September 1995 • NREL/TP-425-7633

Long-Term Methanol Vehicle Test Program

þ

ų

ų

ų

ų

Final Subcontract Report 1 November 1992 – 1 February 1995

J.C. Jones, T.T. Maxwell Texas Tech University Lubbock, Texas

National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 A national laboratory of the U.S. Department of Energy Managed by the Midwest Research Institute for the U.S. Department of Energy Under Contract No. DE-AC36-83CH10093

Long-Term Methanol Vehicle Test Program

Final Subcontract Report 1 November 1992 – 1 February 1995

J. C. Jones, T. T. Maxwell Texas Tech University Lubbock, Texas

NREL technical monitor: C. Colucci

National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 A national laboratory of the U.S. Department of Energy Managed by Midwest Research Institute for the U.S. Department of Energy under contract No. DE-AC36-83CH10093

Prepared under Subcontract No. AAE-5-12245-01

September 1995

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. This publication was reproduced from the best available camera-ready copy submitted by the subcontractor and received no editorial review at NREL.

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available to DOE and DOE contractors from: Office of Scientific and Technical Information (OSTI) P.O. Box 62 Oak Ridge, TN 37831 Prices available by calling (615) 576-8401

Available to the public from: National Technical Information Service (NTIS) U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 (703) 487-4650

Printed on paper containing at least 50% wastepaper, including 10% postconsumer waste

:

1. Background and Objective

Methanol, one of the leading alternatives to gasoline as a motor vehicle fuel, has been highlighted in national competitions such as the Society of Automotive Engineers (SAE) Methanol Marathon in 1989 and the SAE Methanol Challenge in 1990, but little has been done in the area of long-term testing of methanol as a motor vehicle fuel. To address this shortcoming, a 1988 Chevrolet Corsica was modified by Texas Tech University to serve as a test bed to determine the long-term effects of methanol on engine and emission systems performance. The vehicle was previously modified to operate on M85 for the SAE Methanol Marathon/Challenge competitions; it was further modified for M100 operation for the long-term test program.

The objective of this project was to determine the effects of methanol fuel on engine performance and exhaust emissions during long-term use. Engine wear, gasket performance, fuel economy, emissions level, oil consumption, and overall vehicle performance were monitored over approximately 22,000 miles of vehicle operation. Vehicle performance, oil consumption, and emissions baselines were established initially to be used for comparative purposes during the program. The engine was removed from the vehicle and disassembled, and all bearing and ring clearances and cam profiles were measured to determine any preexisting wear. All gaskets, seals, bearings, and piston rings were replaced. The cylinder bore was honed, valve and valve seats were lapped, and the crankshaft journals were polished. Higher flow rate fuel injectors supplied by AC Rochester were installed and the computer system was calibrated for M100 fuel.

At the completion of the program, after the mileage accumulation phase, the vehicle emissions level, oil consumption, and engine performance were again determined. The engine was removed from the vehicle, disassembled, and engine component wear was determined and compared with the initial condition.

2. Vehicle Modifications

The Corsica was initially modified to operate on M85 for the SAE Methanol Marathon/Challenge competitions [1 and 2]. The vehicle won 2nd place overall in the 1990 Methanol Challenge, placing 1st in endurance fuel economy, 2nd in acceleration, and demonstrating excellent emissions and maneuverability. Table 1 summarizes the major event rankings for the Texas Tech Corsica.

	2 nd Place Overali											
1 st P	1 st Place Endurance Fuel Economy											
	2 nd Place Acceleration											
FT	FTP Emissions Results (g/mi)											
HC	HC 0.04 NO _x 0.71											
NMHC	0.03	СН₃ОН	0.29									
СО	0.60	OMHCE	0.16									
l (miles	TP Fuel Econo per gallon ga	omy Results soline equival	ent)									
Ci	ty	21	.6									
High	way	41	.0									
55/45 City	/Highw ay	27	. .4									

