.89	1733.98	1206.12
NOX MASS GRAMS	2.549	1.525	2.821
CH4 MASS GRAMS	.096	.061	.043
NMHC MASS GRAMS (FID)	.105	1.867	.129
FUEL MASS KG	1.105	1.335	.926
FUEL ECONOMY MPG (L/100KM)	9.79 (24.04)	8.68 (27.10)	11.70 (20.10)

3-BAG COMPOSITE RESULTS

G/MI 8.438 G/MI .017 G/MI 9.004 NMHC G/MI .266 .566 CARBONYL G/MI NOX G/MI .674 ALCOHOL G/MI 7.481

FUEL ECONOMY MPG (L/100KM) 9.60 (24.50)

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001 COMPUTER PROGRAM LDT 1.5-R

VEHICLE NUMBER 601 VEHICLE MODEL 88 CHEVY CORSICA ENGINE 2.8 L (171 CID) -V-6 TRANSMISSION M5 ODOMETER 15288 MILES (24598 KM)	TEST C-MTH-0.8	-C1	METHANOL EM-1791-F
VEHICLE MODEL 88 CHEVY CORSICA	DATE 9/ 8/94	RUN 1	FUEL DENSITY 6.610 LB/GAL
ENGINE 2.8 L (1/1 CID) -V-6	DYNO 2 BAG	CART 2	H .123 C .375 O .502 X .00
ODOMETED 15200 MILES (24500 VM)	MESON WETCHE 25	AD 4.30 MF (3.30 AW	· ·
ODOMETER 13286 MIDES (24396 RM)	IESI WEIGHI 3.	300 LB3 (1387 RG)	
BAROMETER 29.28 IN HG (743.7 MM HG) RELATIVE HUMIDITY 60.9 PCT. BAG NUMBER BAG DESCRIPTION RUN TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)	DRY BULB TEMPERATURE	72.0°F (22.2°C)	NOX HUMIDITY C.F991
REDATIVE NOMIDITI 60.9 PCI.	1	2	3
BAG DESCRIPTION	COLD TRANSTENT	STARTI.TZED	HOT TRANSTENT
210 2201121 2 2 11	(0-505 SEC.)	(505-1372 SEC.)	(0- 505 SEC.)
RUN TIME SECONDS	505.8	866.7	505.5
DRY/WET CORRECTION FACTOR, SAMP/BACK	.971/.983	.974/.983	.972/.983
MEASURED DISTANCE MILES (KM)	3.63 (5.84)	3.89 (6.27)	3.61 (5.81)
BLOWER FLOW RATE SCFM (SCMM)	564.3 (15.98)	566.3 (16.04)	563.5 (15.96)
GAS METER FLOW RATE SCFM (SCMM)	.28 (.01)	.28 (.01)	.28 (.01)
TOTAL FLOW SCF (SCM)	4759. (134.8)	8184. (231.8)	4749. (134.5)
HC SAMPLE METER/RANGE/PPM (BAG) HC BCKGRD METER/RANGE/PPM CO SAMPLE METER/RANGE/PPM CO BCKGRD METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PPM CO2 SAMPLE METER/RANGE/PCT CO3 BCKGRD METER/RANGE/PCT NOX SAMPLE METER/RANGE/PPM (BAG) (D) NOX BCKGRD METER/RANGE/PPM CH4 SAMPLE PPM (1.150) CH4 BCKGRD PPM DILUTION FACTOR HC CONCENTRATION PPM CO2 CONCENTRATION PCT NOX CONCENTRATION PPM CH4 CONCENTRATION PPM CH4 CONCENTRATION PPM NMHC CONCENTRATION PPM NMHC CONCENTRATION PPM	48.7/ 2/ 48.67	7.5/ 2/ 7.50	71.7/ 1/ 7.19
HC BCKGRD METER/RANGE/PPM	8.0/ 2/ 8.00	7.9/ 2/ 7.90	72.4/ 1/ 7.26
CO SAMPLE METER/RANGE/PPM	77.8/ 13/ 187.74	1.8/ 12/ 1.79	12.4/ 12/ 12.19
CO BCKGRD METER/RANGE/PPM	.9/ 13/ 2.07	1.8/ 12/ 1.79	2.0/ 12/ 1.99
CO2 SAMPLE METER/RANGE/PCT	79.1/ 14/ .6428	70.3/ 14/ .5037	75.5/ 14/ .5822
CO2 BCKGRD METER/RANGE/PCT	13.8/ 14/ .0470	14.3/ 14/ .0490	14.4/ 14/ .0494
NOX SAMPLE METER/RANGE/PPM (BAG) (D)	26.3/ 1/ 6.57	10.9/ 1/ 2.72	28.8/ 1/ 7.20
NOX BCKGRD METER/RANGE/PPM	.4/ 1/ .10	.3/ 1/ .07	.3/ 1/ .07
CHA ROYCODD DDM	3.12 4.37	4.04	4.13 4.13
CH4 BCKGKD FFM	4.57	4.24	4.13
DILUTION FACTOR	17.64	23.32	20.15
HC CONCENTRATION PPM	41.13	06	.29
CO CONCENTRATION PPM	178.57	.05	9.89
CO2 CONCENTRATION PCT	.5985	.4568	.5353
NOX CONCENTRATION PPM	5.48	2.65	7.13
NMUC CONCENTRATION PPM	_0.00	01	04
NIME CONCENTRATION FFM	-8.03	09	• 0 4
THC MASS GRAMS	11.247	.026	. 025
CO MASS GRAMS	28.020	.013	1.549
CO2 MASS GRAMS	1476.94	1938.36	1318.15
NOX MASS GRAMS	1.656	1.166	1.817
CH4 MASS GRAMS	.090	.000	.020
NMHC MASS GRAMS (FID)	.000	.000	.003
FUEL MASS KG	1.119	1.411	.961
THC MASS GRAMS CO MASS GRAMS CO2 MASS GRAMS NOX MASS GRAMS CH4 MASS GRAMS NNHC MASS GRAMS FUEL MASS KG FUEL ECONOMY MPG (L/100KM)	9./3 (24.18)	5.2/ (28.43)	11.27 (20.88)
3-BAG COMPOSITE RESULTS			
THC G/MI .6 CO G/MI 1.7 NOX G/MI .3	548	CH4 G/MI	.007
CO G/MI 1.3	721	NMHC G/MI	.000
NOX G/MI .3	388	CARBONYL G/MI	.022
FUEL ECONOMY MPG (L/10	207741 0 24 /25 45	ALCOHOL G/MI	.619
FUEL ECONOMY MPG (L/10	JUAM) 9.24 (25.46)		

COMPUTER PROGRAM LDT 1.5-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001

VEHICLE NUMBER 601 TEST C-MTH-0.8-C2 METHANOL EM-1791-F DATE 9/ 9/94 RUN 1
DYNO 2 BAG CART 2
ACTUAL ROAD LOAD 4.50 HP (3.36 KW)
TEST WEIGHT 3500 LBS (1587 KG) FUEL DENSITY 6.610 LB/GAL H .123 C .375 O .502 X .000 VEHICLE MODEL 88 CHEVY CORSICA ENGINE 2.8 L (171 CID)-V-6 TRANSMISSION М5 15299 MILES (24616 KM) ODOMETER BAROMETER 29.27 IN HG (743.5 MM HG) DRY BULB TEMPERATURE 71.0°F (21.7°C) NOX HUMIDITY C.F. .999 RELATIVE HUMIDITY 64.4 PCT. BAG NUMBER COLD TRANSIENT STABILIZED HOT TRANSIENT BAG DESCRIPTION 0-505 SEC.) (505-1372 SEC.) (0- 505 SEC.) RUN TIME SECONDS 506.0 867.5 DRY/WET CORRECTION FACTOR, SAMP/BACK .970/.983 .973/.983 .972/.983 3.59 (5.78) 557.8 (15.80) .27 (.01) 4699. (133.1) 3.85 (6.20) 559.1 (15.83) MEASURED DISTANCE MILES (KM) 3.60 (5.79) 560.8 (15.88) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) .28 (.01) 8088. (229.1) .28 (.01) 4732. (134.0) TOTAL FLOW SCF (SCM) HC SAMPLE METER/RANGE/PPM (BAG) 50.5/ 2/ 50.47 56.3/ 1/ 5.65 55.6/ 1/ 5.58 HC BCKGRD METER/RANGE/PPM 5.48 7.31 6.8/ 2/ 6.80 58.5/ 1/ 5.87 54.6/ 1/ SAMPLE METER/RANGE/PPM 91.8/ 13/ 225.26 1.0/ .99 CO 12/ 7.4/ 12/ CO BCKGRD METER/RANGE/PPM .9/ 13/ 2.07 1.0/ 12/ .9/ 12/ .90 CO2 SAMPLE METER/RANGE/PCT 79.1/ 14/ .6428 69.9/ 14/ .4981 74.9/ 14/ CO2 BCKGRD METER/RANGE/PCT 13.0/ 14/ .0438 13.3/ 14/ .0450 13.0/ 14/ .0438 NOX SAMPLE METER/RANGE/PPM (BAG) (D) 1/ 1/ 1/ 26.0/ 1/ 6.50 10.6/ 2.65 26.4/ 6.60 NOX BCKGRD METER/RANGE/PPM .2/ 1/ . 05 .02 .1/ .1/ .02 3.50 CH4 SAMPLE PPM (1.150) 2.86 2.75 CH4 BCKGRD PPM 2.94 2.62 DILUTION FACTOR 17.54 23.59 20.50 CONCENTRATION PPM 44.06 .37 6.20 HC .03 214.38 CO CONCENTRATION PPM .03 C02 CONCENTRATION PCT .6015 .4550 .5310 NOX CONCENTRATION PPM 6.45 2.63 6.57 CH4 CONCENTRATION PPM . 94 .05 NMHC CONCENTRATION PPM -5.61 -.11 .07 THC MASS GRAMS 11.293 .044 .030 co MASS GRAMS 33.216 .007 .967 CO2 MASS GRAMS 1465.70 1908.10 1302.79 NOX MASS GRAMS 1.641 1.149 1.684 .007 CH4 MASS GRAMS .083 .023 NMHC MASS GRAMS (FID) .000 .000 .005 FUEL MASS KG 1.116 1.389 .950 FUEL ECONOMY MPG (L/100KM) 9.64 (24.39) 8.31 (28.30) 11.37 (20.69) 3-BAG COMPOSITE RESULTS G/MI .661 G/MI .008 THC CH4 CO G/MI 1.994 NMHC G/MI .000

NOX CARBONYL G/MI ALCOHOL G/MI .626 FILEL ECONOMY MPG (L/100KM) 9.28 (25.36)

METHANOL EM-1791-F

PROJECT NO. 08-6068-001 COMPUTER PROGRAM LDT 1.5-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS TEST C-MTH-1.0-E1

DATE 8/30/94 RUN
DYNO 2 BAG CART 2
ACTUAL ROAD LOAD 4.50 HP (3.36 KW)
TEST WEIGHT 3500 LBS (1587 KG) FUEL DENSITY 6.610 LB/GAL H .123 C .375 O .502 X .000 VEHICLE MODEL 88 CHEVY CORSICA ENGINE 2.8 L (171 CID)-V-6 TRANSMISSION M5 ODOMETER 15170 MILES (24408 KM) DRY BULB TEMPERATURE 76.0°F (24.4°C) BAROMETER 29.20 IN HG (741.7 MM HG) NOX HUMIDITY C.F. .984 RELATIVE HUMIDITY 52.0 PCT. BAG NUMBER COLD TRANSIENT STABILIZED HOT TRANSIENT BAG DESCRIPTION (0- 505 SEC.) (0-505 SEC.) (505-1372 SEC.) 505.2 RUN TIME SECONDS 505.3 867.3 DRY/WET CORRECTION FACTOR, SAMP/BACK .972/.984 .975/.984 .973/.984 MEASURED DISTANCE MILES (KM) 3.62 (5.83) 3.83 (6.16) 3.62 (5.82) 555.2 (15.72) .26 (.01) 4678. (132.5) BLOWER FLOW RATE SCFM (SCMM)
GAS METER FLOW RATE SCFM (SCMM) 557.3 (15.78) 558.1 (15.81) .28 (.01) 8059. (228.2) .27 (.01) 4701. (133.1) TOTAL FLOW SCF (SCM) 2/ 57.57 2/ 7.90 13/ 230.35 HC SAMPLE METER/RANGE/PPM (BAG) 12.0/ 3/ 119.73 57.6/ 77.9/ 2/ 77.85 7.6/ 2/ 7.60 59.6/ 14/ 272.20 .9/ .9/ 3/ 8.98 96.0/ 14/ 480.25 HC: BCKGRD METER/RANGE/PPM 7.9/ SAMPLE METER/RANGE/PPM 93.7/ CO 13/ BCKGRD METER/RANGE/PPM 2.43 .6135 .6/ 1.61 -4/ 14/ CO 14/ .7/ 1.62 77.4/ CO2 SAMPLE METER/RANGE/PCT 14/ 66.0/ 14/ .4457 72.4/ 14/ .5342 CO2 BCKGRD METER/RANGE/PCT .0527 14/ .0494 .0515 14/ 14.4/ 14.9/ 14/ 1/ 10.70 1/ 1/ NOX SAMPLE METER/RANGE/PPM (BAG) (D) 42.8/ 15.6/ 3.90 46.5/ .07 NOX BCKGRD METER/RANGE/PPM .3/ 1/ .07 .2/ . 05 .3/ CH4 SAMPLE PPM (1.150) 4.47 4.57 5.49 CH4 BCKGRD PPM 3.71 3.82 3.90 DILUTION FACTOR 17.43 24.78 20.64 CONCENTRATION PPM 111.27 HC 49.99 70.63 CONCENTRATION PPM CO 461.24 221.93 261.82 CO2 CONCENTRATION PCT .5638 .3983 .4853 CONCENTRATION PPM NOX 10.63 3.85 11.55 CONCENTRATION PPM 1.99 NMHC CONCENTRATION PPM -27.60 5.48 3.00 THC 32,507 MASS GRAMS 19.092 16.274 MASS GRAMS 58.972 CO 71.142 40.584 C02 MASS GRAMS 1367.68 1664.37 1182.94 NOX MASS GRAMS 2.649 1.654 2.894 .123 CH4 MASS GRAMS .176 .076 MASS GRAMS (FID) MMHC .000 .721 230 FUEL MASS KG 1.110 1.298 .924 9.78 (24.04) FUEL ECONOMY MPG (L/100KM) 8.85 (26.59) 11.74 (20.04) 3-BAG COMPOSITE RESULTS THC G/MI 5.684 CH4 G/MI .032 G/MI NMHC G/MI .114 CO 15.127 CARBONYL G/MI NOX G/MI .596 .442 ALCOHOL G/MI 5.095

9.72 (24.21)

FUEL ECONOMY MPG (L/100KM)

VEHICLE NUMBER 601

COMPUTER PROGRAM LDT 1.5-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001

VEHICLE NUMBER 601 TEST C-MTH-1.0-E2 METHANOL EM-1791-F DATE 8/31/94 RUN
DYNO 2 BAG CART 2
ACTUAL ROAD LOAD 4.50 HP (3.36 KW)
TEST WEIGHT 3500 LBS (1587 KG) FUEL DENSITY 6.610 LB/GAL H .123 C .375 O .502 X .000 VEHICLE MODEL 88 CHEVY CORSICA ENGINE 2.8 L (171 CID)-V-6 TRANSMISSION M5 15184 MILES (24431 KM) ODOMETER BAROMETER 29.22 IN HG (742.2 MM HG) DRY BULB TEMPERATURE 72.0°F (22.2°C) NOX HUMIDITY C.F. .992 RELATIVE HUMIDITY 60.9 PCT. BAG NUMBER COLD TRANSIENT STABILIZED HOT TRANSIENT BAG DESCRIPTION (0- 505 SEC.) (505-1372 SEC.) (0-505 SEC.) 505.1 RUN TIME SECONDS 505.1 867.5 DRY/WET CORRECTION FACTOR, SAMP/BACK .972/.983 .975/.983 .973/.983 3.58 (5.76) 559.5 (15.84) MEASURED DISTANCE MILES (KM) 3.62 (5.82) 3.88 (6.24) 557.0 (15.77) .27 (.01) 4691. (132.9) BLOWER FLOW RATE SCFM (SCMM) 558.8 (15.83) .27 (.01) 4712. (133.4) GAS METER FLOW RATE SCFM (SCMM) .28 (.01) 8083. (228.9) TOTAL FLOW SCF (SCM) SAMPLE METER/RANGE/PPM (BAG) 12.7/ 3/ 126.72 55.4/ 2/ 55.37 72.4/ 72.36 90.5/ 3/ 8.98 90.5/ 14/ 448.23 8.1/ 2/ 8.10 46.2/ 14/ 203.02 7.4/ 7.40 HC BCKGRD METER/RANGE/PPM 2/ 52.9/ 14/ 236.93 CO SAMPLE METER/RANGE/PPM BCKGRD METER/RANGE/PPM .4/ 1.62 .3/ 14/ 14/ 1.21 1.21 CO .3/ 14/ CO2 SAMPLE METER/RANGE/PCT 76.4/ 14/ 65.3/ 71.8/ .5969 14/ .4368 14/ .5254 .0430 .0470 CO2 BCKGRD METER/RANGE/PCT 12.8/ 13.1/ 14/ .0442 13.8/ 14/ 14/ NOX SAMPLE METER/RANGE/PPM (BAG) (D) 39.5/ 1/ 9.87 16.0/ 1/ 4.00 37.7/ 1/ 9.42 .2/ .05 NOX BCKGRD METER/RANGE/PPM 1/ .2/ 1/ . 05 .3/ 1/ .07 4.79 CH4 SAMPLE PPM (1.150) 4.01 4.06 CH4 BCKGRD PPM 3.46 3.45 3.38 DILUTION FACTOR 17.94 25.42 21.13 HC CONCENTRATION PPM 118.24 47.59 65.31 CONCENTRATION PPM CO 430.01 195.26 227.45 CONCENTRATION PCT CO2 .5562 .3943 .4806 NOX CONCENTRATION PPM 9.82 9.35 3.95 CONCENTRATION PPM 1.53 .68 .84 NMHC CONCENTRATION PPM -8.78 THC MASS GRAMS 29.921 18.329 15.443 MASS GRAMS 66.511 52.038 35.336 CO C02 MASS GRAMS 1353.06 1652.73 1174.18 NOX MASS GRAMS 2.477 1.716 CH4 MASS GRAMS .136 .104 .075 MASS GRAMS (FID) NMHC .000 . 562 .033 MASS KG 1.091 1.281 FUEL. 911 FUEL ECONOMY MPG (L/100KM) 9.94 (23.67) 9.07 (25.93) 11.79 (19.95) 3-BAG COMPOSITE RESULTS G/MI 5.351 G/MI .027 THC CH4 .078 CO G/MI 13.482 NMHC G/MI CARBONYL G/MI .397

ALCOHOL G/MI 4.848

FUEL ECONOMY MPG (L/100KM) 9.89 (23.79)

METHANOL EM-1791-F

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT N PROJECT NO. 08-6068-001 COMPUTER PROGRAM LDT 1.5-R TEST C-MTH-1.0-C1

DATE 8/26/94 RUN
DYNO 2 BAG CART 2
ACTUAL ROAD LOAD 4.50 HP (3.36 KW)
TEST WEIGHT 3500 LBS (1587 KG) FUEL DENSITY 6.610 LB/GAL H .123 C .375 O .502 X .000 ENGINE 2.8 L (171 CID)-V-6 TRANSMISSION M5 ODOMETER 15134 MILES (24350 KM) BAROMETER 29.30 IN HG (744.2 MM HG) DRY BULB TEMPERATURE 73.0°F (22.8°C) NOX HUMIDITY C.F. .983 RELATIVE HUMIDITY 57.5 PCT. BAG NUMBER BAG DESCRIPTION COLD TRANSIENT STABILIZED HOT TRANSIENT (0- 505 SEC.) 0-505 SEC.) (505-1372 SEC.) RUN TIME SECONDS 504.9 867.0 505.7 DRY/WET CORRECTION FACTOR, SAMP/BACK .971/.984 .975/.984 .973/.984 MEASURED DISTANCE MILES (KM) 3.61 (5.81) 3.85 (6.20) 3.60 (5.80) 559.2 (15.84) .27 (.01) 4708. (133.3) 560.1 (15.86) .28 (.01) 8098. (229.3) 559.6 (15.85) .27 (.01) 4719. (133.6) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM) SAMPLE METER/RANGE/PPM (BAG) 58.2/ 2/ 58.17 7.6/ 7.60 7.4/ 2/ 7.40 7.9/ 2/ 7.90 60.3/ 14/ 275.96 HC BCKGRD METER/RANGE/PPM 7.6/ 2/ 7.60 7.2/ 2/ 7.20 14.5/ 12/ 2.0/ 12/ 2.04 CO SAMPLE METER/RANGE/PPM 14.50 BCKGRD METER/RANGE/PPM .4/ 1.62 .9/ 12/ 12/ .92 CO 14/ 1.1/ 1.12 .5632 CO2 SAMPLE METER/RANGE/PCT 78.6/ 14/ .6341 68.0/ 14/ .4720 74.3/ 14/ CO2 BCKGRD METER/RANGE/PCT 13.4/ 14/ .0466 13.8/ 14/ .0454 14/ NOX SAMPLE METER/RANGE/PPM (BAG) (D) 30.0/ 1/ 7.50 9.6/ 1/ 2.40 27.7/ 1/ 6.92 .10 NOX BCKGRD METER/RANGE/PPM .3/ 1/ .07 .3/ 1/ .07 .4/ 1/ CH4 SAMPLE PPM (1.150) 5.20 3.97 3.97 CH4 BCKGRD PPM 4.01 3.96 3.66 DILUTION FACTOR 17.62 24.88 20.81 CONCENTRATION PPM .55 13.13 HC 50.72 .31 CO CONCENTRATION PPM 264.16 . 91 CONCENTRATION PCT .4273 C02 .5913 .5185 CONCENTRATION PPM NOX 7.43 2.33 6.83 CONCENTRATION PPM NMHC CONCENTRATION PPM -7.56 .01 -.03 THC 13.152 .078 MASS GRAMS .051 CO MASS GRAMS 41.005 .244 2.043 1793.94 C02 MASS GRAMS 1443.38 1268.59 NOX MASS GRAMS 1.862 1.004 .126 .026 .043 CH4 MASS GRAMS NMHC MASS GRAMS (FID) . 000 .001 .000 FUEL MASS KG 1.111 1.306 .926 FUEL ECONOMY MPG (L/100KM) 9.74 (24.14) 8.84 (26.61) 11.67 (20.15) 3-BAG COMPOSITE RESULTS CH4 .014 THC G/MI .772 G/MI CO G/MI 2.552 G/MI .000 CARBONYL G/MI NOX G/MI .027 ALCOHOL G/MI .731