Table 1. Major Event Rankings for TTU Corsicain 1990 SAE Methanol Challenge

A methanol-compatible fuel system (tank, pump, lines, fuel rail, and injectors) was installed for the SAE competitions. GM delivered the Corsica with a computer interface which allowed modifications to be made to the engine control maps during engine operation. The engine stroke was increased to take advantage of the increased amount of exhaust product and slower burning characteristics of methanol. To ensure good fuel economy, the bore was decreased to maintain a displacement of 2.8 liters. The crankshaft from a 1990 3.1-liter GM V-6 engine was used to achieve a stroke increase from 2.99 inches to 3.31 inches. Because methanol has a higher octane rating than gasoline, the compression ratio was increased to 11.7:1 by installing custom flat-top pistons with a centered pin-bore. The piston material contains a high silicon content for low coefficient of thermal expansion, good wear resistance, and high-temperature strength. The top piston ring was changed to a chrome ring to maximize the amount of heat retained in the combustion chamber to enhance the vaporization of fuel. The oil ring was also changed to reduce friction. A custom camshaft was employed to compensate for the slow burn characteristics of methanol. The lobe centers and duration were changed to allow a longer burn time during the power stroke. Cam specifications are presented in Table 2. Roller-tip rocker arms were used to reduce friction and valve guide wear. To compensate for the increase in exhaust flow, a larger 2-1/4inch exhaust pipe diameter was used between the exhaust manifold and the catalytic converter. From the catalytic converter, the exhaust pipe diameter is 2-1/2 inches. Allied-Signal, Inc., Tulsa, Oklahoma, provided the specially designed light-off and main catalysts to control exhaust emissions. The light-off converter is located near the exhaust manifold in order to reach operating temperature as quickly as possible after engine start. Heated air from around the exhaust manifold is supplied to the air cleaner at temperatures below 30°C to enhance cold starting and driveability.

Long-Term Methanol Vehicle Test Program — Final Report

To increase fuel economy, the 5th gear ratio was lowered from 0.72:1 to 0.603:1. This resulted in a decrease in engine speed at 60 mph from 2200 to 1875 rpm. This modification takes advantage of the increased torque the engine produces. To prevent body roll in tight cornering, a larger sway bar and gas shocks were installed at the rear axle. These additions provided greater driving stability to the vehicle.

3. Engine Calibration and Fuel Properties

At program initiation after the engine was installed in the Corsica, chassis dynamometer testing was accomplished for engine/vehicle final calibration and performance evaluation. Rich conditions under deceleration were experienced and could not be corrected due to lack of electronic control module (ECM) deceleration table addresses. As a result, the vehicle experienced a slight idle instability after deceleration to a stop. The ECM calibration tables are included in Appendix A. Engine starting was acceptable at temperatures above 15°C, but considerable difficulty was experienced in starting the vehicle during winter conditions. As a result, the engine accumulated an abnormal amount of time under cold-cranking conditions with inadequate lubrication

A problem arose during the pretest engine dynamometer testing with the M100 fuel. This fuel had been stored for over a year, and upon opening a 55-gallon drum an atypical smell was noted as compared to that of M100 racing fuel. This fuel was used during the first series of dynamometer tests and the engine control system calibration

	Cyl 1	Cyl 2	Cyl 3	Cyl 4	Cyl 5	Cyl 6	Avg	Variance	
Intake & Exhaust									
Lobe Center Sep	111.1	111.0	110.9	110.8	111.1	111.1	111.0	0.3	Cam Deg
Valve Overlap	-27.6	-27.5	-27.2	-27.2	-27.8	-28.0	-27.5	0.4	Crank Angle
Intake									
Valve Opening	-7.8	-7.8	-7.6	-7.6	-7.9	-8	-7.8	0.2	Deg BTDC
Lobe Center	104.6	104.5	104.4	104.3	104.5	104.5	104.5	0.1	Deg ATDC
Valve Closure	22.5	22.5	22.2	22.2	22.2	22.1	22.3	0.2	Deg ABDC
Duration	194.7	194.7	194.6	194.6	194.3	194.1	194.5	0.3	Crank Deg
Max Cam Lift	0.26031	0.26028	0.25992	0.25988	0.25854	0.2585	0.25957	0.00091	Inch
Net Valve Lift	0.39047	0.39041	0.38988	0.38982	0.38781	0.38776	0.38936	0.00136	Inch
Lobe Area	18.61	18.64	18.63	18.61	18.47	18.45	18.57	0.09	In * Deg
Exhaust									
Valve Opening	34.1	34.2	33.9	34	34.1	34	34.1	0.1	Deg BTDC
Lobe Center	117.5	117.5	117.4	117.3	117.6	117.5	117.5	0.1	Deg ATDC
Valve Closure	-19.8	-19.8	-19.6	-19.6	-19.9	-20	-19.8	0.2	Deg ABDC
Duration	194.3	194.4	194.3	194.4	194.2	194	194.3	0.2	Crank Deg
Max Cam Lift	0.25933	0.25917	0.25921	0.25906	0.25902	0.25906	0.25914	0.00016	Inch
Net Valve Lift	0.389	0.38876	0.38882	0.38858	0.38852	0.38858	0.38871	0.00024	Inch
Lobe Area	18.47	18.54	18.5	18.53	18.46	18.44	18.49	0.05	ln * Deg

Mechanical Engineering Department

Texas Tech University

ę.

was difficult due to extremely rich conditions and exhaust temperatures were lower than typical. After a few minutes of operation the O_2 sensor failed. The fuel was then tested using a procedure developed by V-P Hydrocarbons, which involves the addition of 10 parts hydrochloric acid and calcium chloride solution, 5 parts phenolphtalein and methanol solution, and 10 parts sodium hydroxide solution to 30 parts of the tested methanol. The result was a very cloudy solution, which, according to the test protocol, was unacceptable. Laboratory-grade methanol (99.98%) was also tested and resulted in a clear solution. The fuel was also used in the vehicle after the engine was reinstalled. When driving, a wide variance in the block learn memory was noted; thus, the engine idle was erratic and unstable. Occasionally, the engine would die during rapid acceleration.