9.69 (24.28)

FUEL ECONOMY MPG (L/100KM)

VEHICLE NUMBER 601

VEHICLE MODEL 88 CHEVY CORSICA

COMPUTER PROGRAM LDT 1.5-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001

VEHICLE NUMBER 601 METHANOL EM-1791-F TEST C-MTH-1.0-C2 DATE 8/29/94 RUN
DYNO 2 BAG CART 2
ACTUAL ROAD LOAD 4.50 HP (3.36 KW)
TEST WEIGHT 3500 LBS (1587 KG) VEHICLE MODEL 88 CHEVY CORSICA FUEL DENSITY 6.610 LB/GAL H .123 C .375 O .502 X .000 2.8 L (171 CID)-V-6 ENGINE TRANSMISSION M5 ODOMETER 15152 MILES (24379 KM) BAROMETER 29.23 IN HG (742.4 MM HG) DRY BULB TEMPERATURE 71.0°F (21.7°C) NOX HUMIDITY C.F. .978 RELATIVE HUMIDITY 60.4 PCT. BAG NUMBER HOT TRANSIENT COLD TRANSIENT STABILIZED BAG DESCRIPTION (0- 505 SEC.) (0-505 SEC.) (505-1372 SEC.) 867.5 RUN TIME SECONDS 505.1 505.1 DRY/WET CORRECTION FACTOR, SAMP/BACK .972/.984 .975/.984 .973/.984 3.82 (6.15) 558.9 (15.83) .28 (.01) 8084. (229.0) 3.58 (5.76) 557.2 (15.78) 3.60 (5.80) 559.5 (15.85) MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) .27 (.01) 4693. (132.9) .27 (.01) 4712. (133.5) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM) HC SAMPLE METER/RANGE/PPM (BAG) 47.5/ 47.47 8 8/ 2/ 8.79 7 2/ 7.20 8.79 HC 9.2/ 2/ 9.19 50.7/ 14/ 225.64 7.0/ 2/ BCKGRD METER/RANGE/PPM 8.8/ 2/ 7 00 SAMPLE METER/RANGE/PPM 1.63 15.7/ CO 1.6/ 12/ 12/ 15.68 CO BCKGRD METER/RANGE/PPM 14/ .81 12/ .82 1.0/ 12/ 1.02 .2/ .8/ CO2 SAMPLE METER/RANGE/PCT 78.3/ 14/ 67.8/ 14/ .4693 74.7/ 14/ .5695 CO2 BCKGRD METER/RANGE/PCT 13.0/ 14/ .0438 13.6/ 14/ .0462 13.7/ 14/ .0466 NOX SAMPLE METER/RANGE/PPM (BAG) (D) 1/ 1/ 29.1/ 1/ 7.27 8.8/ 2.20 25.3/ 6.32 NOX BCKGRD METER/RANGE/PPM .07 .05 .07 1/ .3/ .3/ .2/ CH4 SAMPLE PPM (1.150) 5.88 4.55 4.89 CH4 BCKGRD PPM 4.97 4.83 4.20 DILUTION FACTOR
HC CONCENTRATION PPM 17.93 25.02 20.58 38.79 216.30 .54 14.16 .35 CO CONCENTRATION PPM .81 CO2 CONCENTRATION PCT .5875 .4249 .5252 CONCENTRATION PPM 7.20 2.15 6.25 CH4 CONCENTRATION PPM 1.19 .26 .56 . 62 .05 NMHC CONCENTRATION PPM -.15 .055 THC MASS GRAMS 8.701 .065 33.467 2.200 CO MASS GRAMS .215 CO2 MASS GRAMS 1429.63 1781.26 1.790 NOX MASS GRAMS .921 1.561 .105 CH4 MASS GRAMS .039 .050 NMHC MASS GRAMS (FID) .047 .006 .000 FUEL MASS KG 1.088 1.297 .937 FUEL ECONOMY MPG (L/100KM) 9.86 (23.85) 8.83 (26.63) 11.53 (20.41) 3-BAG COMPOSITE RESULTS G/MI .015 THC G/MI .518 CO G/MI 2.143 G/MI .004 NOX CARBONYL G/MI .025

ALCOHOL G/MI

.475

FUEL ECONOMY MPG (L/100KM) 9.68 (24.30)

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001 COMPUTER PROGRAM LDT 1.2-R

TEST C-MTH-1.2-E1
DATE 9/16/94 RUN
DYNO 2 BAG CART 2
ACTUAL ROAD LOAD 4.50 HP (3.36 KW)
TEST WEIGHT 3500 LBS (1587 KG) METHANOL EM-1791-F FUEL DENSITY 6.610 LB/GAL H .123 C .375 O .502 X .000 VEHICLE NUMBER 601 VEHICLE MODBEL 88 CHEVY CORSICA ENGINE 2.8 L (171 CID) -V-6 TRANSMISSION M5
ODOMETER 15377 MILES (2474 M5 15377 MILES (24741 KM)

ODOMETER	15377 M	ILES (24741 KM) TEST WEIGHT 3	500 LBS (1587 KG)		
BAROMETER 29.2 RELATIVE HUMID	20 IN HG (ITY 60.9 P	741.7 MM HG)	DRY BULB TEMPERATURE 1 COLD TRANSIENT (0-505 SEC.) 506.4 .971/.983 3.61 (5.81) 557.6 (15.79) .28 (.01) 4708. (133.3)	72.0°F (22.2°C)	NOX HUMIDITY C.F.	.993
BAG NUMBER			1	2	3	
BAG DESCRIPT	ION		COLD TRANSIENT	STABILIZED	HOT TRANSIENT	
			(0-505 SEC.)	(505-1372 SEC.)	(0- 505 SEC.)	
RIN TIME SECO	פתאכ		506.4	867 3	505.8	
DRY/WET CORRE	ECTION FAC	TOR SAMP/RACK	971 / 983	974/ 983	972 / 983	
MEASURED DISS	PANCE MILE	S (KM)	3 61 / 5 81 \	3 84 / 6 17)	3 62 (5 82)	
BLOWER FLOW	PATE SCEM	(SCMM)	557 6 (15 79)	557 1 (15 78)	556 9 (15 77)	
CAC MEMBED ET	OM DAME CO	PM (CCMM)	28 (01)	39 / 01)	27 (01)	
TOTAL PLOW SO	ON KAIL SC	PH (SCHI)	1708 (133 3)	9056 / 229 21	1607 (133 0)	
TOTAL FLOW SO	CF (SCR)		4706. (133.37	8036. (228.2)	4097. (133.0)	
HC SAMPLE M	ETER/RANGE	/PPM (BAG)	12.3/ 3/ 122.73	39.7/ 2/ 39.68	4.5/ 3/ 44.90	
HC BCKGRD ME	ETER/RANGE	/PPM	1.3/ 3/ 12.97	6.0/ 2/ 6.00	.8/ 3/ 7.98	
CO SAMPLE M	ETER/RANGE	/PPM	87.8/ 14/ 432.42	66.6/ 14/ 310.43	73.6/ 14/ 349.89	
CO BCKGRD ME	ETER/RANGE	/PPM	.7/ 14/ 2.83	.7/ 14/ 2.83	.6/ 14/ 2.43	
CO2 SAMPLE M	ETER/RANGE	/PCT	78.5/ 14/ .6323	66.6/ 14/ .4535	74.0/ 14/ .5586	
CO2 BCKGRD ME	ETER/RANGE	/PCT	14.4/ 14/ .0494	12.0/ 14/ .0399	14.1/ 14/ .0482	
NOX SAMPLE ME	ETER/RANGE	/PPM (BAG) (D)	94.0/ 1/ 23.49	46.8/ 1/ 11.70	25.4/ 2/ 25.41	
NOX BCKGRD MI	ETER/RANGE	/PPM	.7/ 1/ .17	.0/ 1/ .00	.2/ 2/ .20	
CH4 SAMPLE PI	PM (1.150)		5.24	3.02	4.43	
CH4 BCKGRD PI	PM		4.07	2.29	3.48	
DILLIMITON DAC	TOR		17.04	24 10	10.60	
DILOTION FAC.	DAMETON DOM	•	110 50	24.10	17.00	
CO CONCENTI	RATION PPM		412 22	33.93	3/.32	
CO CONCENT	RATION PPM		413.22	297.50	334.98	
CO2 CONCENT	RATION PCT		.5858	.4152	.5128	
NOX CONCENT	RATION PPM		23.33	11.70	25.22	
CH4 CONCENTS	RATION PPM		1.42	.83	1.13	
NMHC CONCENTE	RATION PPM	l.	-61.91	-1.00	-9.58	
THC MASS	GRAMS		40.084	14.110	11.160	
CO MASS (GRAMS		64.141	79.020	51.870	
CO2 MASS	GRAMS		1430.08	1734.38	1248.79	
NOX MASS	GRAMS		5.904	5.066	6.368	
CH4 MASS	GRAMS		.126	.126	.100	
NIMHC MASS	GRAMS (FID))	-000	.000	.000	
FUEL MASS	KG		1.155	1.367	.980	
FUEL ECONOMY	MPG (L/10	OKM)	9.37 (25.09)	8.41 (27.97)	11.08 (21.23)	
3-BAG COMPOSIT	E RESULTS	•	4708. (133.3) 12.3/ 3/122.73 1.3/ 3/12.97 87.8/ 14/432.42 .7/ 14/ 2.83 78.5/ 14/.6323 14.4/ 14/.0494 94.0/ 1/23.49 .7/ 1/.17 5.24 4.07 17.04 110.52 413.22 .5858 23.33 1.42 -61.91 40.084 64.141 1430.08 5.904 .126 .000 1.155 9.37 (25.09)			
	muc	C/VT 5	0.61	OT 1 0 127	022	
	THC	G/MI 18	.061 .273	NMHC G/MI	.000	

THC	G/MI	5.061	CH4	G/MI	.032
CO	G/MI	18.273	NMHC	G/MI	.000
NOX	G/MI	1.507	CARBONYL	G/MI	.358
			ALCOHOL	G/MI	4.671

FUEL ECONOMY MPG (L/100KM) 9.24 (25.47)

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH

COMPUTER PROGRAM LDT 1.5-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001

VEHICLE NUMBER 601 TEST C-MTH-1.2-E2 METHANOL EM-1791-F DATE 9/19/94 RUN
DYNO 2 BAG CART 2
ACTUAL ROAD LOAD 4.50 HP (3.36 KW)
TEST WEIGHT 3500 LBS (1587 KG) FUEL DENSITY 6.610 LB/GAL H .123 C .375 O .502 X .000 VEHICLE MODEL 88 CHEVY CORSICA ENGINE 2.8 L (171 CID)-V-6 TRANSMISSION M5 15395 MILES (24770 KM) ODOMETER BAROMETER 29.32 IN HG (744.7 MM HG) DRY BULB TEMPERATURE 75.0°F (23.9°C) NOX HUMIDITY C.F. .928 RELATIVE HUMIDITY 44.3 PCT. BAG NUMBER COLD TRANSIENT HOT TRANSIENT BAG DESCRIPTION STABILIZED (505-1372 SEC.) (0- 505 SEC.) 0-505 SEC.) 505.3 505.8 RUN TIME SECONDS 867.2 DRY/WET CORRECTION FACTOR, SAMP/BACK .975/.987 .978/.987 .976/.987 MEASURED DISTANCE MILES (KM) 3.61 (5.80) 3.86 (6.21) 3.61 (5.81) 560.4 (15.87) .28 (.01) 8103. (229.5) BLOWER FLOW RATE SCFM (SCMM) 558.4 (15.81) 560.2 (15.87) GAS METER FLOW RATE SCFM (SCMM)
TOTAL FLOW SCF (SCM) .28 (.01) 4705. (133.3) .28 (.01) 4725. (133.8) SAMPLE METER/RANGE/PPM (BAG) 12.9/ 3/ 128.71 40.4/ 2/ 40.38 41.3/ .8/ 3/ 7.98 90.6/ 14/ 448.81 7.5/ 2/ 7.50 69.6/ 14/ 327.20 HC BCKGRD METER/RANGE/PPM 8.2/ 2/ 8.20 58.0/ 14/ 263.65 CO SAMPLE METER/RANGE/PPM BCKGRD METER/RANGE/PPM 2.02 .5/ 67.6/ .5/ CO 14/ 2.02 2.02 .5/ 14/ 14/ CO2 SAMPLE METER/RANGE/PCT 77.8/ 74.6/ 14/ . 6203 14/ .4666 14/ .5679 13.8/ .0470 CO2 BCKGRD METER/RANGE/PCT .0458 14.1/ .0482 13.5/ 14/ 1/ 21.92 NOX SAMPLE METER/RANGE/PPM (BAG) (D) 26.3/ 2/ 26.31 41.9/ 1/ 10.47 87.7/ NOX BCKGRD METER/RANGE/PPM .1/ 2.7 .10 .4/ 1/ .10 .5/ 1/ CH4 SAMPLE PPM (1.150) 4.08 3.59 3.98 CH4 BCKGRD PPM 2.80 2.94 3.15 DILUTION FACTOR 17.30 23.67 19.46 CONCENTRATION PPM 121.19 432.29 32.53 254.34 HC 34.17 CO CONCENTRATION PPM 315.14 CO2 CONCENTRATION PCT .5772 .4216 .5222 CONCENTRATION PPM 26.22 10.38 21.80 CH4 CONCENTRATION PPM 1.44 1.00 NMHC CONCENTRATION PPM -19.45 ~2.25 -5.12 THC MASS GRAMS 32.643 14.358 9.476 67.951 CO MASS GRAMS 67.062 49.091 CO2 MASS GRAMS 1408.09 1771.48 1279.29 NOX MASS GRAMS 6.203 4.228 5.179 CH4 MASS GRAMS .128 .120 .089 MASS GRAMS (FID) NMHC .000 .000 .000 FUEL MASS KG 1.134 1.382 .997 FUEL ECONOMY MPG (L/100KM) 8.38 (28.08) 9.53 (24.69) 10.86 (21.67) 3-BAG COMPOSITE RESULTS

THC G/MI 4.526 CH4 G/MI .030 CO G/MI 16.708 NMHC G/MI .000 CARBONYL G/MI .336 ALCOHOL G/MI 4.160 FUEL ECONOMY MPG (L/100KM) 9.19 (25.59)

METHANOL EM-1791-F

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT N PROJECT NO. 08-6068-001 COMPUTER PROGRAM LDT 1.5-R TEST C-MTH-1.2-C2

DATE 9/14/94 RUN
DYNO 2 BAG CART 2
ACTUAL ROAD LOAD 4.50 HP (3.36 KW)
TEST WEIGHT 3500 LBS (1587 KG) VEHICLE MODEL 88 CHEVY CORSICA ENGINE 2.8 L (171 CID) -V-6 FUEL DENSITY 6.610 LB/GAL H .123 C .375 O .502 X .000 TRANSMISSION M5 15348 MILES (24694 KM) ODOMETER BAROMETER 29.28 IN HG (743.7 MM HG) DRY BULB TEMPERATURE 72.0°F (22.2°C) NOX HUMIDITY C.F. 1.014 RELATIVE HUMIDITY 64.9 PCT. BAG NUMBER HOT TRANSIENT COLD TRANSIENT BAG DESCRIPTION STABILIZED (0- 505 SEC.) (505-1372 SEC.) 0-505 SEC.) RUN TIME SECONDS 505.3 505.4 867.3 DRY/WET CORRECTION FACTOR, SAMP/BACK .969/.982 .973/.982 .971/.982 3.59 (5.77) 557.5 (15.79) .27 (.01) 4698. (133.1) MEASURED DISTANCE MILES (KM) 3.57 (5.74) 3.82 (6.15) 560.2 (15.87) .28 (.01) 8102. (229.5) BLOWER FLOW RATE SCFM (SCMM)
GAS METER FLOW RATE SCFM (SCMM) 558.1 (15.81) .28 (.01) 4702. (133.2) TOTAL FLOW SCF (SCM) 9.8/ 2/ 9.79 7.1/ 2/ 7.10 59.9/ 13/ 141.02 69.9/ 2/ 69.86 8.0/ 2/ 8.00 SAMPLE METER/RANGE/PPM (BAG) 7.7/ 7.70 HC BCKGRD METER/RANGE/PPM 8.00 7.6/ 2/ 7.60 29.6/ 14/ 124.70 .7/ 13/ 1.61 14/ .5887 SAMPLE METER/RANGE/PPM 1.6/ 12/ CO 1.59 .4/ 1.62 BCKGRD METER/RANGE/PPM 14/ 12/ CO 1.2/ 1.19 SAMPLE METER/RANGE/PCT 81.7/ 68.9/ 14/ .4842 75.9/ 13.7/ CO2 BCKGRD METER/RANGE/PCT 14/ .0466 14/ .0470 14.5/ .0498 13.8/ 2/ 2/ 1/1/ 1/1/ NOX SAMPLE METER/RANGE/PPM (BAG) (D) 7.4/ 7.40 10.1/ 2.52 73.7/ 18.42 NOX BCKGRD METER/RANGE/PPM .0/ .00 .3/ .07 .3/ .07 CH4 SAMPLE PPM (1.150) 3.82 3.14 4.55 CH4 BCKGRD PPM 3.21 3.30 3.18 DILUTION FACTOR 16.55 24.26 19.51 CONCENTRATION PPM HC 62.35 .41 3.06 CO 118.06 CONCENTRATION PPM 134.11 41 CONCENTRATION PCT CO2 .6465 .4391 .5414 CONCENTRATION PPM 7.40 18.35 NOX 2.45 .09 CONCENTRATION PPM .81 NMHC CONCENTRATION PPM -6.72.29 -1.69 THC MASS GRAMS 15.665 .064 .820 20.774 CO MASS GRAMS 18.303 .111 1844.76 C02 MASS GRAMS 1576.26 1318.92 NOX MASS GRAMS 1.913 1.092 4.736 .072 .013 CH4 MASS GRAMS .126 MASS GRAMS (FID) NMHC .000 . 039 - 000 FUEL MASS KG 1.184 1.343 .985 FUEL ECONOMY MPG (L/100KM) 9.04 (26.03) 8.53 (27.58) 10.92 (21.53) 3-BAG COMPOSITE RESULTS G/MI .983 .016 THC CH4 G/MI G/MI 2.678 NMHC G/MI .005 CO CARBONYL G/MI ALCOHOL G/MI . 934 FUEL ECONOMY MPG (L/100KM) 9.21 (25.54)

VEHICLE NUMBER 601

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH

COMPUTER PROGRAM LDT 1.5-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6068-001

VEHICLE NUMBER 601 TEST C-MTH-1.2-C3 METHANOL EM-1791-F FUEL DENSITY 6.610 LB/GAL H .123 C .375 O .502 X .000 VEHICLE MODEL 88 CHEVY CORSICA DATE 9/15/94 RUN
DYNO 2 BAG CART 2 2.8 L (171 CID) -V-6 ENGINE ACTUAL ROAD LOAD 4.50 HP (3.36 KW) TEST WEIGHT 3500 LBS (1587 KG) TRANSMISSION М5 ODOMETER 15359 MILES (24712 KM) BAROMETER 29.20 IN HG (741.7 MM HG) RELATIVE HUMIDITY 68.2 PCT. DRY BULB TEMPERATURE 70.0°F (21.1°C) NOX HUMIDITY C.F. 1.008 BAG NUMBER 1 COLD TRANSIENT HOT TRANSIENT BAG DESCRIPTION STABILIZED (0-505 SEC.) (505-1372 SEC.) (0- 505 SEC.) 867.3 RUN TIME SECONDS 505.2 505.2 DRY/WET CORRECTION FACTOR, SAMP/BACK .970/.983 .973/.983 .971/.983 3.83 (6.16) 558.4 (15.82) .28 (.01) 8076. (228.7) 3.60 (5.78) 556.3 (15.76) .28 (.01) 4687. (132.7) 3.55 (5.71) 557.3 (15.78) .27 (.01) MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) 4695. (133.0) TOTAL FLOW SCF (SCM) SAMPLE METER/RANGE/PPM (BAG) HC 57.8/ 2/ 57.77 8.4/ 2/ 8.40 11.5/ 2/ 11.49 2/ BCKGRD METER/RANGE/PPM HC 8.1/ 23.7/ 7.20 8.3/ 8.30 2/ 8.10 7.2/ 2/ 14/ 206.00 CO SAMPLE METER/RANGE/PPM 46.8/ 23.18 56.7/ 13/ 132.91 12/ 1.62 BCKGRD METER/RANGE/PPM .4/ 14/ 1.0/ 12/ .9/ 13/ 2.07 CO2 SAMPLE METER/RANGE/PCT 80.5/ 14/ 70.8/ 14/ .5108 75.7/ 14/ . 5855 CO2 BCKGRD METER/RANGE/PCT 13.8/ 14/ .0470 14.1/ 14/ .0482 14.6/ 14/ .0502 1/ NOX SAMPLE METER/RANGE/PPM (BAG) (D) 1/ 18.39 1/ 1/ 6.35 78.8/ 19.69 73.6/ 25.4/ .5/ 1/ NOX BCKGRD METER/RANGE/PPM .5/ 1/ .12 .4/ .12 4.73 4.91 CH4 SAMPLE PPM (1.150) 4.23 CH4 BCKGRD PPM 3.63 3.64 3.69 DILUTION FACTOR 16.94 22.90 19.63 CONCENTRATION PPM 49.96 195.91 HC .65 21.39 4.66 125.76 CONCENTRATION PPM CONCENTRATION PCT .6238 .4648 .5378 NOX CONCENTRATION PPM 18.28 6.25 19.58 .75 CH4 CONCENTRATION PPM 1.32 1.40 NMHC CONCENTRATION PPM -2 57 -.21 -1.71THC MASS GRAMS 11.856 .122 1.182 MASS GRAMS 30.271 5.694 CO 19.466 C02 MASS GRAMS 1515.72 1946.14 1309.07 NOX MASS GRAMS 4.678 2.758 5.019 .117 .115 CH4 MASS GRAMS .124 NMHC MASS GRAMS (FID) .000 .000 .000 MASS KG 1.150 1.423 .976 FUEL ECONOMY MPG (L/100KM) 9.37 (25.09) 8.06 (29.18) 10.90 (21.58) 3-BAG COMPOSITE RESULTS THC G/MI .795 G/MI .032 CO G/MI 4.027 G/MI .000 MOX G/MI 1.032 CARBONYL G/MI .028 ALCOHOL G/MI .735 FUEL ECONOMY MPG (L/100KM) 8.97 (26.22)

APPENDIX H

MAXIMUM INCREMENTAL REACTIVITY ADJUSTMENT FACTORS (MIRs)⁽⁵⁾

COMPOUND	MIR
METHANE	0.0148
ETHANE ETHYLENE	0.25 7.29
PROPANE	0.48
PROPYLENE	9.4
ACETYLENE	0.5
PROPADIENE BUTANE	7.29 1. 0 2
TRANS-2-BUTENE 1-BUTENE	9.94 8.9 1
2-METHYLPROPENE (ISOBUTYLENE) 2,2-DIMETHYLPROPANE (NEOPENTANE)	5.31 0.37
PROPYNE 1,3-BUTADIENE	4.1 10.89
2-METHYLPROPANE (ISOBUTANE)	1.21
1-BUTYNE	9.24
METHANOL CIS-2-BUTENE	0.56 9.94
3-METHYL-1-BUTENE	6.22
ETHANOL	1.34
2-METHYLBUTANE (ISOPENTANE) 2-BUTYNE	1.38 9.24
1-PENTENE 2-METHYL-1-BUTENE	6.22 4.9
PENTANE 2-METHYL-1,3-BUTADIENE	1.04 9.08
TRANS-2-PENTENE	8.8
3,3-DIMETHYL-1-BUTENE	4.42
CIS-2-PENTENE 2-METHYL-2-BUTENE	8.8 6.41
CYCLOPENTADIENE	7.66
2,2-DIMETHYLBUTANE	0.82
CYCLOPENTENE 4-METHYL-1-PENTENE	7.66 4.42
3-METHYL-1-PENTENE CYCLOPENTANE	4.42 2.38
2,3-DIMETHYLBUTANE MTBE	1.07 0.62
2,3-DIMETHYL-1-BUTENE	4.42
4-METHYL-CIS-2-PENTENE	6.69
2-METHYLPENTANE 4-METHYL-TRANS-2-PENTENE	1.53 6. 6 9

COMPOUND	MIR
3-METHYLPENTANE	1.52
2-METHYL-1-PENTENE	4.42
1-HEXENE	4.42
HEXANE	0.98
TRANS-3-HEXENE	6.69
CIS-3-HEXENE	6.69
TRANS-2-HEXENE 3-METHYL-TRANS-2-PENTENE	6.69 6 .69
2-METHYL-2-PENTENE	6.69
3-METHYLCYCLOPENTENE	5. 67
CIS-2-HEXENE	6.69
ETBE	1.98
3-METHYL-CIS-2-PENTENE	6.69
2,2-DIMETHYLPENTANE	1.4
METHYLCYCLOPENTANE	2.82
2,4-DIMETHYLPENTANE	1.78
2,3,3-TRIMETHYL-1-BUTENE	3.48
2,2,3-TRIMETHYLBUTANE	1.32
3,4-DIMETHYL-1-PENTENE	3.48
1-METHYLCYCLOPENTENE	5.67
BENZENE	0.42
3-METHYL-1-HEXENE	3.48
3,3-DIMETHYLPENTANE	0.71
CYCLOHEXANE	1.28
2-METHYLHEXANE	1.08
2,3-DIMETHYLPENTANE	1.51
1,1-DIMETHYLCYCLOPENTANE CYCLOHEXENE	1.85 5.67
3-METHYLHEXANE	1.4
CIS-1,3-DIMETHYLCYCLOPENTANE	2.55
3-ETHYLPENTANE	1.4
TRANS-1,2-DIMETHYLCYCLOPENTANE	1.85
TRANS-1,3-DIMETHYLCYCLOPENTANE 1-HEPTENE	2.55 3.48
2,2,4-TRIMETHYLPENTANE	0.93
2-METHYL-1-HEXENE	3.48
TRANS-3-HEPTENE	5.53
HEPTANE	0.81
2-METHYL-2-HEXENE	5.53
3-METHYL-TRANS-3-HEXENE	5.53
TRANS-2-HEPTENE	6.45
3-ETHYL-CIS-2-PENTENE	5.53

COMPOUND	MIR
2,4,4-TRIMETHYL-1-PENTENE	2.69
2,2,4-TRIMETHYL-1-PENTENE	2.69
2,3-DIMETHYL-2-PENTENE CIS-2-HEPTENE	5.53 5.53
METHYLCYCLOHEXANE	1.85
CIS-1,2-DIMETHYLCYCLOPENTANE	1.85
2,2-DIMETHYLHEXANE 1,1,3-TRIMETHYLCYCLOPENTANE	1.2 1.94
2,4,4-TRIMETHYL-2-PENTENE	5.29
2,2,3-TRIMETHYLPENTANE	1.2
2,5-DIMETHYLHEXANE	1.63
ETHYLCYCLOPENTANE 2.4-DIMETHYLHEXANE	2.31 1.5
1-TRANS-2-CIS-4-TRIMETHYLCYCLOPENTANE	1.94
3,3-DIMETHYLHEXANE	1.2
1-TRANS-2-CIS-3-TRIMETHYLCYCLOPENTANE	1.94
2,3,4-TRIMETHYLPENTANE 2,3,3-TRIMETHYLPENTANE	1.6 1.2
TOLUENE	2.73
2,3-DIMETHYLHEXANE	1.32
1,1,2-TRIMETHYLCYCLOPENTANE 2-METHYLHEPTANE	1.94 0.96
3,4-DIMETHYLHEXANE	1.2
2,2,4,4-TETRAMETHYLPENTANE	1.14
4-METHYLHEPTANE 2-METHYL-3-ETHYLPENTANE	1.2 1.2
2,6-DIMETHYLHEPTANE	1.14
3-METHYLHEPTANE	0.99
1-CIS,2-TRANS,3-TRIMETHYLCYCLOPENTANE	1.94
CIS-1,3-DIMETHYLCYCLOHEXANE TRANS-1,4-DIMETHYLCYCLOHEXANE	1.94 1.94
3-ETHYLHEXANE	1.2
2,2,5-TRIMETHYLHEXANE	0.97
CIS-1-METHYL-3-ETHYLCYCLOPENTANE 1,1-DIMETHYLCYCLOHEXANE	1.94 1.94
TRANS-1-METHYL-2-ETHYLCYCLOPENTANE	1.94
1-METHYL-1-ETHYL-CYCLOPENTANE 2,4,4-TRIMETHYLHEXANE	1.94 1.14
2,2,4-TRIMETHYLHEXANE	1.14
TRANS-1,2-DIMETHYLCYCLOHEXANE	1.94
1-OCTENE TRANS-4-OCTENE	2.69
I DAING-4-UCTENE	5.29

COMPOUND	MIR
OCTANE	0.61
TRANS-2-OCTENE	5.29
TRANS-1,3-DIMETHYLCYCLOHEXANE	1.94
CIS-1,4-DIMETHYLCYCLOHEXANE	1.94
CIS-2-OCTENE 2,3,5-TRIMETHYLHEXANE	5.29 1.14
CIS-1-METHYL-2-ETHYLCYCLOPENTANE	1.14
2-METHYL-2-ETHYLHEPTANE	1.01
2,4-DIMETHYLHEPTANE	1.34
4,4-DIMETHYLHEPTANE	1.14
CIS-1,2-DIMETHYLCYCLOHEXANE ETHYLCYCLOHEXANE	1.94 1.94
PROPYLCYCLOHEXANE	1.17
2-METHYL-4-ETHYLHEXANE	1.14
2,6-DIMETHYLHEPTANE	1.14
1,1,3-TRIMETHYLCYCLOHEXANE	2.3
2,5-DIMETHYLHEPTANE 3,3-DIMETHYLHEPTANE	1.14 1.14
3,5-DIMETHYLHEPTANE	1.14
ETHYLBENZENE	2.7
2,3-DIMETHYLHEPTANE	1,14
m-& p-XYLENE	7.38
4-METHYLOCTANE 2-METHYLOCTANE	1.14 1.14
3-METHYLOCTANE	1.14
STYRENE	2.22
o-XYLENE	6.46
2,4,6-TRIMETHYLHEXANE	1.14
1-NONENE NONANE	2.23 0.54
ISOPROPYLBENZENE (CUMENE)	2.24
2,2-DIMETHYLOCTANE	1.01
2,4-DIMETHYLOCTANE	1.01
n-PROPYLBENZENE 1-METHYL-3-ETHYLBENZENE	2.12
1-METHYL-3-ETHYLBENZENE	7.2 7.2
1,3,5-TRIMETHYLBENZENE	10.12
1-METHYL-2-ETHYLBENZENE	7.2
1,2,4-TRIMETHYLBENZENE	8.83
DECANE ISOBUTYLBENZENE	0.47
METHYLPROPYLBENZENE	1.87 6.45
INIC LETTLE DUE L'EDENZENE	0.45

COMPOUND	MIR
S-BUTYLBENZENE	1.89
1-METHYL-3-ISOPROPYLBENZENE	5.84
1,2,3-TRIMETHYLBENZENE	8.85
1-METHYL-4-ISOPROPYLBENZENE	5.84
INDAN	1.06
1-METHYL-2-ISOPROPYLBENZENE 1,3-DIETHYLBENZENE	5.84 6.45
1,4-DIETHYLBENZENE	6.45
1-METHYL-3-N-PROPYLBENZENE	6.45
1-METHYL-4-N-PROPYLBENZENE	6.45
1,2 DIETHYLBENZENE	6.45
1-METHYL-2-N-PROPYLBENZENE	6.45
1,4-DIMETHYL-2-ETHYLBENZENE	9.07
1,3-DIMETHYL-4-ETHYLBENZENE 1,2-DIMETHYL-4-ETHYLBENZENE	9.07 9.07
1,3-DIMETHYL-2-ETHYLBENZENE	9.07
UNDECANE	0.42
1,2-DIMETHYL-3-ETHYLBENZENE	9.07
1,2,4,5-TETRAMETHYLBENZENE	9.07
2-METHYLBUTYLBENZENE (sec AMYLBENZENE)	1.7 9.07
1,2,3,5-TETRAMETHYLBENZENE TERT-1-BUT-2-METHYLBENZENE	9.07 5.84
1,2,3,4-TETRAMETHYLBENZENE	9.07
N-PENT-BENZENE	1.7
TERT-1-BUT-3,5-DIMETHYLBENZENE	7.5
NAPHTHALENE	1.18
DODECANE	0.38
FORMALDEHYDE ACETALDEHYDE	7.15 5.52
ACROLEIN	6.77
ACETONE	0.56
PROPIONALDEHYDE	6.53
CROTONALDEHYDE	5.42
ISOBUTYRALDEHYDE	5.26
METHYL ETHYL KETONE BENZALDEHYDE	1.18 -0.55
HEXANALDEHYDE	-0.55 3.79

APPENDIX I

AVERAGE SPECIATED EMISSIONS RESULTS FROM FTPs WITH LPG

TABLE I-1. SUMMARY OF SPECIATED EXHAUST EMISSIONS FROM LPG

					(Operating (Conditions	3				
l ·	Lean					Stoichic	ometric		Rich			
·	51	Without Catalyst		ith ilyst	Without Catalyst		With Catalyst		Without Catalyst		Wi Cata	
Compound	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %
METHANE	90.3		71.8		95.6		123.4		365.8		449.5	
ETHANE	93.2	1.9	25,1	5.1	32.1	1.8	11.4	6.8	42.0	1.7	190.3	10.7
ETHYLENE	471.5	9.7	10.3	2.1	290.0	15.8	8.5	5.0	426.6	17.1	213.6	12.0
PROPANE	3365.8	69,3	434.9	88.6	1097.8	59.9	130.3	77.7	1479.0	59.2	1209,9	68.1
PROPYLENE	500.2	10.3	10.5	2.1	205.3	11.2	6.7	4.0	209.4	8.4	110.3	6.2
ACETYLENE	56.1	1.2	0.2	<0.1	78.5	4.3	1.1	0,6	217.9	8.7	3.5	0.2
PROPADIENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BUTANE	5.7	0.1	0.5	0.1	2.7	0.1	0.5	0.3	5.3	0.2	6.5	0.4
TRANS-2-BUTENE	0.6	<0.1	ND	ND	0.3	<0.1	0.1	<0.1	0.5	<0.1	3.8	0.2
1-BUTENE	11.1	0,2	0.2	<0.1	6.0	0.3	0.2	0.1	4.9	0.2	3.0	0.2
2-METHYLPROPENE (ISOBUTYLENE)	4.2	0.1	0.2	<0.1	1.7	0.1	0.1	0.1	2.2	0.1	1.9	0.1
2,2-DIMETHYLPROPANE (NEOPENTANE)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	<0.1
PROPYNE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-BUTADIENE	3,1	0.1	0.1	<0.1	1.8	0.1	0.1	<0.1	1.6	0.1	0.3	<0.1
2-METHYLPROPANE (ISOBUTANE)	22.0	0.5	1.4	0.3	5.8	0.3	0.7	0.4	11.0	0.4	9.6	0.5
1-BUTYNE	ND	ND	ND	ND	סא	ND	ND	ND	ND	ND	ND	ND
METHANOL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
CIS-2-BUTENE	0.5	<0.1	ND	ND	0.3	<0.1	0.1	<0.1	0.4	<0.1	4.2	0.2
3-METHYL-1-BUTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ETHANOL	ND	ND	ND	ND	ND	ND	ND	DM	ND	DN	ND	ND
2-METHYLBUTANE (ISOPENTANE)	9.9	0.2	0.4	0.1	1.8	0.1	0.6	0.3	2.6	0.1	2.6	0.1
2-BUTYNE	ND	ND	ND	DN	ND	ND	ND	ND	ND	DM	ND	ND
1-PENTENE	ND	ND	ND	ND	ND	ND	ND	ND	0.2	<0.1	0.1	<0.1
2-METHYL-1-BUTENE	0.3	<0.1	DN	ND	<0.1	<0.1	ND	ND	0.1	<0.1	0.2	<0.1
PENTANE	1.3	<0.1	0.2	<0.1	0.2	<0.1	0.2	0.1	0.2	<0.1	0.2	<0.1
2-METHYL-1,3-BUTADIENE	0.3	<0.1	ND	ND	0.5	<0.1	ND	ND	0.1	<0.1	ND	ND
TRANS-2-PENTENE	0.4	<0.1	0.1	<0.1	0.2	<0.1	<0.1	<0.1	0.2	<0.1	0.2	<0.1
3,3-DIMETHYL-1-BUTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CIS-2-PENTENE	0.3	<0.1	0.1	<0.1	0.4	<0.1	<0.1	<0.1	0.4	<0.1	0.3	<0.1
2-METHYL-2-BUTENE	0.4	<0.1	0.1	<0.1	0.2	<0.1	0.1	0.1	0.1	<0.1	0.1	<0.1

					(Operating C	Condition	8							
	Lean					Stoichic	metric		Rich						
	2	Without Catalyst		ith llyst	Without Catalyst		With Catalyst		Without Catalyst		Wi Cata				
Compound	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %			
CYCLOPENTADIENE	0.2	<0.1	ND	ND	<0.1	<0.1	ND	ND	0.5	<0.1	0.4	<0.1			
2.2-DIMETHYLBUTANE	0.5	<0.1	0.4	0.1	0.4	<0.1	0.2	0.1	0.1	<0.1	0.5	<0.1			
CYCLOPENTENE	0.1	<0.1	ND	ND	ND	ND	ND	ND	ND	ND	0.1	<0.1			
4-METHYL-1-PENTENE	0.1	<0.1	ND	ND	ND	ND	ND	ND	<0.1	<0.1	<0.1	<0.1			
3-METHYL-1-PENTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	<0.1			
CYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
2,3-DIMETHYLBUTANE	0.6	<0.1	<0.1	<0.1	0.2	<0.1	0.1	0.1	0.3	<0.1	0.1	<0.1			
MTBE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
2,3-DIMETHYL-1-BUTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
4-METHYL-CIS-2-PENTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
2-METHYLPENTANE	1.1	<0.1	<0.1	<0.1	0.7	<0.1	0.1	<0.1	0.3	<0.1	0.2	<0.1			
4-METHYL-TRANS-2-PENTENE	ND	ND	ND	ND	ПD	ND	ND	ND	ND	ND	ND	ND			
3-METHYLPENTANE	0.3	<0.1	0.1	<0.1	0.5	<0.1	0.2	0.1	0.1	<0.1	0.4	<0.1			
2-METHYL-1-PENTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
1-HEXENE	0.2	<0.1	ND	ND	0.2	<0.1	0.1	<0.1	0.1	<0.1	0.1	<0.1			
HEXANE	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.1	0.1	<0.1	0.1	<0.1			
TRANS-3-HEXENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	<0.1			
CIS-3-HEXENE	ND	ND	ND	ND	ND	ND	ND	ND	סא	ND	0,1	<0.1			
TRANS-2-HEXENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
3-METHYL-TRANS-2-PENTENE	<0.1	<0.1	סא	ND	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0,1	<0.1			
2-METHYL-2-PENTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	<0.1			
3-METHYLCYCLOPENTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
CIS-2-HEXENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1	<0.1			
ETBE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND			
3-METHYL-CIS-2-PENTENE	ND	ND	ND	ND	<0.1	<0.1	ND	ND	0.1	<0.1	0.1	<0.1			
2,2-DIMETHYLPENTANE	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.5	<0.1	0.1	<0.1			
METHYLCYCLOPENTANE	0.2	<0.1	<0.1	<0.1	0.2	<0.1	ND	ND	0.2	<0.1	ND	ND			
2,4-DIMETHYLPENTANE	0.3	<0.1	0.1	<0.1	0.2	<0.1	<0.1	<0.1	0,2	<0.1	0.1	<0.1			
2,3,3-TRIMETHYL-1-BUTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
2.2.3-TRIMETHYLBUTANE	ND	ND	ND	ND	ND	ND	<0.1	<0.1	0.1	<0.1	<0.1	<0.1			

						perating (Condition	3					
	Lean					Stoichic	metric		Rich				
	Without Catalyst		Wi Cata		l1	Without Catalyst		ith ilyst	Without Catalyst		Wi Cata		
Compound	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	
3,4-DIMETHYL-1-PENTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1-METHYLCYCLOPENTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1	<0.1	
BENZENE	0.7	<0.1	ND	ND	0.6	<0.1	0.1	0.1	0.7	<0.1	3.5	0.2	
3-METHYL-1-HEXENE	ND	ND	סא	ND	ND	ND	ND	ND	ND	ND	ND	ND	
3,3-DIMETHYLPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	<0.1	0.2	<0.1	
CYCLOHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	<0.1	
2-METHYLHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
2,3-DIMETHYLPENTANE	0.5	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	0,3	<0.1	
1,1-DIMETHYLCYCLOPENTANE	ND	ND	ND	ND	ND	ND	, ND	ND	ND	ND	ND	ND	
CYCLOHEXENE	ND	ND	ND	ND	ND	ND	ND	ND	0.2	<0.1	ND	ND	
3-METHYLHEXANE	0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	
CIS-1,3-DIMETHYLCYCLOPENTANE	ND	ND	ND	ND	<0.1	<0.1	ND	ND	<0.1	<0.1	<0.1	<0.1	
3-ETHYLPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
TRANS-1,2-DIMETHYLCYCLOPENTANE	ND	ŅD	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
TRANS-1,3-DIMETHYLCYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1-HEPTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
2,2,4-TRIMETHYLPENTANE	0.6	<0.1	0.1	<0.1	0.4	<0.1	0.3	0.2	0.2	<0.1	0.6	<0.1	
2-METHYL-1-HEXENE	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
TRANS-3-HEPTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
HEPTANE	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	0,1	<0.1	<0.1	<0.1	0.2	<0.1	
2-METHYL-2-HEXENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
3-METHYL-TRANS-3-HEXENE	ND	ND	ND	ND	DИ	ND	ND	ND	ND	ND	ND	ND	
TRANS-2-HEPTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
3-ETHYL-CIS-2-PENTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
2,4,4-TRIMETHYL-1-PENTENE	1.5	<0.1	ND	ND	0.6	<0.1	ND	ND	<0.1	<0.1	ND	ND	
2,2,4-TRIMETHYL-1-PENTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
2,3-DIMETHYL-2-PENTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
CIS-2-HEPTENE	ND	ND	ND	ND	DN	ND	ND	ND	ND	ND	0.1	<0.1	
METHYLCYCLOHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
CIS-1,2-DIMETHYLCYCLOPENTANE	<u> </u>	ND	ND	ND	ND	ND_	סא	ND ND	ND.	ND	ND	ND	

					C	Conditions	3								
		Lea	an			Stoichic	metric		Rich						
	With Cata		Wi Cata		With Cata		Wi Cata		Without Catalyst		Wi Cata				
Compound	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %									
2,2-DIMETHYLHEXANE	ND	ND	ND	ND	0.1	<0.1	ND	ND	ND	ND	ND	ND			
1,1,3-TRIMETHYLCYCLOPENTANE	ND	ND	ND	ND											
2.4,4-TRIMETHYL-2-PENTENE	ND	ND	ND	ND											
2,2,3-TRIMETHYLPENTANE	ND	ND	ND	ND											
2,5-DIMETHYLHEXANE	ND	ND	ND	ND											
ETHYLCYCLOPENTANE	ND	ND	ND	ND											
2,4-DIMETHYLHEXANE	0.1	<0.1	ND	ND	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	0.3	<0.1			
1.TRANS-2-CIS-4-TRIMETHYLOYGLOPENTANE	ND	ND	ND	ND	ND	ND	DN	ND	ND	ND	ND	ND			
3,3-DIMETHYLHEXANE	ND	ND	ND	ND											
1-TRANS-2-CIS-3-TRIMETHYLCYCLOPENTANE	ND	ND	ND	ND											
2,3,4-TRIMETHYLPENTANE	ND	ND	ND	ND											
2,3,3-TRIMETHYLPENTANE	0.6	<0.1	ND	ND	0.1	<0.1	ND	ND	0.1	<0.1	0.1	<0.1			
TOLUENE	0.9	<0.1	0.2	<0.1	0.4	<0.1	0.4	0.2	0.4	<0.1	1.2	0.1			
2,3-DIMETHYLHEXANE	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	D D	ND			
1,1,2-TRIMETHYLCYCLOPENTANE	ND	ND	ND	ND											
2-METHYLHEPTANE	ND	ND	ND	ND	DN	ND	סא	ND	ND	ND	ND	ND			
3,4-DIMETHYLHEXANE	ND	ND	ND	ND											
2,2,4,4-TETRAMETHYLPENTANE	ND	ND	ND	ND											
4-METHYLHEPTANE	ND	ND	ND	ND											
2-METHYL-3-ETHYLPENTANE	ND	ND	ND	ND											
2,6-DIMETHYLHEPTANE	ND	ND	ND	ND											
3-METHYLHEPTANE	<0.1	<0.1	ND	ND	<0.1	<0.1	ND	ND	0.2	<0.1	ND	ND			
1-CIS,2-TRANS,3-TRIMETHYLCYCLOPENTANE	ND	ND	ND	ND											
CIS-1,3-DIMETHYLCYCLOHEXANE	ND	DN	ND	ND	ND	ND									
TRANS-1,4-DIMETHYLCYCLOHEXANE	ND	ND	ND	ND											
3-ETHYLHEXANE	ND	ND	ИD	ND	ND	ND	ND	DN	ND	ND	ND	DN			
2,2,5-TRIMETHYLHEXANE	ND	ND	ND	ND											
CIS-1-METHYL-3-ETHYLCYCLOPENTANE	ND	ND	ND	ND	DN	ND	ND	ND	ND	DN	DN	ND			
1,1-DIMETHYLCYCLOHEXANE	ND	ND	ND	ND											
TRANS-1-METHYL-2-ETHYLCYCLOPENTANE	ND	ON	ND	ND	DN	ND	DA D	ND	ND	ND_	ND	ND.			

	Operating Conditions												
	Lean					Stoichic	metric		Rich				
		Without Catalyst		th lyst	With Cata		W Cata		Without Catalyst		1	ith alyst	
Compound	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	
1-METHYL-1-ETHYL-CYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
2.4.4-TRIMETHYLHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
2,2,4-TRIMETHYLHEXANE	ND	ND	ИD	ND	ND	ND	ND	ND	ND	ND	ND	ND	
TRANS-1,2-DIMETHYLCYCLOHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1-OCTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
TRANS-4-OCTENE	ND	ND	ND	ND	ND	ИD	ND	ND	ND	ND	ND	ND	
OCTANE	ND	ND	ND	ND	ND	ND	<0.1	<0.1	ND	ND	<0.1	<0.1	
TRANS-2-OCTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	
TRANS-1,3-DIMETHYLCYCLOHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
CIS-1,4-DIMETHYLOYOLOHEXANE	ND	DM	ND	ND	ND	ND	ND	ØИ	ND	ND	ND	ND	
CIS-2-OCTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
2,3,5-TRIMETHYLHEXANE	ND	DN	ND	ND	DN	ND	ND	ND	סא	מא	ND	ND	
CIS-1-METHYL-2-ETHYLCYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
2-METHYL-2-ETHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
2,4-DIMETHYLHEPTANE	0.4	<0.1	0.6	0.1	0.2	<0.1	0.7	0.4	0.4	<0.1	0.7	<0.1	
4,4-DIMETHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
CIS-1,2-DIMETHYLCYCLOHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
ETHYLCYCLOHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	DN	ND	ND	ND	
PROPYLCYCLOHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
2-METHYL-4-ETHYLHEXANE	ND	ND	ND	ND	סא	ND	ND	ND	ND.	ND	ND	ND	
2,6-DIMETHYLHEPTANE	ND	ND	ND	ND '	ND	ND	ND	ND	ND	ND	ND	ND	
1,1,3-TRIMETHYLCYCLOHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	
2,5-DIMETHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
3,3-DIMETHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	DN	
3,5-DIMETHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
ETHYLBENZENE	0.2	<0.1	0.1	<0.1	0.1	<0.1	0.1	<0.1	0.2	<0.1	0.2	<0.1	
2,3-DIMETHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
m-& p-XYLENE	0.4	<0.1	0.2	<0.1	0.6	<0.1	<0.1	<0.1	0.5	<0.1	0.7	<0,1	
4-METHYLOCTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
2-METHYLOCTANE	ND	<u> DN</u>	ND	ND	םא_	OM	- חא	<u>ND</u>	ם א	<u> </u>	ND.	ם א	

					(Operating (Condition	8							
		Lea	an			Stoichic	metric		Rich						
		Without Catalyst		th llyst		nout alyst		ith alyst	41	nout alyst		ith alyst			
Compound	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %			
3-METHYLOCTANE	ND	ND	ND	ND	ND	ND ND	0.1	<0.1	ND	ND	ND	ND			
STYRENE	ND	ND	ND	ND	ND	ND	<0.1	<0.1	ND	ND	ND	ND			
o-XYLENE	0.2	<0.1	0.1	<0.1	0.1	<0.1	0.1	<0.1	0.2	<0.1	0.1	<0.1			
2,4,6-TRIMETHYLHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
1-NONENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
NONANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
ISOPROPYLBENZENE (CUMENE)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
2,2-DIMETHYLOCTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
2,4-DIMETHYLOCTANE	<0.1	<0.1	ND	ND	0.1	<0.1	0.1	0.1	0.2	<0.1	0.4	<0.1			
n-PROPYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	DN	ND	ND			
1-METHYL-3-ETHYLBENZENE	0.1	<0.1	0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			
1-METHYL-4-ETHYLBENZENE	0.1	<0.1	<0.1	<0.1	ND	ND	ND	ND	ND	ND	<0.1	<0.1			
1,3,5-TRIMETHYLBENZENE	0.1	<0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
1-METHYL-2-ETHYLBENZENE	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND	ND	0.1	<0.1	0.5	<0.1			
1,2,4-TRIMETHYLBENZENE	0.1	<0.1	0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.2	<0.1	0.1	<0.1			
DECANE	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.1	0.1	<0.1	0.2	<0.1			
ISOBUTYLBENZENE	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.1	<0.1	<0.1	0.2	<0.1			
METHYLPROPYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
S-BUTYLBENZENE	ND	ND	0.1	<0.1	ND	ND	ND	ND	ND	ND	ND	ND			
1-METHYL-3-ISOPROPYLBENZENE	ND	ND	ND	ND	<0.1	<0.1	<0.1	<0.1	ND:	ND	0,1	<0.1			
1,2,3-TRIMETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
1-METHYL-4-ISOPROPYLBENZENE	ND	ND	סא	ND	ND	ND	ND	ИD	ND	DN	סא	ПD			
INDAN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
1-METHYL-2-ISOPROPYLBENZENE	ND	ND	ND	ND	סא	ND	ND	ND	<0.1	<0.1	ND	ND			
1,3-DIETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
1,4-DIETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	0.2	<0.1	0.1	<0.1			
1-METHYL-3-N-PROPYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
1-METHYL-4-N-PROPYLBENZENE	<0.1	<0.1	<0.1	<0.1	ND	ND	ND	ND ·	ND	ND	ND	ND			
1,2 DIETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
1-METHYL-2-N-PROPYLBENZENE	מא	ND	ND	ND	ND	ND	ND	ND	ND	ND	םא ב	ND			

TABLE I-1 (CONT'D). SUMMARY OF SPECIATED EXHAUST EMISSIONS FROM LPG

					. (Operating (Conditions	3					
		Lea	an			Stoichic	ometric			Rich			
	Without Catalyst		Wi Cata		With Cata	The second second	Wi Cata		Without Catalyst		Wi Cata		
Compound	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	
1,4-DIMETHYL-2-ETHYLBENZENE	<0.1	<0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,3-DIMETHYL-4-ETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,2-DIMETHYL-4-ETHYLBENZENE	<0.1	<0.1	ND	ND	<0.1	<0.1	ND	ND	0.1	<0.1	<0.1	<0.1	
1,3-DIMETHYL-2-ETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	
UNDECANE	ND	ND	ND	ND	0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.1	<0.1	
1,2-DIMETHYL-3-ETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,2,4,5-TETRAMETHYLBENZENE	ND	ND	0.2	<0.1	ND	ND	ND	ND	ND	ND	ND	ND	
2-METHYLBUTYLBENZENE (sec AMYLBENZENE)	ND	ND	ND	ND	ND	ND	ДИ	ND	ND	ND	ND	ND	
3,4 DIMETHYLCUMENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,2,3,5-TETRAMETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
TERT-1-BUT-2-METHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,2,3,4-TETRAMETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	מא	ND	ND	ND	ND	
N-PENT-BENZENE	ND	ND	ND	ND	ND	ND	ND	ND	0.1	<0.1	ND	ND	
TERT-1-BUT-3;5-DIMETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
NAPHTHALENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
DODECANE	ND	ND	ND	ND	0.1	<0.1	<0.1	<0.1	0.1	<0.1	ND	ND	
FORMALDEHYDE	199.8	4.1	2.4	0.5	53.1	2.9	1.0	0.6	52.7	2.1	1.6	0.1	
ACETALDEHYDE	38.9	0.8	0.7	0.1	17.7	1.0	0.4	0.2	10.3	0.4	1.2	0.1	
ACROLEIN	0.2	<0.1	ND	ND	0.2	<0.1	ND	ND	ND	ND	ND	ND	
ACETONE	0.1	<0.1	0.1	<0.1	<0.1	<0,1	0.1	0.1	0.1	<0.1	0.1	<0.1	
PROPIONALDEHYDE	0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.1	0.1	0.1	<0.1	0.1	<0.1	
CROTONALDEHYDE	2.0	<0.1	ND	ND	ND	ND	ND	ND	<0.1	<0.1	ND	ND	
ISOBUTYRALDEHYDE	0.1	<0.1	ND	ND	ND	ND	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	
METHYL ETHYL KETONE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
BENZALDEHYDE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
HEXANALDEHYDE	ND	ND	ND	ND	ИD	ND	ND	ON	ND	ND	ND	ND	
SUMMATION OF NONMETHANE COMPOUNDS	4849.7	99.9	490.2	99.8	1825.4	99.6	166.6	99.4	2494.4	99.9	1776.1	99.9	
ND - not detected													

APPENDIX J

AVERAGE SPECIATED EMISSIONS RESULTS FROM FTPs WITH CNG

TABLE J-1. SUMMARY OF SPECIATED EXHAUST EMISSIONS FROM CNG

					0	perating C	onditions					
		Lear	1			Stoichic	metric			Ric	h	
	Witho	out	Wi	th	Witi	hout	W	ith	Witt	nout	W	th
	Cataly	/st	Cata	lyst	Cata	alyst	Cate	alyst	Cata	alyst	Cata	ilyst
Compound	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %
METHANE	2127.7		964.3		2688.0		809.5		10540.2		8826.1	
ETHANE	139.7	30.8	41.8	68.5	208.2	38.3	27.2	60.9	708.8	39.2	290.5	65.3
ETHYLENE	106.8	23.5	1.4	2.3	98.9	18.2	2.7	6.1	381.8	21.1	33.2	7.5
PROPANE	54.3	12.0	11.0	18.0	94.3	17.4	7.2	16.1	341.2	18.9	90.8	20.4
PROPYLENE	12.1	2.7	0.2	0.3	12.6	2.3	0.4	0.9	30.4	1.7	5.4	1,2
ACETYLENE	25.7	5.7	0.1	0.2	27.5	5.1	0,3	0.7	169.5	9,4	2.1	0.5
PROPADIENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BUTANE	0.5	0.1	0.3	0.4	2.2	0.4	0.3	0.6	2.4	0.1	1.5	0.3
TRANS-2-BUTENE	0.2	0.1	<0.1	0.1	0.3	<0.1	<0.1	0.1	0.4	<0.1	<0.1	<0.1
1-BUTENE	0.9	0.2	ND	ND	0,8	0.2	0.1	0.2	1.0	0.1	0.1	<0.1
2-METHYLPROPENE (ISOBUTYLENE)	1.5	0.3	0.1	0.2	1.6	0.3	0.1	0.1	3.4	0.2	0.3	0.1
2,2-DIMETHYLPROPANE (NEOPENTANE)	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1
PROPYNE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-BUTADIENE	0.8	0.2	<0.1	<0.1	0.6	0.1	0.1	0.3	0.4	<0.1	<0.1	<0.1
2-METHYLPROPANE (ISOBUTANE)	0.2	<0.1	<0.1	<0.1	1.0	0.2	<0.1	0.1	2.1	0.1	0.3	0.1
1-BUTYNE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND
METHANOL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
CIS-2-BUTENE	0.2	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	0.1	0.3	<0.1	0.1	<0.1
3-METHYL-1-BUTENE	ND	ND	ND	ND	ND	ND	ND,	ND	ND	ND	ND	ND
ETHANOL	ND	DM	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-METHYLBUTANE (ISOPENTANE)	1.4	0.3	0.5	0.8	5.5	1.0	0.5	1.0	5.5	0.3	2.7	0.6
2-BUTYNE	ND	ND	ND	NĎ	ND	ND	ND	ND	ND	ND	ND	ND
1-PENTENE	0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	0.1	<0.1	0.1	<0.1
2-METHYL-1-BUTENE	0.2	<0.1	0.1	0.1	0.2	<0.1	<0.1	<0.1	0.3	<0.1	0.2	<0.1
PENTANE SAMETUNA A SOUTABLEME	0.2	<0.1 <0.1	0.1 0.1	0.2	0.6 0,2	0.1 <0.1	0.1 <0.1	0.2 0.1	0.7 <0.1	<0.1 <0.1	1.8 0.2	0.4 <0.1
2-METHYL-1,3-BUTADIENE	<0.1	Name (11.00000000000000000000000000000000000		0.1	(100)(00000.00.2444200000					<0.1 <0.1	0.2	0.1
TRANS-2-PENTENE	0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.2 ND	<0.1 ND	ND	ND ND
3,3-DIMETHYL-1-BUTENE	ND	ND 0.4	ND	ND	ND	ND	ND	ND	201000000000000000000000000000000000000	*00000 (000000000 00000 000 000000000		***************************************
CIS-2-PENTENE	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.2	<0.1	0.1	<0.1
2-METHYL-2-BUTENE	0.3	0.1	ح0.1	0.1	0.4	0.1	<0.1_	0.1	0.5	-0.1	1 04	0.1

					0	perating C	onditions					
		Lea	n			Stoichic	metric			Ric	:h	
	With	out	w	ith	Witi	nout	w	ith	With	nout	W	th
	Catal	yst	Cata	alyst	Cata	alyst	Cata	alyst	Cata	lyst	Cata	ilyst
	FTP	NMOG	FTP	NMOG	FTP	NMOG	FTP	NMOG	FTP	NMOG	FTP	NMOG
Compound	mg/mi	wt %	mg/mi	wt %	mg/mi_	wt % <0.1	mg/mi ND	wt %	mg/mi 0.1	wt % <0.1	mg/mi ND	wt %
CYCLOPENTADIENE	0.1 0.1	<0.1 <0.1	ND <0.1	ND 0.1	0.1 0.2	<0.1	<0.1	<0.1	0.1	<0.1	0.6	0.1
2,2-DIMETHYLBUTANE	0.1	<0.1 <0.1	ND	ND	0.1	<0.1	<0.1	<0.1	0.4	<0.1	0.1	<0.1
CYCLOPENTENE	0.2	<0.1 <0.1	ND	ND	0.1	<0.1	<0.1	<0.1 <0.1	ND	ND	0.1	<0.1
4-METHYL-1-PENTENE		<0.1	0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1
3-METHYL-1-PENTENE	<0.1 ND	<u.1 ND</u.1 	ND	ND	ND	VD.	ND	VU. I	ND	ND	ND.	ND
CYCLOPENTANE		on and the consequent against the con-			0.2	<0.1	<0.1	0.1	0.5	<0.1	0.7	طاہا 0.2
2,3-DIMETHYLBUTANE	0.3	0.1	0.1 ND	0.1 ND	ND	<0.1 ND	VU.1	ND	ND	<0.1 ND	ND	ND
MTBE	ND	ND			************************	************************************	ND ND	ND	ND ND		ND	ND ND
2,3-DIMETHYL-1-BUTENE	ND	ND	ND	ND	ND	ND	***************************************		ND ND	ND ND	ND ND	ND ND
4-METHYL-CIS-2-PENTENE	ND	ND	ND	ND	ND	ND	ND	ND		ND	A	
2-METHYLPENTANE	0.6	0.1	0.1	0.2	0.6	0.1	0.1	0.2	1.1	0.1	1.5	0.3
4-METHYL-TRANS-2-PENTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-METHYLPENTANE	0.6	0.1	0.1	0.1	0.4	0.1	0.1	0.2	0.5	<0.1	0.9	0.2
2-METHYL-1-PENTENE	<0.1	<0.1	ND	ND	ND	ND	ND	ND	ND	ND	0.1	<0.1
1-HEXENE	0.2	<0.1	<0.1	0.1	0.1	<0.1	0.1	0.2	0.3	<0.1	0.1	<0.1
HEXANE	0.3	0.1	0.1	0.1	0.1	<0.1	<0.1	<0.1	0.3	<0.1	0.5	0.1
TRANS-3-HEXENE	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1
CIS-3-HEXENE	0.1	<0.1	<0.1	<0,1	0.1	<0.1	<0.1	<0.1	0.1	<0.1	0,1	<0.1
TRANS-2-HEXENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-METHYL-TRANS-2-PENTENE	<0.1	<0.1	ND	ND	0.2	<0.1	<0.1	<0.1	0.1	<0.1	0.1	<0.1
2-METHYL-2-PENTENE	<0.1	<0.1	ND	ND	0.1	<0.1	<0.1	0.1	<0.1	<0.1	0.1	<0.1
3-METHYLCYCLOPENTENE	ND.	ND	סא	ND	ND	ND	ND	ИD	ND	ND	ND	ND
CIS-2-HEXENE	<0.1	<0.1	ND	ND	0.1	<0.1	<0.1	<0.1	ND	ND	0.1	<0.1
ETBE	ND	ND	ИD	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-METHYL-CIS-2-PENTENE	0.1	<0.1	<0.1	0.1	0.1	<0.1	<0.1	<0.1	0.1	<0.1	0.1	<0.1
2,2-DIMETHYLPENTANE	0.6	0.1	0.1	0.1	0.3	0.1	<0.1	<0.1	1.3	0.1	0.3	0.1
METHYLCYCLOPENTANE	ND	ND	<0.1	0.1	0.1	<0.1	ND	ND	ND	ND	ND	ND
2,4-DIMETHYLPENTANE	0.2	<0.1	0.1	0.1	0.2	<0.1	0.1	0.1	0.4	<0.1	0.4	0.1
2,3,3-TRIMETHYL-1-BUTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2.2.3-TRIMETHYLBUTANE	0.1	<u>ح0.1</u>	Z0.1	<u>-e0.1</u>	0.1	د0,1	-0.1	0.1	0.1	-0.1	0.1	

					0	perating C	onditions					
		Lear	1			Stoichid	metric			Ric	h	
	Witho	out	W	ith	Wit	hout	W	ith	With	hout	w	ith
	Catal	yst	Cata	alyst	Cata	alyst	Cata	lyst	Cata	alyst	Cata	alyst
	FTP	NMOG	FTP	NMOG	FTP	NMOG	FTP	NMOG	FTP	NMOG	FTP	NMOG
Compound	mg/mi	wt %	mg/mi	wt %	mg/mi	wt %	mg/mi	wt %	mg/mi	wt %	mg/mi	wt %
3,4-DIMETHYL-1-PENTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-METHYLCYCLOPENTENE	ND	ND	ND	ND	ND	ND	ND	ND	0,1	<0.1	0.1	<0.1
BENZENE	0.5	0.1	0.1	0.2	0.5	0.1	0.2	0.5	0.8	<0.1	1.0	0.2
3-METHYL-1-HEXENE	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3,3-DIMETHYLPENTANE	0.1	<0.1	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	<0.1
CYCLOHEXANE	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1
2-METHYLHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,3-DIMETHYLPENTANE	0.2	0.1	0.1	0.1	0.3	0.1	0.1	0.1	0.5	<0.1	0.8	0.2
1,1-DIMETHYLCYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CYCLOHEXENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-METHYLHEXANE	0.1	<0.1	0.1	0.1	0.1	<0.1	<0.1	<0.1	0.2	<0.1	0.2	<0.1
CIS-1,3-DIMETHYLCYCLOPENTANE	<0.1	<0.1	ND	ND	ND	ND	<0.1	<0.1	ND	ND	ND	ND
3-ETHYLPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TRANS-1,2-DIMETHYLCYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TRANS-1,3-DIMETHYLCYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-HEPTENE	ND	ND	ND	ND	ND	ND	ND	DN	ND	ND	ND	ND
2,2,4-TRIMETHYLPENTANE	0.3	0.1	0.2	0.2	0.3	0.1	0.1	0.3	0.6	<0.1	0.9	0.2
2-METHYL-1-HEXENE	ND	ND	ND	ND	ND	ND	ND	DN	ND	ND	ND	ND
TRANS-3-HEPTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
HEPTANE	0.2	<0.1	0.1	0.2	0.1	<0.1	<0.1	0.1	0.1	<0.1	<0.1	<0.1
2-METHYL-2-HEXENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-METHYL-TRANS-3-HEXENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TRANS-2-HEPTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-ETHYL-CIS-2-PENTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,4-TRIMETHYL-1-PENTENE	ND	ND	ND	ND	<0.1	<0.1	ND	ND	ND	ND	ND	ND
2,2,4-TRIMETHYL-1-PENTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,3-DIMETHYL-2-PENTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CIS-2-HEPTENE	ND	ND	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	ND	ND	<0.1	<0.1
METHYLCYCLOHEXANE	NĐ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CIS-1,2-DIMETHYLCYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

					0	perating C	onditions					
		Lea	n			Stoichic	metric			Ric	h	
	Witho	out	w	ith	Witl	hout	w	ith	Witl	hout	w	ith
	Catal	yst	Cata	alyst	Cata	alyst	Cat	alyst	Cata	alyst	Cata	alyst
•	FTP	NMOG	FTP mg/mi	NMOG wt %								
Compound 2.2-DIMETHYLHEXANE	mg/mi 0.2	wt % <0.1	ND	WL 78	0.1	<0.1	<0.1	<0.1	0.1	<0.1	0.1	<0.1
1,1,3-TRIMETHYLOYCLOPENTANE	ND	ND	ND ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND
2,4,4-TRIMETHYL-2-PENTENE	ND											
2.2.3-TRIMETHYLPENTANE	ND.	ND	ND.	ND								
2.5-DIMETHYLHEXANE	ND											
ETHYLCYCLOPENTANE	ND											
2,4-DIMETHYLHEXANE	<0.1	<0.1	ND	ND	0.1	<0.1	<0.1	0.1	0.1	<0.1	0.1	<0.1
1-TRANS-2-CIS-4-TRIMETHYLCYCLOPENTANE	ND											
3,3-DIMETHYLHEXANE	0.1	<0.1	ND									
1-TRANS-2-CIS-3-TRIMETHYLCYCLOPENTANE	ND											
2,3,4-TRIMETHYLPENTANE	ND											
2,3,3-TRIMETHYLPENTANE	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.1	0.1	<0.1	0.1	<0,1
TOLUENE	0.4	0.1	<0.1	0.1	0.5	0.1	0.4	0.9	0.9	0.1	0.3	0.1
2,3-DIMETHYLHEXANE	ND											
1,1,2-TRIMETHYLCYCLOPENTANE	ND											
2-METHYLHEPTANE	ND	ND	ND	ND	ND	ND	0,1	0.1	<0.1	<0.1	0.2	<0.1
3,4-DIMETHYLHEXANE	ND											
2,2,4,4-TETRAMETHYLPENTANE	ND											
4-METHYLHEPTANE	ND	ND	ND	ND	<0.1	<0.1	ND	ND	ND	ND	ND	ND
2-METHYL-3-ETHYLPENTANE	ND											
2,6-DIMETHYLHEPTANE	ND											
3-METHYLHEPTANE	<0,1	<0.1	ND	ND	<0.1	<0.1	0.1	0.1	<0.1	<0.1	0.1	<0.1
1-CIS,2-TRANS,3-TRIMETHYLCYCLOPENTANE	ND	ND	ND	ND	ND	ND	ДN	ND	ND	ND	ND	ND
CIS-1,3-DIMETHYLCYCLOHEXANE	ND	ΝĎ	ND	ND								
TRANS-1,4-DIMETHYLCYCLOHEXANE	0.1	<0.1	МD	ND	ND	ND	<0.1	<0.1	ND	ND	<0.1	<0.1
3-ETHYLHEXANE	ND											
2,2,5-TRIMETHYLHEXANE	ND											
CIS-1-METHYL-3-ETHYLCYCLOPENTANE	ND											
1,1-DIMETHYLCYCLOHEXANE	ND											
TRANS-1-METHYL-2-ETHYLCYCLOPENTANE	ND	ND	ND	ND	ND	ND	DИ	ND	ND	ND	ND	ND ND

					0	perating C	onditions					
		Lear	1			Stoichic	metric			Ric	h	
	Witho	out	Wi	ith	With	hout	W	ith	With	nout	W	ith
	Catal	yst	Cate	alyst	Cata	alyst	Cata	lyst	Cata	alyst	Cata	alyst
	FTP	NMOG	FTP	NMOG	FTP	NMOG	FTP	NMOG	FTP	NMOG	FTP	NMOG
Compound	mg/mi	wt %	mg/mi	wt %	mg/mi	wt %	mg/mi	wt %	mg/mi	wt %	mg/mi	wt %
1-METHYL-1-ETHYL-CYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,4-TRIMETHYLHEXANE	ND	ND	ND	ND	ND	DM	ND	ND	ND	ND	DN	ND
2,2,4-TRIMETHYLHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TRANS-1,2-DIMETHYLCYCLOHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-OCTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TRANS-4-OCTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
OCTANE	ND	ND	ND	ND	ND	ND	<0.1	0.1	ND	ND	0.1	<0.1
TRANS-2-OCTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TRANS-1,3-DIMETHYLCYCLOHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CIS-1,4-DIMETHYLOYCLOHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CIS-2-OCTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,3,5-TRIMETHYLHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CIS-1-METHYL-2-ETHYLCYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-METHYL-2-ETHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-DIMETHYLHEPTANE	0.2	<0.1	0.4	0.7	0.5	0.1	0.6	1.4	0.3	<0.1	0.5	0.1
4,4-DIMETHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CIS-1,2-DIMETHYLCYCLOHEXANE	ND	ND	ND	ND ·	ND	ND	ND	ND	ND	ND	ND	ND
ETHYLCYCLOHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PROPYLCYCLOHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-METHYL-4-ETHYLHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,6-DIMETHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,3-TRIMETHYLCYCLOHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ДИ	ND	ND
2,5-DIMETHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	NĐ	ND	ND
3,3-DIMETHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3,5-DIMETHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ETHYLBENZENE	0.1	<0.1	0.1	0.1	0.1	<0.1	<0.1	<0.1	0.1	<0.1	0.1	<0.1
2,3-DIMETHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	NĐ	ND	ND
m-& p-XYLENE	0,3	0.1	0.2	0.2	0.1	<0.1	0.1	0.1	0.3	<0.1	0.2	0.1
4-METHYLOCTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-METHYLOCTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

					0	perating C	onditions					
		Lear	n			Stoichic	ometric			Ric	:h	
	Witho	out	w	ith	Wit	hout	W	ith	Wit	hout	w	ith
	Catal	yst	Cata	alyst	Cata	alyst	Cata	alyst	Cata	alyst	Cate	alyst
	FTP	NMOG	FTP	NMOG	FTP	NMOG	FTP	NMOG	FTP	NMOG	FTP	NMOG
Compound	mg/mi	wt %	mg/mi	wt %	mg/mi	wt %	mg/mi ND	wt %	mg/mi ND	wt %	mg/mi ND	wt %
3-METHYLOCTANE	ND ND	ND ND	ND ND	ND ND	<0.1 ND	<0.1 ND	ND	ND	ND	ND	ND	ND
STYRENE			0.1		0.1	طلاا 0.1<	<0.1	<0.1	0.1	<0.1	0.1	<0.1
o-XYLENE	0.2 ND	<0.1 ND	ND	0.2 ND	ND	<u.1 ND</u.1 	ND	<u.1 ND</u.1 	ND	ND	ND	VU. 1
2,4,6-TRIMETHYLHEXANE			~~~~~	ACC 11 - ACC - COLO - C	1	programme comment	ND ND	ND ND	ND ND	ND ND	ND	ND ND
1-NONENE	ND	ND	ND 	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND
NONANE	<0.1	<0.1	ND	ND	ND	ND		999999999				ND ND
ISOPROPYLBENZENE (CUMENE)	ND	ND	ND	ND	ND ::-	ND	<0.1	<0.1	ND	ND ND	ND	
2,2-DIMETHYLOCTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND
2,4-DIMETHYLOCTANE	0.3	0.1	0.1	0.1	0.2	<0.1	0.1	0.2	<0.1	<0.1	0.2	<0.1
n-PROPYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-METHYL-3-ETHYLBENZENE	0.1	<0.1	0.1	0.2	<0.1	<0.1	0.1	0.2	0.1	<0.1	<0.1	<0.1
1-METHYL-4-ETHYLBENZENE	<0.1	<0.1	ND	ND	ND	ND	<0.1	<0.1	ND	ND	ND	ND
1,3,5-TRIMETHYLBENZENE	0.1	<0.1	ND	ND	ND	ND	<0.1	<0.1	ND	ND	ND	ND
1-METHYL-2-ETHYLBENZENE	0,4	0,1	ND	ND	ND	DN	ND	ND	<0.1	<0.1	ND	ND
1,2,4-TRIMETHYLBENZENE	0.1	<0.1	0.1	0.1	0.2	<0.1	<0.1	0.1	0.1	<0.1	<0.1	<0.1
DECANE	0.1	<0.1	<0.1	0.1	0.1	<0.1	0.1	0.2	0.1	<0.1	0.1	<0.1
ISOBUTYLBENZENE	0.1	<0.1	<0.1	0.1	0.1	<0.1	0.1	0.2	0.1	<0.1	0.1	<0.1
METHYLPROPYLBENZENE	ND	DN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
S-BUTYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-METHYL-3-ISOPROPYLBENZENE	<0.1	<0.1	ND	ND	<0.1	<0.1	<0.1	<0.1	<0,1	<0.1	ND	ND
1,2,3-TRIMETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-METHYL-4-ISOPROPYLBENZENE	ND	ND	ND	ND	0.1	<0,1	ND	ND	<0.1	<0.1	ND	ND
IND AN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-METHYL-2-ISOPROPYLBENZENE	ND	ДИ	ND	ND	0.1	<0.1	ND	ND	0.1	<0.1	ND	ND
1,3-DIETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-DIETHYLBENZENE	<0.1	<0.1	ND	ND	0.1	<0.1	ND	ND	ND	ND	<0.1	<0.1
1-METHYL-3-N-PROPYLBENZENE	ND	ND	ND	ND	ND	ND	<0.1	<0.1	ND	ND	ND	ND
1-METHYL-4-N-PROPYLBENZENE	ND	ND	ND	ND	<0.1	<0.1	ND	ND	ND	ND	ND	ND
1,2 DIETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-METHYL-2-N-PROPYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

					0	perating C	onditions				VIII	
		Lea	n			Stoichic	ometric			Ric	h	
	Witho	out	w	ith	Witl	nout	W	ith	Witi	hout	w	ith
	Catal	yst	Cata	alyst	Cata	alyst	Cat	alyst	Cata	alyst	Cata	alyst
·	FTP	NMOG	FTP	NMOG	FTP	NMOG	FTP	NMOG	FTP	NMOG	FTP	NMOG
Compound	mg/mi	wt %	mg/mi	wt %	mg/mi	wt %	mg/mi	wt %	mg/mi	wt %	mg/mi	wt %
1,4-DIMETHYL-2-ETHYLBENZENE	ND	ND	ND	ND	<0.1	<0.1	ND	ND	<0.1	<0.1	<0.1	<0.1
1,3-DIMETHYL-4-ETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-DIMETHYL-4-ETHYLBENZENE	ND	ND	<0.1	0.1	ND	ND	ND	ND	ND	ND	ND	ND
1,3-DIMETHYL-2-ETHYLBENZENE	ND	ND	ND	ND	<0.1	<0.1	ND.	ND	ND	ND	ND	ND
UND ECANE	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	0.1	0.3	<0.1	<0.1	<0.1	<0.1
1,2-DIMETHYL-3-ETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-TETRAMETHYLBENZENE	1.2	0.3	0.1	0.2	ND	ND	ND	ND	<0.1	<0.1	ND	ND
2-METHYLBUTYLBENZENE (sec AMYLBENZENE)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3,4 DIMETHYLCUMENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3,5-TETRAMETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TERT-1-BUT-2-METHYLBENZENE	· ND	ND	ND	ND	<0.1	<0.1	ND	ND	ND	ND	ND	ND
1,2,3,4-TETRAMETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-PENT-BENZENE	0.1	<0.1	ND	ND	<0.1	<0.1	ИD	ND	ND	ND	ND	. ND
TERT-1-BUT-3,5-DIMETHYLBENZENE	<0.1	<0.1	ND	ND	0.1	<0.1	0.1	0.2	ND	ND	ДN	ND
NAPHTHALENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DODECANE	<0.1	<0,1	<0.1	<0.1	0.1	<0.1	0.4	1.0	<0.1	<0.1	<0.1	<0.1
FORMALDEHYDE	92.3	20.3	1.2	2.0	70.4	13.0	0.9	2.0	137.0	7.6	1.5	0.3
ACETALDEHYDE	4.2	0.9	0.1	0.2	3.7	0.7	0.1	0.2	7.9	0.4	0.3	0.1
ACROLEIN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ACETONE	0.1	<0.1	0.1	0.2	<0.1	<0.1	0.1	0.1	<0.1	<0.1	ND	ND
PROPIONALDEHYDE	0.1	<0.1	0.1	0.2	<0.1	<0.1	0.1	0.1	<0.1	<0.1	<0.1	<0.1
CROTONALDEHYDE	0.2	0.1	0.3	0.5	0.9	0.2	0.4	0.8	1.3	0.1	0,3	0.1
ISOBUTYRALDEHYDE	<0.1	<0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
METHYL ETHYL KETONE	ND	ND	ND	ND.	ND	ND	ND	ND	ND ND	ND	ND	ND
BENZALDEHYDE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
HEXANALDEHYDE	ND ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND
SUMMATION OF NON-METHANE COMPOUNDS	451.5	99.4	60.3	98.7	538.0	99.1	44.1	98.8	1805.7	99.8	443.5	99.7
ND - not detected	451.5	99.4	60,3	90.1	0.00.0	99. I	44.1	90.0	1000./	99.8	1 443.3	99.7
An - Troy defected										<u></u>		

APPENDIX K

AVERAGE SPECIATED EMISSIONS RESULTS FROM FTPs WITH REFORMULATED GASOLINE

TABLE K-1. SUMMARY OF SPECIATED EXHAUST EMISSIONS FROM REFORMULATED GASOLINE

					(Operating (Conditions	3				
		Lea	an			Stoichic	ometric			Ric	h	
	With Cata			ith alyst		nout alyst	•	ith alyst	With Cate	nout alyst	Wi Cata	1
Compound	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %
METHANE	87.7		57.0		76.2		33.1		365.8		355.6	
ETHANE	63.4	0,6	7.1	3,8	31.0	1.3	4.6	2.4	32.2	0,9	38.4	1,1
ETHYLENE	442.1	3.9	12.1	6.4	173.0	7.2	12.6	6.7	260.4	7.2	385.8	10.7
PROPANE	3.6	<0.1	0.2	0,1	1.6	0.1	0.3	0,2	2.5	0.1	2.7	0.1
PROPYLENE	441.5	3.9	8.6	4.6	141.1	5.9	8.8	4.7	134.3	3.7	146.7	4.1
ACETYLENE	82.8	0.7	4.6	2.4	93.4	3.9	5.4	2.9	319.1	8.8	91.3	2.5
PROPADIENE	. ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BUTANE	136.1	1.2	1.8	0.9	18.6	0.8	2.0	1.1	30,0	8.0	29.1	8.0
TRANS-2-BUTENE	44.5	0.4	0.7	0.4	11.6	0.5	0.8	0.4	10.4	0.3	12.5	0.3
1-BUTENE	61,5	0.5	1,1	0.6	17,4	0.7	1.1	0.6	14.5	0.4	18,0	0.5
2-METHYLPROPENE (ISOBUTYLENE)	473.0	4.2	9.2	4.9	130.7	5.4	10.1	5.4	124.3	3.4	240.0	6.7
2,2-DIMETHYLPROPANE (NEOPENTANE)	4.6	<0.1	0.1	<0,1	0,6	<0.1	0.1	<0.1	1,1	<0.1	1.2	<0.1
PROPYNE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-BUTADIENE	61.7	0.5	1.2	0.6	21.3	0.9	1,1	0.6	18,2	0,5	18.7	0.5
2-METHYLPROPANE (ISOBUTANE)	5.2	<0.1	0.1	0.1	1.4	0.1	0.1	<0.1	1.3	<0.1	2.1	0.1
1-BUTYNE	ND	ND	ND	ND	ND	ND	ND	ND	DО	ND	ND	ND
METHANOL	132.9	1.2	ND	ND	35.1	1.5	ND	ND	29.0	0.8	71.5	2.0
CIS-2-BUTENE	32.5	0.3	0.7	0.4	8.5	0.4	0.6	0.3	7.8	0.2	11.6	0.3
3-METHYL-1-BUTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ETHANOL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-METHYLBUTANE (ISOPENTANE)	606.4	5.4	7.6	4.0	89.1	3.7	9.6	5.1	146.8	4.0	143.3	4.0
2-BUTYNE	33.5	0.3	ND	ND	0.3	<0.1	ND	ND	0,3	<0.1	0.3	<0.1
1-PENTENE	26.6	0.2	ND	ND	4.0	0.2	0.1	<0.1	4.3	0.1	5.2	0.1
2-METHYL-1-BUTENE	56.5	0.5	0.6	0,3	11.8	0.5	0.6	0.3	11.1	0,3	10.2	0.3
PENTANE	105.7	0.9	1.4	0.7	15.4	0.6	1.6	0.8	25.5	0.7	25.8	0.7
2-METHYL-1,3-BUTADIENE	37.0	0.3	0.7	0,3	11.3	0.5	0.6	0.3	9,6	0.3	9.4	0.3
TRANS-2-PENTENE	29.7	0.3	0.3	0.2	5.3	0.2	0.3	0.2	6.7	0.2	7.5	0.2
3,3-DIMETHYL-1-BUTENE	4.1	<0.1	ND	ND	0,9	<0.1	ND	ND	0.6	<0.1	0.6	<0.1
CIS-2-PENTENE	17.0	0.2	0.2	0.1	3.0	0.1	0.2	0.1	4.0	0.1	4.3	0.1
2-METHYL-2-BUTENE	70.3	0.6	1.1	0,6	149	0.6	1.0	0.5	16.5	0.5	21.4	0.6

						Operating (Conditions	3				
		Lea	an		L	Stoichic	ometric			Ric	h	
	With	out		ith	24	hout		ith		hout	W	
	Cata			alyst	1	alyst		alyst		alyst	Cata	
	FTP	NMOG	FTP	NMOG	FTP	NMOG	FTP	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %
Compound	mg/mi	wt %	mg/mi	wt %	mg/mi 7.2	wt % 0.3	mg/mi 0.4	0.2	13.0	0.4	6.4	0.2
CYCLOPENTADIENE	15.6	0.1 0.3	0.4 0.6	0.2	7.2 6.1	0.3	0.4	0.2	9.7	0,3	9.0	0.2
2,2-DIMETHYLBUTANE	35.0 8.1	0.5 0.1	0.0	0.3 0.1	2.8	0.3 0.1	0.7	<0.1	2.7	0.1	2.2	0.1
CYCLOPENTENE	32.8	0.1	0.1	0.1	1.9	0.1	0.1	0.1	2.0	0.1	2.0	0.1
4-METHYL-1-PENTENE	15.8	0.1	0.1	<0.1	4.5	0.1	0.1	<0.1	2.8	0.1	1.5	<0.1
3-METHYL-1-PENTENE CYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	VD.1	ND	ND	ND	ND
	116.6	1.0	1.5	0.8	19.1	0.8	1.8	1.0	29.0	0.8	29.6	0.8
2,3-DIMETHYLBUTANE MTBE	838.7	7.4	4.5	2.4	130.2	5.4	3.8	2.0	225.3	6.2	72.5	2.0
2,3-DIMETHYL-1-BUTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-METHYL-CIS-2-PENTENE	ND	ND	ND	ND	ND	D	ND	ND	ND	ND	ND	ND
2-METHYLPENTANE	4.1	<0.1	2.6	1.4	0.2	<0.1	3.1	1.7	2.3	0.1	2.1	0.1
4-METHYL-TRANS-2-PENTENE	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND
3-METHYLPENTANE	116.0	1.0	1.6	0.9	17.4	0.7	1.8	1.0	30.2	0.8	30.8	0.9
2-METHYL×1-PENTENE	14.8	0.1	0.1	0.1	1.9	0.1	0.1	0.1	3.0	0.1	2.8	0.1
1-HEXENE	9.7	0.1	0.1	0.1	1.6	0.1	0.1	0.1	1.7	<0.1	1.8	<0.1
HEXANE	70.3	0.6	1.0	0.5	10.4	0.4	1.1	0.6	18.8	0.5	19.3	0.5
TRANS-3-HEXENE	10.1	0.1	0.1	0.1	1.5	0.1	0.1	0.1	2.4	0.1	2.5	0.1
CIS-3-HEXENE	17.6	0.1	0.2	0.1	2.9	0.1	0.2	0.1	4.1	0.1	4.3	0.1
TRANS-2-HEXENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-METHYL-TRANS-2-PENTENE	22.1	0.2	0,2	0.1	3.7	0.2	0.2	0.1	5.4	0.1	5.7	0.2
2-METHYL-2-PENTENE	16.0	0.1	0.2	0.1	2.9	0.1	0.2	0.1	3.9	0.1	3.8	0.1
3-METHYLCYCLOPENTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CIS-2-HEXENE	8.4	0.1	0.1	0.1	1.3	0.1	0.1	<0.1	2.1	0.1	2.2	0.1
ETBE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-METHYL-CIS-2-PENTENE	17.8	0.2	0.2	0.1	3,1	0.1	0.2	0.1	4.6	0.1	4.9	0.1
2,2-DIMETHYLPENTANE	44,9	0.4	0.6	0.3	6.3	0.3	0.7	0.3	11.4	0.3	11.6	0.3
METHYLCYCLOPENTANE	8.4	0.1	0.1	<0.1	1.7	0.1	0.1	<0.1	1.4	<0.1	1.3	<0.1
2,4-DIMETHYLPENTANE	215.5	1.9	3.0	1.6	33.5	1.4	3.4	1.8	58.1	1.6	60.0	1.7
2,3,3-TRIMETHYL-1-BUTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,3-TRIMETHYLBUTANE	5.0	<0.1	0.2	0.1	0.7	<0.1	0,2	0.1	3.0	0.1	2.7	0,1

						Operating (Conditions	3				
		Lea	an			Stoichic	ometric			Ric	ch	
	With Cata			ith alyst	With Cata			ith alyst	With Cate	nout alyst	Wi Cata	ith alyst
Compound	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %								
3,4-DIMETHYL-1-PENTENE	3.4	<0.1	<0.1	<0.1	0.6	<0.1	<0.1	<0.1	0.8	<0.1	0.9	<0.1
1-METHYLCYCLOPENTENE	11.9	0.1	<0.1	<0.1	1.5	0.1	0.2	0.1	3.6	0,1	3.8	0.1
BENZENE	168.5	1.5	7.2	3.8	63.4	2.6	7.9	4.2	120.0	3.3	126.3	3.5
3-METHYL-1-HEXENE	ND	ND	ND									
3,3-DIMETHYLPENTANE	7.1	0.1	0.1	0.1	2.5	0.1	0.1	<0.1	2.3	0.1	2.2	0.1
CYCLOHEXANE	2.5	<0.1	0.1	<0.1	0.5	<0.1	0.1	<0.1	0.6	<0.1	0.5	<0.1
2-METHYLHEXANE	ND	ND	ND									
2,3-DIMETHYLPENTANE	440.2	3.9	5.9	3.1	66.2	2.8	7.0	3.7	119.4	3.3	122.0	3.4
1,1-DIMETHYLCYCLOPENTANE	ND	ND	ND									
CYCLOHEXENE	3.6	<0.1	<0.1	<0.1	0.6	<0.1	<0.1	<0.1	0.6	<0.1	0,6	<0.1
3-METHYLHEXANE	96.5	0.9	1.3	0.7	14.3	0.6	1.5	0.8	27.0	0.7	25.5	0.7
CIS-1,3-DIMETHYLCYCLOPENTANE	11.6	0.1	0.1	0.1	1.5	0.1	0.1	0.1	3.0	0.1	3.0	0.1
3-ETHYLPENTANE	ND	ND	ND									
TRANS-1,2-DIMETHYLCYCLOPENTANE	ND	ND	ND									
TRANS-1,3-DIMETHYLCYCLOPENTANE	ND	ND	ND									
1-HEPTENE	ND	ND	ND									
2,2,4-TRIMETHYLPENTANE	763.0	6.8	11.3	6.0	120.7	5.0	12.9	6.9	214.3	5.9	218.5	6.1
2-METHYL-1-HEXENE	ND	ND	ND									
TRANS-3-HEPTENE	ND	ND	ND									
HEPTANE	66.0	0.6	1,1	0.6	10.3	0.4	1.0	0.6	19.1	0.5	19.5	0.5
2-METHYL-2-HEXENE	14.0	0.1	0.2	0.1	1.9	0.1	0.2	0.1	3.8	0.1	4.0	0.1
3-METHYL-TRANS-3-HEXENE	ND	ND	ND									
TRANS-2-HEPTENE	7.5	0.1	0.1	<0.1	1.2	0.1	0.1	<0.1	2.0	0.1	1.8	0.1
3-ETHYL-GIS-2-PENTENE	1.9	<0.1	DND	ND	0.3	<0.1	ND	ND	0.4	<0.1	0.5	<0.1
2,4,4-TRIMETHYL-1-PENTENE	10.1	0.1	0.1	0.1	1.5	0.1	0.1	0.1	2.6	0.1	2.3	0.1
2,2,4-TRIMETHYL-1-PENTENE	ND	ND	ND									
2,3-DIMETHYL-2-PENTENE	ND	ND	ND									
CIS-2-HEPTENE	7.6	0.1	0.1	0.1	1.4	0.1	0.1	0.1	2.0	0.1	2.1	0.1
METHYLCYCLOHEXANE	6.7	0.1	0.1	0.1	1.1	<0.1	0.1	0.1	2.0	0.1	2.1	0.1
CIS-1:2-DIMETHYLCYCLOPENTANE	ND	ND	ND	ND	ND	DM	ND	ND	ND	ND	ND	ND

					-	Operating (Conditions	3				
		Lea	n			Stoichic	ometric			Ric	ch	
	With Cata		Wi Cate		****	hout alyst		ith alyst		hout alyst		ith alyst
Commonant	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %
Compound	78.1	0.7	1.2	0.6	12.5	0.5	1.4	0.8	23.1	0.6	24.2	0.7
2,2-DIMETHYLHEXANE	78.1 ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND.
1,1,3-TRIMETHYLCYCLOPENTANE		<0.1	ND	ND	ND	ND	ND	ND	ND	ND	2.0	0.1
2,4,4-TRIMETHYL-2-PENTENE	2.9 ND	<u.1 ND</u.1 	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.
2,2,3-TRIMETHYLPENTANE		ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
2,5-DIMETHYLHEXANE	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND.	ND	ND
ETHYLCYCLOPENTANE	98.0	0.9	1.5	0.8	15.3	0.6	1.7	0.9	28.6	0.8	29.1	0.8
2,4-DIMETHYLHEXANE	ND	V.9 ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-TRANS-2-CIS-4-TRIMETHYLCYCLOPENTANE	9.8	0.1	0.1	0.1	1.6	0.1	0.2	0.1	2.8	0.1	2.9	0.1
3,3-DIMETHYLHEXANE 1-TRANS-2-CIS-3-TRIMETHYLCYCLOPENTANE	ND	U.1 ND	ND	V.I ND	ND	ND	ND	ND.	ND	ND	ND.	ND
25,000	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
2,3,4-TRIMETHYLPENTANE	176.9	1.6	2.4	1.3	26.2	1.1	3.0	1.6	49.0	1,3	50.3	1.4
2,3,3-TRIMETHYLPENTANE	842.1	7.5	16.1	8.5	181.4	7.6	16.5	8.8	287.4	7.9	293.3	8.2
TOLUENE	176.2	7.5 1.6	2.0	1.1	24.1	1.0	2.0	1.1	45.6	1.3	45.6	1.3
2,3-DIMETHYLHEXANE		949000000000000000000000000000000000000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-TRIMETHYLCYCLOPENTANE	ND FO.6	ND	0.8	0.4	7.9	0.3	0.9	0.5	16.6	0.5	16.9	0.5
2-METHYLHEPTANE	53.2	0.5	CONTRACTOR AND	V.4 ND	ND	U.S ND	ND ND	V.S ND	ND	ND	ND	ND
3,4-DIMETHYLHEXANE	ND	ND	ND			CONTRACTOR CONTRACTOR	ND ND	ND ND	ND	ND	ND	ND ND
2,2,4,4-TETRAMETHYLPENTANE	ND	ND	ND	ND	ND	ND	1 200 000000000000000000000000000000000		5.3	0.1	5.4	طاہا 0.1
4-METHYLHEPTANE	16.7	0.1	0.2	0.1	2.6	0.1	0.3	0.1	ND	ND	ND	V.1 ND
2-METHYL-3-ETHYLPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	100001100000000000000000000000000000000		***************************************	ND ND
2,6-DIMETHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 00.0	CONTRACTOR CONTRACTOR
3-METHYLHEPTANE	74.2	0.7	1,1	0.6	11.7	0.5	1.3	0.7	23.7	0.6	23,9	0.7
1-CIS,2-TRANS,3-TRIMETHYLCYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CIS-1,3-DIMETHYLOYCLOHEXANE	מא	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TRANS-1,4-DIMETHYLCYCLOHEXANE	103.0	0.9	1.6	0.9	16.9	0.7	1.9	1.0	32.1	0.9	32.6	0.9
3-ETHYLHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	סא	ND	ND	ND
2,2,5-TRIMETHYLHEXANE	6.2	0.1	0.1	<0.1	0.9	<0.1	0.1	<0.1	1.8	0.0	1.8	0.1
CIS-1-METHYL-3-ETHYLCYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	DM	ND	ND
1,1-DIMETHYLCYCLOHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TRANS-1-METHYL-2-ETHYLCYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

TABLE K-1 (CONT'D). SUMMARY OF SPECIATED EXHAUST EMISSIONS FROM REFORMULATED GASOLINE

						Operating (Conditions	3				
		Lea	an			Stoichic	ometric			Ric	ch	
	With Cata			ith alyst		hout alyst		ith alyst		nout alyst		ith alyst
Compound	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %
1-METHYL-1-ETHYL-CYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,4-TRIMETHYLHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-TRIMETHYLHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TRANS-1,2-DIMETHYLOYCLOHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-OCTENE	5.5	<0.1	0.1	<0.1	1.2	<0.1	0.1	0.1	1.9	0.1	2.0	0.1
TRANS-4-OCTENE	5.3	<0.1	0.1	<0.1	0.9	<0.1	0.1	<0.1	1.7	<0.1	1.6	<0.1
OCTANE	34.4	0.3	0.5	0.3	5.7	0.2	0.6	0.3	11.3	0.3	11.6	0.3
TRANS-2-OCTENE	7.3	0.1	0.1	<0.1	1.2	<0.1	0.1	<0.1	2.3	0.1	2.4	0.1
TRANS-1,3-DIMETHYLCYCLOHEXANE	9.2	0.1	0.1	<0.1	1.5	0.1	0.1	<0.1	2.8	0.1	2.5	0.1
CIS-1,4-DIMETHYLCYCLOHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CIS-2-OCTENE	3.4	<0.1	ND	ND	0.3	<0.1	ND	ND	0.5	<0.1	0.5	<0.1
2,3,5-TRIMETHYLHEXANE	18.4	0.2	0.2	0.1	2.9	0.1	0.3	0.2	5.3	0.1	5.4	0.1
CIS-1-METHYL-2-ETHYLCYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-METHYL-2-ETHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-DIMETHYLHEPTANE	7.8	0.1	0.7	0.4	1.6	0.1	0.5	0.2	2.6	0.1	2.9	0.1
4,4-DIMETHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CIS-1,2-DIMETHYLCYCLOHEXANE	10.6	0.1	0.1	0.1	1.5	0.1	0.2	0.1	2.9	0.1	3.1	0.1
ETHYLCYCLOHEXANE	17.7	0.2	0.2	0.1	2.8	0.1	0.4	0.2	5,3	0.1	5.4	0.2
PROPYLCYCLOHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-METHYL-4-ETHYLHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,6-DIMETHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,3-TRIMETHYLCYCLOHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,5-DIMETHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3,3-DIMETHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3,5-DIMETHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ETHYLBENZENE	301.0	2.7	5.3	2.8	61,6	2.6	4.9	2.6	96.0	2.6	99.3	2.8
2,3-DIMETHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m-& p-XYLENE	662.5	5.9	13.1	6.9	137.2	5.7	12.2	6.5	226.3	6.2	232.6	6.5
4-METHYLOCTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-METHYLOCTANE	25.3	0.2	0.4	0.2	4.3	0.2	0.5	0.2	9.0	0.2	9.2	0.3

	Operating Conditions											
		Lea	an		Stolchiometric				Rich			
	Without Catalyst		With Catalyst		Without Catalyst		With Catalyst		Without Catalyst			ith alyst
	FTP	NMOG	FTP	NMOG	FTP	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %
Compound	mg/mi	wt %	mg/mi	wt %	mg/mi			Wt %	5.7	0.2	6.3	0.2
3-METHYLOCTANE	16.5	0.1	0.3	0.1	2.7	0.1	0.3 ND	ND	5.7 ND	0.2 ND	ND	ND
STYRENE	ND	ND	ND	ND	ND	ND	4.0	2.1	72.7	2.0	76.3	2.1
o-XYLENE	219.7	1.9	4.4	2.4 ND	44.5	1.9 ND	ND	Z.1 ND	ND	Z.U ND	ND	ND
2,4,6-TRIMETHYLHEXANE	ND	ND	ND		ND	************	300000000000000000000000000000000000000			0.2	8.6	
1-NONENE	23.0	0.2	0.2	0.1	4.2	0.2	0.4 0.3	0.2 0.2	8.5 5.7	0.2	6.4	0.2 0.2
NONANE	18.5	0.2	0.3	0.1	2.9	0.1		0.00.0000000000000000000000000000000000		200000000000000000000000000000000000000	*************	0. 2 0.1
ISOPROPYLBENZENE (CUMENE)	11.0	0.1	0.2	0.1	2.1	0.1	0.2	0.1	3.5	0.1	3.7	200000000000000000000000000000000000000
2,2-DIMETHYLOCTANE	10.3	0.1	0.1	<0.1	1.9	0.1	0.2	0.1	3,4	0.1	3.5	0.1
2,4-DIMETHYLOCTANE	50.6	0.4	1.0	0.5	10.8	0.5	0.3	0.1	8.1	0.2	5.6	0.2
n-PROPYLBENZENE	33.4	0.3	0.3	0.1	6.4	0.3	0.5	0.3	11.3	0.3	11.6	0.3
1-METHYL-3-ETHYLBENZENE	116.9	1.0	2.6	1.4	26.3	1.1	2.2	1.2	41.7	1.1	43.5	1.2
1-METHYL-4-ETHYLBENZENE	44.3	0.4	1,1	0.6	10.5	0.4	0.9	0.5	16,8	0.5	16.9	0.5
1,3,5-TRIMETHYLBENZENE	44.4	0.4	1.0	0.5	9.4	0.4	0.8	0.4	16.7	0.5	17.3	0.5
1-METHYL-2-ETHYLBENZENE	35.3	0,3	0.5	0.3	10.9	0.5	0.3	0.1	18.3	0.5	12.9	0.4
1,2,4-TRIMETHYLBENZENE	134.5	1.2	3.3	1.7	29.8	1.2	2.4	1.3	50.6	1.4	51.4	1.4
DECANE	2.7	<0.1	0.1	0.1	0.5	<0.1	0.1	<0.1	0.9	<0.1	0.9	<0.1
ISOBUTYLBENZENE	2.6	<0.1	0.1	0.1	0.4	<0.1	0.1	<0.1	8.0	<0.1	0.9	<0.1
METHYLPROPYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
S-BUTYLBENZENE	4.1	<0.1	0.1	<0.1	0.8	<0.1	0.1	<0.1	1.3	<0.1	1.3	<0.1
1-METHYL-3-ISOPROPYLBENZENE	29.4	0.3	0.6	0.3	5.7	0.2	0.5	0.3	9.8	0.3	10.3	0.3
1,2,3-TRIMETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-METHYL-4-ISOPROPYLBENZENE	4,1	<0.1	ND	ND	0.2	<0.1	ND	ND	0.2	<0.1	0.3	<0.1
IND AN	13.7	0.1	ND	ND	1.9	0.1	0.2	0.1	2.7	0.1	5.3	0.1
1-METHYL-2-ISOPROPYLBENZENE	7.5	0.1	0.2	0.1	3,6	0.2	0.2	0.1	7.0	0.2	1.9	0.1
1,3-DIETHYLBENZENE	1.1	<0.1	ND	ND	2.7	0.1	ND	ND	0.3	<0.1	0.3	<0.1
1,4-DIETHYLBENZENE	44,8	0.4	0.4	0.2	11.0	0.5	0.3	0.2	7.6	0.2	8,2	0.2
1-METHYL-3-N-PROPYLBENZENE	11.1	0.1	0.4	0.2	5.2	0.2	0.2	0.1	6.1	0.2	8.6	0.2
1-METHYL-4-N-PROPYLBENZENE	23.4	0,2	0.5	0.2	0.4	<0.1	0,4	0.2	9,3	0.3	9.3	0.3
1.2 DIETHYLBENZENE	20.7	0.2	ND	ND	3.5	0.1	0.1	<0.1	4.7	0.1	1.9	0.1
1-METHYL-2-N-PROPYLBENZENE	1.9	<0.1	ND	ND	0,4	<0.1	0.1	<0,1	0.6	<0.1	0.3	<0.1

TABLE K-1 (CONT'D). SUMMARY OF SPECIATED EXHAUST EMISSIONS FROM REFORMULATED GASOLINE

	Operating Conditions												
		Lea	an		Stoichiometric				Rich				
÷	Without Catalyst		1	ith alyst		Without Catalyst		ith alyst	Without Catalyst		Wi Cata		
Compound	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	
1,4-DIMETHYL-2-ETHYLBENZENE	12.6	0.1	0.4	0.2	1.4	0.1	0.2	0.1	5.0	0.1	4.6	0.1	
1,3-DIMETHYL-4-ETHYLBENZENE	4.2	<0.1	0.1	<0.1	4.7	0,2	ND	ND	1.3	<0.1	1.4	<0.1	
1,2-DIMETHYL-4-ETHYLBENZENE	22.8	0.2	0.6	0.3	0.8	<0.1	0.3	0.2	8.9	0.2	8.7	0.2	
1,3-DIMETHYL-2-ETHYLBENZENE	2.5	<0.1	ND	ND	0.5	<0.1	0.1	<0.1	0.6	<0.1	0.6	<0.1	
UND ECANE	1.3	<0.1	0.2	0.1	0.3	<0.1	0.1	0.1	1.6	<0.1	2.4	0.1	
1,2-DIMETHYL-3-ETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,2,4,5-TETRAMETHYLBENZENE	15.8	0.1	0.4	0.2	3.6	0.1	0.2	0.1	6.2	0.2	5.9	0.2	
2-METHYLBUTYLBENZENE (sec AMYLBENZENE)	0.6	<0.1	ND	DN	<0.1	<0.1	<0.1	<0.1	0.3	<0.1	0.9	<0.1	
3,4 DIMETHYLCUMENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,2,3,5-TETRAMETHYLBENZENE	ND	ND	ND	ND	ND	DN	ND	ND	ND	ND	0.1	<0.1	
TERT-1-BUT-2-METHYLBENZENE	10.2	0.1	0.2	0.1	1.0	<0.1	0.1	0.1	3.9	0.1	2.4	0.1	
1,2,3,4-TETRAMETHYLBENZENE	ND	ND	ND	ND	1.7	0,1	ND	ИD	2.4	0.1	1.1	<0.1	
N-PENT-BENZENE	9.3	0.1	0.1	<0.1	ND	ND	<0.1	<0.1	ND	ND	1.8	<0.1	
TERT-1-BUT-3,5-DIMETHYLBENZENE	ND	ND	0.8	0.4	8.5	0.4	ND	ND	0.3	<0.1	0.5	<0.1	
NAPHTHALENE	1.4	<0.1	ND	ND	0.2	<0.1	ND	ND	0.5	<0.1	0.6	<0.1	
DODECANE	1.5	<0.1	<0.1	<0.1	0.3	<0.1	<0.1	<0.1	0.4	<0.1	1.2	<0.1	
FORMALDEHYDE	485.0	4.3	2.7	1.4	97.3	4.1	2.7	1.4	53.8	1.5	20.5	0.6	
ACETALDEHYDE	82.4	0.7	0.9	0.5	18.3	0.8	8.0	0.4	9,3	0.3	20.4	0.6	
ACROLEIN	51.3	0.5	0.2	0.1	7.2	0.3	0.2	0.1	3.7	0.1	1.4	<0.1	
ACETONE	41.4	0.4	0.7	0.4	11.7	0.5	0.9	0.5	7.1	0.2	13.5	0.4	
PROPIONALDEHYDE	15.8	0.1	0.1	<0.1	3.8	0.2	0.1	0.1	1.8	<0.1	0.8	<0.1	
CROTONALDEHYDE	25.6	0.2	0.1	<0,1	2.2	0.1	0.1	0.1	0.7	<0.1	<0.1	<0.1	
ISOBUTYRALDEHYDE	7.8	0.1	<0.1	<0.1	1.8	0.1	0.1	<0.1	0.7	<0.1	0.4	<0.1	
METHYL ETHYL KETONE	7.8	0.1	<0.1	<0.1	1.8	0.1	0.1	<0.1	0.7	<0.1	0.4	<0.1	
BENZALDEHYDE	60.6	0.5	0.5	0.3	14.0	0.6	0.1	0.1	6.9	0.2	5.1	0.1	
HEXANALDEHYDE	4.7	<0.1	ND	ND	1.5	0.1	ND	DN	0.7	<0.1	0.3	<0.1	
SUMMATION OF NON-METHANE SPECIES	10773.6	95.4	178.5	94.5	2296.9	95.7	181.8	97.0	3486.0	95.8	3427.0	95.5	
ND - not detected													

APPENDIX L

AVERAGE SPECIATED EMISSIONS RESULTS FROM FTPs WITH ETHANOL

TABLE L-1. SUMMARY OF SPECIATED EXHAUST EMISSIONS FROM ETHANOL

	Operating Conditions												
		Lea	an		Stoichiometric				Rich				
	Without Catalyst		With Catalyst		Without Catalyst		With Catalyst		Without Catalyst		Wi Cata		
Compound	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	
METHANE	144.5		54.0		158.1		69.9		166.4		121.6		
ETHANE	35.6	0,3	4.9	0.5	31.1	0.6	5.3	0.6	29.4	0.5	11.9	1.0	
ETHYLENE	455.2	4.2	29.2	3.0	310.8	6.0	28.8	3.1	279.8	4.9	32.2	2.8	
PROPANE	0.7	<0.1	0.3	<0.1	1.3	<0.1	0.2	<0.1	1.5	<0.1	0.6	<0.1	
PROPYLENE	3.8	<0.1	0.6	0.1	3.4	0.1	0.7	0.1	3.0	0.1	1.4	0.1	
ACETYLENE	50.4	0.5	15.5	1,6	70.8	1.4	16.5	1.8	80.4	1.4	18.6	1.6	
PROPADIENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
BUTANE	0.2	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.2	<0.1	0.1	<0.1	
TRANS-2-BUTENE	0.2	<0.1	0.1	<0.1	0.1	<0.1	0.1	<0.1	0.2	<0.1	0.2	<0.1	
1-BUTENE	0,5	<0.1	0.2	<0.1	0.4	<0.1	0.2	<0.1	0.3	<0.1	0.3	<0.1	
2-METHYLPROPENE (ISOBUTYLENE)	1.2	<0.1	0.1	<0.1	0.7	<0.1	0.1	<0.1	0.5	<0.1	0.1	<0.1	
2,2-DIMETHYLPROPANE (NEOPENTANE)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
PROPYNE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,3-BUTADIENE	1.0	<0.1	0.2	<0.1	0.7	<0.1	0.1	<0.1	0.6	<0.1	0.3	<0.1	
2-METHYLPROPANE (ISOBUTANE)	0.2	<0.1	0.1	<0.1	<0.1	<0.1	0.1	<0.1	ND	ND	0.8	0.1	
1-BUTYNE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
METHANOL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
CIS-2-BUTENE	0.1	<0.1	0.2	<0.1	0.1	<0.1	0.2	<0.1	0.1	<0.1	0.1	<0.1	
3-METHYL-1-BUTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
ETHANOL	8799.2	81.2	860.2	87.9	4111.0	79.1	798.4	85.5	4694.3	81.8	992.0	85.7	
2-METHYLBUTANE (ISOPENTANE)	0.7	<0.1	0.1	<0.1	0.2	<0.1	0.1	<0.1	0.4	<0.1	0.1	<0.1	
2-BUTYNE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1	<0.1	
1-PENTENE	0.8	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	ND	ND	ND	ND	
2-METHYL-1-BUTENE	<0.1	<0.1	<0.1	<0.1	ND	ND	<0.1	<0.1	0.1	<0.1	0.2	<0.1	
PENTANE	<0.1	<0.1	0.7	0.1	0.1	<0.1	0.2	<0.1	<0.1	<0.1	0.1	<0.1	
2-METHYL-1,3-BUTADIENE	0.1	<0.1	ND	ND	0,4	<0.1	<0.1	<0.1	ND	ND	<0.1	<0.1	
TRANS-2-PENTENE	0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	0.1	<0.1	0.1	<0.1	
3,3-DIMETHYL-1-BUTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
CIS-2-PENTENE	4.3	<0.1	0.1	<0.1	ND	ND	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	
2-METHYL-2-BUTENE	0.2	-0.1	<u></u>		-0.1	₹0.1	0.1	-0.1	0.4	<0.1	01		

	Operating Conditions											
		Lea	an		Stoichiometric				Rich			
	Without Catalyst			ith alyst	Without Catalyst		With Catalyst		Without Catalyst		With Catalyst	
	FTP	NMOG	FTP	NMOG	FTP	NMOG	FTP	NMOG	FTP	NMOG	FTP	NMOG
Compound	mg/mi	wt %	mg/mi	wt %	mg/mi	wt %	mg/mi	wt %	mg/mi	wt %	mg/mi	wt %
CYCLOPENTADIENE	0.2	<0.1	0.1	<0.1	ND	ND	0.1	<0.1	0.1	<0.1	0.1	<0.1
2,2-DIMETHYLBUTANE	ND	DN	<0.1	<0.1	3.3	0.1	0.1	<0.1	0.2	<0.1	0.1	<0.1
CYCLOPENTENE	<0.1	<0.1	ND	ND	0.1	<0.1	ND	ND	<0.1	<0.1	<0.1	<0.1
4-METHYL-1-PENTENE	ND	ND	ND	ND	ND	ND	<0.1	<0.1	0.1	<0.1	ND	ND
3-METHYL-1-PENTENE	0.2	<0.1	0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
CYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,3-DIMETHYLBUTANE	0.2	<0.1	0.1	<0.1	0.1	<0.1	0.1	<0.1	0.1	<0.1	<0.1	<0.1
MTBE	1.5	<0.1	0.1	<0.1	1.2	<0.1	0.1	<0.1	ND	ND	ND	ND
2,3-DIMETHYL-1-BUTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-METHYL-CIS-2-PENTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-METHYLPENTANE	0.5	<0.1	0.2	<0.1	0.3	<0.1	0.2	<0.1	0.2	<0.1	<0.1	<0.1
4-METHYL-TRANS-2-PENTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-METHYLPENTANE	0.2	<0.1	0.6	0.1	0.8	<0.1	0.2	<0.1	0.3	<0.1	0.1	<0.1
2-METHYL-1-PENTENE	0.3	<0.1	<0.1	<0.1	0.3	<0.1	0.1	<0.1	0.1	<0.1	<0.1	<0.1
1-HEXENE	0.3	<0.1	<0.1	<0.1	0.3	<0.1	0.1	<0.1	0.1	<0.1	<0.1	<0.1
HEXANE	0.2	<0.1	0.1	<0.1	0.2	<0.1	<0.1	<0.1	0.1	<0.1	0.1	<0.1
TRANS-3-HEXENE	ND	ND	ND	ND	<0.1	<0.1	ND	ND	<0.1	<0.1	<0.1	<0.1
CIS-3-HEXENE	0.1	<0.1	0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1
TRANS-2-HEXENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-METHYL-TRANS-2-PENTENE	ND	ND	ND	ND	<0.1	<0.1	ND	ND	0.1	<0.1	0.1	<0.1
2-METHYL-2-PENTENE	ND	ND	<0.1	<0.1	0.3	<0.1	ND	ND	0.1	<0.1	ND	ND
3-METHYLCYCLOPENTENE	ND	ND	ДN	ND	ND	ND	סא	ND	ND	ND	ND	ND
CIS-2-HEXENE	2.5	<0.1	0.1	<0.1	ND	ND	0.1	<0.1	0.3	<0.1	0.1	<0.1
ETBE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-METHYL-CIS-2-PENTENE	ND	ND	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1
2,2-DIMETHYLPENTANE	0.3	<0.1	0.1	<0.1	0.4	<0.1	<0.1	<0.1	0.5	<0.1	<0.1	<0.1
METHYLCYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-DIMETHYLPENTANE	0.3	<0.1	0.1	<0.1	0.2	<0.1	<0.1	<0.1	0.1	<0.1	0.1	<0.1
2,3,3-TRIMETHYL-1-BUTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2.2.3-TRIMETHYLBUTANE	0,1	<0.1	0,1	<0.1	0.1	<0.1	<0.1	<0.1	0.1	<0.1	0.1	<0.1

						Operating (Conditions	3				
		Lea	an			Stoichic	ometric			Ric	ch	
	With Cata			ith alyst		nout alyst		ith alyst		nout alyst		ith alyst
Compound	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %
3,4-DIMETHYL-1-PENTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-METHYLCYCLOPENTENE	<0.1	<0.1	<0.1	<0.1	ND	ND	<0.1	<0.1	0.4	<0.1	<0.1	<0.1
BENZENE	1.8	<0.1	0.6	0.1	1.6	<0.1	0.7	0.1	1.6	<0.1	1.0	0.1
3-METHYL-1-HEXENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3,3-DIMETHYLPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CYCLOHEXANE	0.3	<0.1	0.1	<0.1	0.2	<0.1	0.1	<0.1	0.1	<0.1	<0.1	<0.1
2-METHYLHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,3-DIMETHYLPENTANE	0.6	<0.1	0.1	<0.1	0.2	<0.1	0.2	<0.1	0.2	<0.1	1.1	0.1
1,1-DIMETHYLCYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CYCLOHEXENE	ND	ND	ND	מא	ND	ND	ND	ND	ND	ND	DИ	סא
3-METHYLHEXANE	0.2	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.1	<0.1	2.3	0.2
CIS-1,3-DIMETHYLCYCLOPENTANE	ND	ND	ND	ND	0.1	<0.1	ND	NĎ	<0.1	<0.1	ND	ND
3-ETHYLPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TRANS-1,2-DIMETHYLCYCLOPENTANE	ND	ND	ND	מא	ND	ND	ND	ND	ND	ND	ND	ND
TRANS-1,3-DIMETHYLCYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-HEPTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-TRIMETHYLPENTANE	1.8	<0.1	0.2	<0.1	0.7	<0.1	0.4	<0.1	0.7	<0.1	0.2	<0.1
2-METHYL-1-HEXENE	ND	ND	ND	DИ	ND	ND	ND	ND	ND	ND	ND	ND
TRANS-3-HEPTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
HEPTANE	0.2	<0.1	0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.1	<0.1	0.1	<0.1
2-METHYL-2-HEXENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	<0.1
3-METHYL-TRANS-3-HEXENE	ND	ND	ND	DN	ND	ND	ND	ND	ND	ND	ND	ND
TRANS-2-HEPTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-ETHYL-CIS-2-PENTENE	ND	ND	ND	DM	ND	DN	סא	ND	ND	ND	ND	ND
2,4,4-TRIMETHYL-1-PENTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	<0.1
2,2,4-TRIMETHYL-1-PENTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	NĎ	ND	ND
2,3-DIMETHYL-2-PENTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CIS-2-HEPTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
METHYLCYCLOHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CIS-1,2-DIMETHYLCYCLOPENTANE	ND	ND_	<u> DN</u>	ND	ND	ND_	ND	ND	ND	<u> </u>	ND	ND

						Operating (Condition	3				
		Lea	an			Stoichic	ometric			Ric	h	
	With		w	ith		nout		ith		nout	W	
	Cate			alyst		alyst		alyst		alyst		lyst
	FTP	NMOG wt %	FTP mg/mi	NMOG wt %								
Compound 2.2-DIMETHYLHEXANE	mg/mi 0.3	<0.1	0.1	<0.1	ND	ND	<0.1	<0.1	0.2	<0.1	<0.1	<0.1
1,1,3-TRIMETHYLCYCLOPENTANE	ND	<0.1 ND	ND	<0.1 ND	ND	ND ND	ND	VD.1	ND	ND	ND	VO.1
2.4.4-TRIMETHYL-2-PENTENE	ND	ND ND	<0.1	<0.1	ND							
2,2,3-TRIMETHYLPENTANE	ND	ND	ND.	VO.1	ND ND	ND	ND	ND	ND	ND.	ND	ND
2,5-DIMETHYLHEXANE	ND	ND ND	ND ND	ND								
ETHYLCYCLOPENTANE	ND ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND
2,4-DIMETHYLHEXANE	0.3	<0.1	<0.1	<0.1	ND	ND	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-TRANS-2-CIS-4-TRIMETHYLCYCLOPENTANE	ND											
3,3-DIMETHYLHEXANE	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
1-TRANS-2-CIS-3-TRIMETHYLCYCLOPENTANE	ND	ND ND	ND	ND.	ND							
2.3.4-TRIMETHYLPENTANE	ND											
2,3,3-TRIMETHYLPENTANE	0.3	<0.1	0,1	<0.1	0.1	<0.1	<0.1	<0.1	0,3	<0.1	0.1	<0.1
TOLUENE	2.3	<0.1	0.5	<0.1	1.0	<0.1	0.5	0.1	1.7	<0.1	0.8	0.1
2,3-DIMETHYLHEXANE	0.4	<0.1	ND	ND	0.1	<0.1	ND.	ND.	0.1	<0.1	0.1	<0.1
1,1,2-TRIMETHYLCYCLOPENTANE	ND											
2-METHYLHEPTANE	ND	<0.1	<0.1									
3.4-DIMETHYLHEXANE	ND											
2,2,4,4-TETRAMETHYLPENTANE	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND
4-METHYLHEPTANE	ND											
2-METHYL-3-ETHYLPENTANE	ND											
2,6-DIMETHYLHEPTANE	ND											
3-METHYLHEPTANE	ND	<0.1	<0.1									
1-CIS,2-TRANS,3-TRIMETHYLCYCLOPENTANE	ND											
CIS-1,3-DIMETHYLCYCLOHEXANE	ND											
TRANS-1,4-DIMETHYLCYCLOHEXANE	ND	<0.1	<0.1	<0.1	<0.1							
3-ETHYLHEXANE	ND											
2,2,5-TRIMETHYLHEXANE	ND	<0.1	<0.1									
CIS-1-METHYL-3-ETHYLCYCLOPENTANE	ND											
1,1-DIMETHYLCYCLOHEXANE	ND											
TRANS-1-METHYL-2-ETHYLCYCLOPENTANE	ND	DND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND
		1312	NU	.,,,		ILD		1.1				

						Operating (Condition	8				
		Lea	an			Stoichic	ometric			Ric	ch	
<u>.</u>	With Cata			ith alyst		nout alyst		ith alyst		nout alyst		ith alyst
Compound	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %
1-METHYL-1-ETHYL-CYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,4-TRIMETHYLHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-TRIMETHYLHEXANE	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND
TRANS-1,2-DIMETHYLCYCLOHEXANE	ND	ND	ND	ND	ND	ND	DN	ND	ИD	ND	סא	ND
1-OCTENE	ND	ND	ИD	ND	ND	ND	ND	ND	ND	ND	ND	ND
TRANS-4-OCTENE	ND	DN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
OCTANE	ND	ND	ND	ND	<0.1	<0.1	ND	ND	ND	ND	0.2	<0.1
TRANS-2-OCTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TRANS-1,3-DIMETHYLCYCLOHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CIS-1,4-DIMETHYLOYCLOHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CIS-2-OCTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,3,5-TRIMETHYLHEXANE	ND	ПD	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CIS-1-METHYL-2-ETHYLCYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-METHYL-2-ETHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-DIMETHYLHEPTANE	0.6	<0.1	1.4	0.1	1.0	<0.1	1.2	0.1	0.3	<0.1	0.8	0.1
4,4-DIMETHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CIS-1,2-DIMETHYLCYCLOHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1	<0.1
ETHYLCYCLOHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PROPYLCYCLOHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-METHYL-4-ETHYLHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,6-DIMETHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,3-TRIMETHYLCYCLOHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,5-DIMETHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3,3-DIMETHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	DN	DИ
3,5-DIMETHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ETHYLBENZENE	0.4	<0.1	0.1	<0,1	0.3	<0.1	0.1	<0.1	0.2	<0.1	0.1	<0.1
2,3-DIMETHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m-& p-XYLENE	1.0	<0.1	0.1	<0,1	0.5	<0.1	0.2	<0.1	0.3	<0.1	0.3	<0.1
4-METHYLOCTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-METHYLOGTANE	ND	ND	ND	ND	0.1	<0.1	ND	ND	ND	DM	<0.1	<0.1

	<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>				Operating (Conditions	3				
		Lea	an			Stoichic	ometric			Ric	h	
	l I	nout alyst		ith alyst	With Cate	nout alyst		ith alyst	With Cate	nout alyst		ith alyst
	FTP	NMOG	FTP	NMOG	FTP	NMOG	FTP	NMOG	FTP	NMOG	FTP	NMOG
Compound	mg/mi	wt %	mg/mi	wt %	mg/mi	wt %	mg/mi	wt %	mg/mi	wt %	mg/mi	wt %
3-METHYLOCTANE	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	0.2 ND	<0.1 ND
STYRENE	ND	ND	ND	ND	ND	ND 10.1		<0.1	0.1	<0.1	0.2	<0.1
o-XYLENE	0.3	<0.1 ND	0.1	<0.1 ND	0.2 ND	<0.1 ND	0.1 ND	<u.1 ND</u.1 	ND.	<0.1 ND	ND	₹0.1 ND
2,4,6-TRIMETHYLHEXANE	ND	LOCAL CONTRACTOR CONTRACTOR	ND			ND		UD ND	ND ND	ND ND	ND	ND ND
1-NONENE	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND
NONANE	ND	ND	ND ND		ND ND	ND	ND ND	ND ND	ND ND	ND ND	<0.1	<0.1
ISOPROPYLBENZENE (CUMENE)	ND ND	ND ND	ND ND	ND ND	םא DN	ND	ND ND	ND ND	ND D	ND	0.1	<0.1 <0.1
2,2-DIMETHYLOCTANE	ND ND	ND ND	ND	ND	ND ND	ND	<0.1	<0.1	ND	ND	0.1	<0.1
2,4-DIMETHYLOCTANE n-PROPYLBENZENE	ND DN	ND ND	ND	ND	ND	ND	ND	VU.1	<0.1	<0.1	<0.1	<0.1
1-METHYL-3-ETHYLBENZENE	0.3	<0.1	0.1	<0.1	0.2	<0.1	0.1	<0.1	0.3	<0.1	0.1	<0.1
	0.3	<0.1	<0.1	<0.1 <0.1	ND	VO.1	<0.1	<0.1	0.1	<0.1	0.1	<0.1
1-METHYL-4-ETHYLBENZENE 1,3,5-TRIMETHYLBENZENE	0.1	<0.1	ND	ND	ND	ND	<0.1	<0.1	0.2	<0.1	0.4	<0.1
1-METHYL-2-ETHYLBENZENE	0.1	<0.1 <0.1	ND ND	ND ND	<0.1	<0.1	0.1	<0.1	0.1	<0.1	0.1	<0.1
1,2,4-TRIMETHYLBENZENE	0.1	<0.1	0.2	<0.1	0.1	<0.1	0.1	<0.1	0.3	<0.1	0.2	<0.1
DECANE	0.3	<0.1	0.2	<0.1 <0.1	0.2	<0.1	0.1	<0.1	0.1	<0.1	0.1	<0.1
ISOBUTYLBENZENE	0.1	<0.1	0.2	<0.1	0.2	<0.1	0.1	<0.1	0.1	<0.1	0.1	<0.1
METHYLPROPYLBENZENE	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND
S-BUTYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-METHYL-3-ISOPROPYLBENZENE	0.1	<0.1	ND	D	ND	ND	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,2,3-TRIMETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-METHYL-4-ISOPROPYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	<0.1	ND	ND
IND AN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	<0.1
1-METHYL-2-ISOPROPYLBENZENE	<0.1	<0.1	ND	ND	ND	ND	ND	ND	<0.1	<0.1	<0.1	<0.1
1.3-DIETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	NĐ	ND	ND	ND
1,4-DIETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.2	<0.1
1-METHYL-3-N-PROPYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-METHYL-4-N-PROPYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2 DIETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-METHYL-2-N-PROPYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

TABLE L-1 (CONT'D). SUMMARY OF SPECIATED EXHAUST EMISSIONS FROM ETHANOL

						Operating (Conditions	9				
		Lea	an			Stoichi	ometric			Ric	ch_	
·	With Cata			ith alyst	4	nout alyst	1	ith alyst	LL .	hout alyst	l .	ith alyst
Compound	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %
1,4-DIMETHYL-2-ETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-DIMETHYL-4-ETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND
1,2-DIMETHYL-4-ETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	<0.1
1.3-DIMETHYL-2-ETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
UND ECANE	ND	ND	<0.1	<0.1	ND	ND	ND	ND	ND	ND	<0.1	<0.1
1,2-DIMETHYL-3-ETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	<0.1
1,2,4,5-TETRAMETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-METHYLBUTYLBENZENE (sec AMYLBENZENE)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3.4 DIMETHYLCUMENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3,5-TETRAMETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TERT-1-BUT-2-METHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	<0.1
1,2,3,4-TETRAMETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-PENT-BENZENE	0.2	<0.1	0.3	<0.1	0.1	<0.1	0.2	<0.1	ND	ND	ND	ND
TERT-1-BUT-3,5-DIMETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NAPHTHALENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DODECANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1	<0.1
FORMALDEHYDE	318.2	2.9	6.1	0.6	166.1	3.2	5.3	0.6	172.4	3.0	7.2	0.6
ACETALDEHYDE	1131.2	10.4	52.5	5.4	478.1	9.2	66.2	7.1	458,4	8.0	63.4	5.5
ACROLEIN	10.5	0.1	0.4	<0.1	5.8	0.1	0.6	0.1	3.1	0.1	0.4	<0.1
ACETONE	0.1	<0.1	0.2	<0.1	0.2	<0.1	2.8	0.3	0,4	<0.1	9.9	0,9
PROPIONALDEHYDE	1.6	<0.1	0.2	<0.1	0.6	<0.1	0.9	0.1	0.9	<0.1	0.8	0.1
CROTONALDEHYDE	0.2	<0,1	0.3	<0.1	ND	ND	0,5	0.1	0.1	<0.1	0.8	0,1
ISOBUTYRALDEHYDE	ND	ND	0.1	<0.1	ND	ND	0.2	<0.1	0.2	<0.1	0.7	0.1
METHYL ETHYL KETONE	ND	ИD	0.1	<0.1	ND	ND	0,2	<0.1	0.2	<0.1	0.7	0.1
BENZALDEHYDE	0.9	<0.1	<0.1	<0.1	0.5	<0.1	0.2	<0.1	0.5	<0.1	0.1	<0.1
HEXANALDEHYDE	ND	ND	ND	ND	ND:	ND	0.1	<0.1	ND	ND	0,8	0.1
SUMMATION OF NON-METHANE COMPOUNDS	10836.6	100.0	978.3	100.0	5198.0	100.0	933.6	99.9	5737.8	99.9	1155.2	99.8
ND - not detected												

APPENDIX M

AVERAGE SPECIATED EMISSIONS RESULTS FROM FTPs WITH METHANOL

TABLE M-1. SUMMARY OF SPECIATED EXHAUST EMISSIONS FROM METHANOL

						Operating (Conditions					
		Lea	n			Stoichic	ometric			Ric	:h	
	With Cata		Wi Cata		II.	nout alyst	W Cate			nout alyst	Wi Cata	
Compound	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %
METHANE	14.1		6.3		27.5		12.5		27.5		23.9	
ETHANE	0.4	<0.1	0.1	<0.1	0.8	<0.1	0.2	<0,1	0.7	<0.1	0.4	0,1
ETHYLENE	7.4	0.1	0.3	0.1	10.6	0.2	0.6	0.1	7.5	0.2	0.3	<0.1
PROPANE	<0.1	<0.1	<0.1	<0.1	<0,1	<0.1	<0.1	<0.1	<0.1	<0,1	<0.1	<0.1
PROPYLENE	1.9	<0.1	0.1	<0.1	1.9	<0.1	0.1	<0.1	1.7	<0.1	0.1	<0.1
ACETYLENE	2.7	<0.1	0.8	0.1	4.2	0.1	0.3	0.1	4.4	0.1	0.5	0.1
PROPADIENE .	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BUTANE	0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.1	<0.1	0.1	<0.1
TRANS-2-BUTENE	0.2	<0.1	ND	ND	0.1	<0.1	ND	ND	<0.1	<0.1	<0.1	<0.1
1-BUTENE	0.3	<0.1	<0.1	<0.1	0.3	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1
2-METHYLPROPENE (ISOBUTYLENE)	0.9	<0.1	0.1	<0.1	0.7	<0.1	<0.1	<0.1	0.7	<0.1	0.1	<0.1
2,2-DIMETHYLPROPANE (NEOPENTANE)	<0.1	<0,1	ND	ND	<0.1	<0.1	ND	ND	<0.1	<0.1	<0.1	<0.1
PROPYNE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-BUTADIENE	0.6	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.4	<0.1	ND	ND
2-METHYLPROPANE (ISOBUTANE)	ND	ND '	ND	ND	<0.1	<0.1	ND	ND	0.1	<0.1	<0.1	<0.1
1-BUTYNE	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND
METHANOL	7860.0	91.0	623.1	95.4	4969.8	91.7	602.9	95.2	4403.5	92.1	747.3	95.2
CIS-2-BUTENE	0.1	<0.1	ND	ND	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
3-METHYL-1-BUTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ETHANOL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-METHYLBUTANE (ISOPENTANE)	0.8	<0.1	<0.1	<0.1	0.3	<0.1	<0.1	<0.1	0.4	<0.1	0.1	<0.1
2-BUTYNE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-PENTENE	ND	ND	ND	ND	0.1	<0.1	ND	ND	0.2	<0.1	0.1	<0.1
2-METHYL-1-BUTENE	0.2	<0.1	0.1	<0.1	<0.1	<0.1	0,1	<0.1	0.1	<0.1	0.1	<0.1
PENTANE	0.3	<0.1	0.1	<0.1	0.3	<0.1	0.1	<0.1	0.7	<0.1	0.3	<0.1
2-METHYL-1,3-BUTADIENE	0.1	<0.1	<0.1	<0.1	0.1	<0.1	ND	ND	<0.1	<0.1	ND	ND
TRANS-2-PENTENE	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1
3,3-DIMETHYL-1-BUTENE	ND	ND	ND	ND	ND	ND	ND	ND	0.1	<0.1	ND	ND
CIS-2-PENTENE	0.1	<0.1	0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-METHYL-2-BUTENE	0.2	-0.1	∠ 0.1	-0.1	0.2	-0.1	0.1	-0.1	0.1		z0,1	

						Operating (Conditions	3				
		Lea	an			Stoichic	ometric			Ri	ch	
·	With Cata		W Cata		15	hout alyst		ith alyst	11	hout alyst	B	ith alyst
	FTP	NMOG	FTP	NMOG	FTP	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %
Compound	mg/mi	wt %	mg/mi	wt %	mg/mi	<0.1	ND ND	ND	0.1	<0.1	ND	ND
CYCLOPENTADIENE	0.2 0,2	<0.1	ND 0.1	<0.1	0.1 0.3	<0.1 <0.1	<0.1	<0.1	0.7	<0.1	<0.1	<0.1
2,2-DIMETHYLBUTANE	\$2,000 KT 100000000000000000000000000000000	<0.1 ND	V, I ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CYCLOPENTENE	ND	<0.1	ND	ND ND	ND ND	ND	ND	ND I	<0.1	<0.1	ND	ND
4-METHYL-1-PENTENE	0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	ND	ND	0.1	<0.1	0.1	<0.1
3-METHYL-1-PENTENE	0.1	<u.1 ND</u.1 	<0.1 ND	<u.1 ND</u.1 	ND	VU.1	ND ND	ND	ND.	ND	ND	ND.
CYCLOPENTANE	ND 0.2	- NU -<0.1	<0.1	- UN - <0.1	0.2	<0.1	<0.1	<0.1	0.2	<0.1	0.1	<0.1
2,3-DIMETHYLBUTANE	ND	ND	ND.	₹0.1 ND	ND	VO.1	ND	ND	ND	ND	ND	ND
MTBE 2,3-DIMETHYL-1-BUTENE	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-METHYL-CIS-2-PENTENE	DND DN	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-METHYL-CIS-2-PENTENS 2-METHYLPENTANE	0.3	<0.1	0.2	<0.1	0.4	<0.1	0.1	<0.1	0.6	<0.1	0.4	<0.1
4-METHYL-TRANS-2-PENTENE	ND	ND	ND	ND	ND	ND	ND.	ND	ND.	ND	ND	ND
3-METHYLPENTANE	0.3	<0.1	0.4	0.1	0.3	<0.1	0.1	<0.1	0.3	<0.1	0.5	0.1
2-METHYL-1-PENTENE	0.1	<0.1	ND	ND.	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-HEXENE	0.1	<0.1	ND	ND	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
HEXANE	0.2	<0.1	0.1	<0.1	0.2	<0.1	<0.1	<0.1	0.2	<0.1	0,2	<0.1
TRANS-3-HEXENE	ND	ND	ND	ND	ND	ND	ND	ND	0.1	<0.1	0.1	<0.1
CIS-3-HEXENE	0.2	<0.1	0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRANS-2-HEXENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-METHYL-TRANS-2-PENTENE	0.1	<0.1	ND	ND	0.1	<0.1	ND	ND	0.1	<0.1	0.1	<0.1
2-METHYL-2-PENTENE	ND	ND	ND	ND	ND	ND	ND	ND	0.1	<0.1	<0.1	<0.1
3-METHYLCYCLOPENTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NĎ
CIS-2-HEXENE	<0.1	<0.1	ND	ND	ND	ND	ND	ND	0.1	<0.1	0.1	<0.1
ETBE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-METHYL-CIS-2-PENTENE	<0.1	<0.1	0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.1	<0.1	0.1	<0.1
2.2-DIMETHYLPENTANE	0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1
METHYLCYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-DIMETHYLPENTANE	0.3	<0.1	0.1	<0.1	0.2	<0.1	<0.1	<0.1	0.1	<0.1	0.1	<0.1
2,3,3-TRIMETHYL-1-BUTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2.2.3-TRIMETHYLBUTANE	0.2	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1

						Operating (Condition	3				
		Lea	an			Stolchi	ometric			Ric	ch	
	With Cata			alyst	Cat	hout alyst	Cat	ith alyst	Cata	hout alyst	Cata	ith alyst
Compound	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %
3,4-DIMETHYL-1-PENTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-METHYLCYCLOPENTENE	ND	ND	<0.1	<0.1	ND	ND	ND	ND	ND	ND	<0.1	<0.1
BENZENE	1.4	<0.1	0.1	<0.1	1.4	<0.1	0.1	<0.1	1.6	<0.1	0.2	<0.1
3-METHYL-1-HEXENE	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND
3,3-DIMETHYLPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CYCLOHEXANE	0.2	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	0.2	<0.1	0.1	<0.1
2-METHYLHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,3-DIMETHYLPENTANE	0.4	<0.1	0.1	<0.1	0.3	<0.1	0.1	<0.1	0.3	<0.1	0.4	<0.1
1,1-DIMETHYLCYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CYCLOHEXENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-METHYLHEXANE	0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1
CIS-1,3-DIMETHYLCYCLOPENTANE	ND	ND	<0.1	<0.1	ND	ND	ND	ND	0.1	<0.1	<0.1	<0.1
3-ETHYLPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TRANS-1,2-DIMETHYLCYCLOPENTANE	ND "	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND
TRANS-1,3-DIMETHYLCYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-HEPTENE	DИ	ND	ND	DN	ND	ND	סא	ND	ND	ND	ND	ND
2,2,4-TRIMETHYLPENTANE	1.7	<0.1	0.2	<0.1	1.1	<0.1	0.1	<0.1	1.2	<0.1	0.4	0.1
2-METHYL-1-HEXENE	ND	ND	ND	ND	ND	ND	ND	DN	ND	ND	ND	ND
TRANS-3-HEPTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
HEPTANE	0.2	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.1	<0.1	0.1	<0.1
2-METHYL-2-HEXENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-METHYL-TRANS-3-HEXENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TRANS-2-HEPTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-ETHYL-CIS-2-PENTENE	ND	ND	ND	ИD	DN	ND	ND	ND	ND	ND	DN	ND
2,4,4-TRIMETHYL-1-PENTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-TRIMETHYL-1-PENTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,3-DIMETHYL-2-PENTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CIS-2-HEPTENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
METHYLCYCLOHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CIS-1,2-DIMETHYLOYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

						Operating (Conditions					
		Lea	an			Stoichic	ometric			Ric	ch	
	With Cata			ith alyst	11	hout alyst		ith alyst		hout alyst	W Cata	ith alyst
	FTP	NMOG	FTP	NMOG	FTP	NMOG	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %
Compound	mg/mi	wt %	mg/mi	wt %	mg/mi	wt % <0.1	mg/mi <0.1	<0.1	0.2	<0.1	0.1	<0.1
2,2-DIMETHYLHEXANE	0.3 ND	<0.1 ND	<0.1 ND	<0.1 ND	0.1 ND	<0.1 ND	ND	<u.1 ND</u.1 	ND	ND	ND	ND
1,1,3-TRIMETHYLOYOLOPENTANE	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,4-TRIMETHYL-2-PENTENE	ND	ND	ND ND	ND	ND ND	ND	ND	ND.	ND	ND	ND	ND
2,2,3-TRIMETHYLPENTANE 2,5-DIMETHYLHEXANE	0.0	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
1 '	ND	ND	ND ND	ND ND	ND.	ND.	ND ND	ND.	ND	ND	ND	ND
ETHYLCYCLOPENTANE 2.4-DIMETHYLHEXANE	0.3	(0.1	0.1	<0.1	0.2	<0.1	ND	ND	0.2	<0.1	0.1	<0.1
1-TRANS-2-CIS-4-TRIMETHYLOYOLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND
3.3-DIMETHYLHEXANE	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-TRANS-2-CIS-3-TRIMETHYLCYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2.3.4-TRIMETHYLPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,3,3-TRIMETHYLPENTANE	0.5	<0,1	<0.1	<0.1	0.4	<0.1	<0.1	<0.1	0.3	<0.1	0.1	<0.1
TOLUENE	2.9	<0.1	0.7	0.1	0.6	<0.1	0.2	<0.1	1.8	<0.1	0.7	0.1
2.3-DIMETHYLHEXANE	0.4	<0.1	ND	ND.	ND.	ND	ND	ND	0.1	<0.1	ND	ND
1,1,2-TRIMETHYLCYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-METHYLHEPTANE	ND	ND	<0.1	<0.1	ND	ND	ND	ND	ND	ND	ND	ND
3,4-DIMETHYLHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4,4-TETRAMETHYLPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-METHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-METHYL-3-ETHYLPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2.6-DIMETHYLHEPTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-METHYLHEPTANE	ND	ND	<0.1	<0.1	ND	ND	ND	ND	<0.1	<0.1	ND	ND
1-CIS,2-TRANS,3-TRIMETHYLCYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CIS-1,3-DIMETHYLCYCLOHEXANE	ND	DZ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TRANS-1,4-DIMETHYLCYCLOHEXANE	0.1	<0.1	ND	ND	0.1	<0.1	ND	ND	<0.1	<0.1	ND	ND
3-ETHYLHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,5-TRIMETHYLHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CIS-1-METHYL-3-ETHYLCYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-DIMETHYLCYCLOHEXANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TRANS-1-METHYL-2-ETHYLCYCLOPENTANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

					. (Operating (Conditions	3				
		Lea	ın			Stoichic	metric			Ric	h	
	With			ith	4	out		ith		hout	Wi	
	Cata			alyst		alyst		alyst		alyst	Cata	
Compound	FTP mg/mi	NMOG wt %										
1-METHYL-1-ETHYL-CYCLOPENTANE	ND											
2,4,4-TRIMETHYLHEXANE	ND	ND.	ND	ND	ND	ND						
2,2,4-TRIMETHYLHEXANE	ND											
TRANS-1,2-DIMETHYLCYCLOHEXANE	ND											
1-OCTENE	ND											
TRANS-4-OCTENE	ND											
OCTANE	ND	<0.1	<0.1	ND	ND							
TRANS-2-OCTENE	ND											
TRANS-1,3-DIMETHYLCYCLOHEXANE	ND											
CIS-1,4-DIMETHYLCYCLOHEXANE	ND	ND	ND	ND	DN	ND						
CIS-2-OCTENE	ND											
2,3,5-TRIMETHYLHEXANE	ND	ND	ND	ND	סא	ND						
CIS-1-METHYL-2-ETHYLCYCLOPENTANE	ND											
2-METHYL-2-ETHYLHEPTANE	ND											
2,4-DIMETHYLHEPTANE	0.4	<0.1	1.0	0.2	0.6	<0.1	1.0	0.2	0.5	<0.1	0.9	0.1
4,4-DIMETHYLHEPTANE	ND	ND	ИĎ	ND	ND	ДИ	ND	DИ	ND	DN	ND	ND
CIS-1,2-DIMETHYLCYCLOHEXANE	ND											
ETHYLCYCLOHEXANE	ND	ND	ND	ND	סא	ND						
PROPYLCYCLOHEXANE	ND											
2-METHYL-4-ETHYLHEXANE	ND	ND	ND	ND	סא	ND						
2,6-DIMETHYLHEPTANE	ND											
1,1,3-TRIMETHYLOYCLOHEXANE	ND											
2,5-DIMETHYLHEPTANE	ND											
3,3-DIMETHYLHEPTANE	ND	ND	ND	DN	ND							
3,5-DIMETHYLHEPTANE	ND											
ETHYLBENZENE	0.2	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1
2,3-DIMETHYLHEPTANE	ND	ND 										
m-& p-XYLENE	0.6	<0.1	0.1	<0.1	0.3	<0.1	0.1	<0.1	0.4	<0.1	0.1	<0.1
4-METHYLOCTANE	ND											
2-METHYLOCTANE	ND.	ND	DN	ND	<u>ND</u>	ND ND	ND	ND	ND	<u>ND</u>	ND	ND

						Operating (Conditions	3				
		Lea	an			Stoichic	ometric			Ric	h	
	With	out	W	ith		out		ith	With		Wi	
	Catal			alyst		ılyst		alyst	Cata		Cata	
	FTP	NMOG	FTP	NMOG	FTP mg/mi	NMOG wt %						
Compound	mg/ml	wt %	mg/mi ND	wt %	ND							
3-METHYLOCTANE	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
STYRENE	0.2	עאו <0.1	<0.1	<0.1	0.1	<0.1	0.1	<0.1	0.3	<0.1	0.1	<0.1
o-XYLENE 2,4,6-TRIMETHYLHEXANE	ND	<0.1 ND	ND	₹0.1 ND	ND	ND	ND	VD.1	ND	ND	ND	ND ND
1-NONENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NONANE	ND.	ND	ND	ND.	ND	ND	ND	ND ND	ND	ND	ND	ND
ISOPROPYLBENZENE (CUMENE)	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	<0.1	ND	ND
2.2-DIMETHYLOCTANE	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-DIMETHYLOCTANE	ND	ND	ND	ND	ND	ND	ND	ND	<0.1	<0.1	ND	ND
n-PROPYLBENZENE	ND	ND	<0.1	<0.1	ND	ND	ND	ND	<0.1	<0.1	ND	ND
1-METHYL-3-ETHYLBENZENE	0.3	<0.1	ND	ND	0.2	<0.1	<0.1	<0.1	0.3	<0.1	0.1	<0.1
1-METHYL-4-ETHYLBENZENE	0.1	<0.1	ND	ND	0.2	<0.1	<0.1	<0.1	0,1	<0.1	ND	ND
1,3,5-TRIMETHYLBENZENE	0.1	<0.1	ND	ND	0.1	<0.1	ND	ND	0.1	<0.1	<0.1	<0.1
1-METHYL-2-ETHYLBENZENE	<0.1	<0.1	ND	ND	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND	ND
1.2.4-TRIMETHYLBENZENE	0.6	<0.1	0.2	<0.1	0.3	<0.1	0.1	<0.1	0.6	<0.1	0.1	<0.1
DECANE	0.2	<0.1	0.1	<0.1	0,1	<0.1	0.1	<0.1	0.1	<0.1	0.2	<0.1
ISOBUTYLBENZENE	0.2	<0.1	0.1	<0.1	<0.1	<0.1	0.1	<0.1	0.1	<0.1	0.1	<0.1
METHYLPROPYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
S-BUTYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-METHYL-3-ISOPROPYLBENZENE	<0.1	<0.1	ND	ND	ND	ND	ND	ND	<0.1	<0.1	ND	ND
1,2,3-TRIMETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-METHYL-4-ISOPROPYLBENZENE	ND	ND	DИ	ND	ND	ND	ND	ND	ND	ND	ND	ND
IND AN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-METHYL-2-ISOPROPYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-DIETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-DIETHYLBENZENE	ND	ND	ND	ND	ND	ND	DN	ND	ND	ND	ND	ND
1-METHYL-3-N-PROPYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-METHYL-4-N-PROPYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND .	ND	ND	ND
1,2 DIETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-METHYL-2-N-PROPYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

						Operating (Conditions	3				
		Lea	an			Stolchic	ometri <u>c</u>			Ric	ch	
	With Cate	nout alyst		ith alyst	ia -	hout alyst		ith alyst		nout alyst		ith alyst
Compound	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %	FTP mg/mi	NMOG wt %
1,4-DIMETHYL-2-ETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-DIMETHYL-4-ETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-DIMETHYL-4-ETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-DIMETHYL-2-ETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
UND ECANE	<0.1	<0.1	ND	ND	<0.1	<0.1	0.1	<0.1	ND	ND	ND	ND
1,2-DIMETHYL-3-ETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-TETRAMETHYLBENZENE	ND	ND	ND	ИD	ND	ND	ND	ND	ND	ND	ND	ND
2-METHYLBUTYLBENZENE (sec AMYLBENZENE)	ND	ND	ДИ	ND	ND	ND	ND	ND	ND	ND	ND	ND
3,4 DIMETHYLCUMENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3,5-TETRAMETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	DN
TERT-1-BUT-2-METHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3,4-TETRAMETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	DN	ND	ND	ND	ND
N-PENT-BENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TERT-1-BUT-3,5-DIMETHYLBENZENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NAPHTHALENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DODECANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
FORMALDEHYDE	736.1	8.5	23.9	3.7	409.3	7.6	24.4	3.8	343.8	7.2	29.7	3.8
AGETALDEHYDE	6.3	0,1	0.1	<0.1	8.7	0.2	0.9	0,1	1.9	<0.1	0.1	<0.1
ACROLEIN	0.8	<0.1	ND	ND	1.4	<0.1	<0.1	<0.1	0.3	<0.1	ND	ND
ACETONE	0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0,1
PROPIONALDEHYDE	0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
CROTONALDEHYDE	ND	ND	ND	ND	ND	ND	ND	ИD	ND	ND	ND	ND
ISOBUTYRALDEHYDE	ND	ND	<0.1	<0.1	ND	ND	<0.1	<0.1	ND	ND	<0.1	<0.1
METHYL ETHYL KETONE	ND	ND	<0.1	<0.1	ND	ND	<0.1	<0,1	ND	ND	<0.1	<0.1
BENZALDEHYDE	0.5	<0.1	ND	ND	0.1	<0.1	0.5	0.1	<0.1	<0.1	<0.1	<0.1
HEXANALDEHYDE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SUMMATION OF NON-METHANE COMPOUNDS	8634.5	99.9	653.0	99.9	5418.6	100.0	633.1	100.0	4778.9	100.0	785.1	100.0
ND - not detected												

REPORT DOCUMENTATION PAGE

18. SECURITY CLASSIFICATION

OF THIS PAGE

Form Approved OMB NO. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED 1. AGENCY USE ONLY (Leave blank) September1997 Subcontract report 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Determination of Alternative Fuels Combustion Products: Phase I Report (C)YAW-3-13253-01 (TA) FU703630 6. AUTHOR(S) K.A. Whitney 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Southwest Research Institute 6220 Culebra Road San Antonio, TX 78228 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER National Renewable Energy Laboratory 1617 Cole Boulevard NREL/TP-425-7528 Golden, CO 80401-3393 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE National Technical Information Service UC-1504 U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 13. ABSTRACT (Maximum 200 words) This report describes the laboratory effort to identify and quantify organic exhaust species generated from alternative fuel light-duty vehicles operating over the Federal Test Procedure on compressed natural gas, liquefied petroleum gas, methanol, ethanol, and reformulated gasoline. The exhaust species from these vehicles were identified and quantified for fuel/air equivalence ratios of 0.8, 1.0, and 1.2, nominally, and were analyzed with and without a vehicle catalyst in place to determine the influence of a catalytic converter on species formation. 14. SUBJECT TERMS 15. NUMBER OF PAGES

OF REPORT

17. SECURITY CLASSIFICATION

Alternative fuels, transportation fuels, air quality, combustion

150

19. SECURITY CLASSIFICATION

OF ABSTRACT

16. PRICE CODE

20. LIMITATION OF ABSTRACT