Air Products and Chemicals, Allentown, Pennsylvania, which was providing the M100 for the program at no cost, was contacted and two samples of the fuel were sent to them for analysis. Gas chromatographic analysis of the samples did not disclose any obvious reasons why this fuel did not perform satisfactorily in the Corsica. This fuel was discarded and fresh fuel from the Air Products facility in LaPorte, Texas, was used during the remainder of the program without any further problems. Table 3 shows assays of the typical product and the two samples analyzed by Air Products.

Constituent	M100 Assay (Wt.%)	Sample 1 (Wt. %)	Sample 2 (Wt. %)
1. Methanol	96.590	97.030	97.060
2. Dissolved Gases (Air+CO2)	0.126	0.000	0.000
3. Dimethyl Ether	0.012	0.000	0.000
4. Methyl Formate	0.924	0.700	0.700
5. Water	0.605	0.550	0.550
6. Ethanol	0.678	0.630	0.640
7. Methyl Acetate	0.166	0.140	0.130
8. n-Propanol	0.260	0.320	0.320
9. Methyl Ethyl Ketone	0.048	0.010	0.010
10. SEC–Butanol	0.029	0.040	0.030
11. ISO-Butanol	0.036	0.030	0.030
12. N-Butanol	0.137	0.120	0.120
13. ISO-Pentanol	0.038	0.070	0.060
14. 1-Pentanol	0.080	0.060	0.060
15. N-Hexanol	0.034	0.030	0.020
16. Aliphatic Oil	0.235	0.010	0.040
17. Isopropanol	0.000	0.010	0.010
18. t–Butanol	0.000	0.006	0.008
19. Unknowns	0.000	0.240	0.210

 Table 3. Methanol Composition

Long-Term Methanol Vehicle Test Program — Final Report

4. Mileage Accumulation

1. 19

The mileage accumulation phase of the project occurred between the initial and final Federal Test Procedure (FTP) testing at Southwest Research Institute (SwRI) (from January 1993 to December 1994). The vehicle was driven under city and highway conditions and relatively few problems were experienced. The hydraulic clutch slave cylinder failed during a full-throttle acceleration drive and the mass air-flow sensor was replaced after the mounting boss broke. The vehicle pulled a two-wheel trailer loaded with two 55-gallon drums of methanol from Lubbock to San Antonio, Texas and Lubbock to Austin, Texas with exceptional performance. Figure 1 shows the Corsica during a road trip to San Antonio. Note the fuel trailer necessary for long trips. The vehicle was exhibited during the 4th Annual Texas Alternative Fuels Market Fair and Symposium in Austin on June 6-8, 1993, and participated in the 1993 Fourth of July parade in Lubbock, Texas. Figure 2 shows the vehicle on display at the Market Fair in Austin, Texas.

潮速一部

The only serious problem encountered during the mileage accumulation phase of the program was related to fuel pump failures. In March 1994 the original fuel pump in the vehicle failed. This pump had been in the vehicle since the inception of the long-term methanol program but was the third pump installed in the vehicle during the two years of competition (1989-1990). At the time of failure this pump had been in service for approximately two years. Contact with AC Rochester at the time of failure indicated that this particular pump was subject to electrical contact corrosion in which copper from the electrical contact was taken into solution with the methanol. When

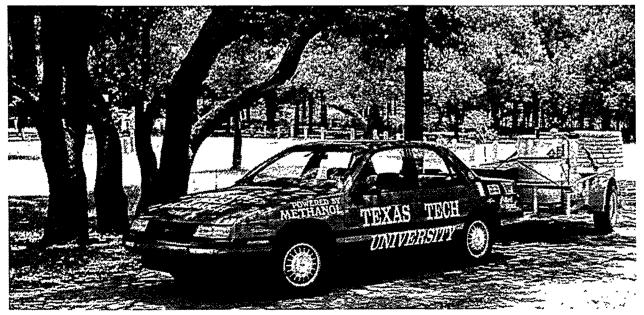


Figure 1. Test vehicle during road trip to San Antonio

Ser Stor

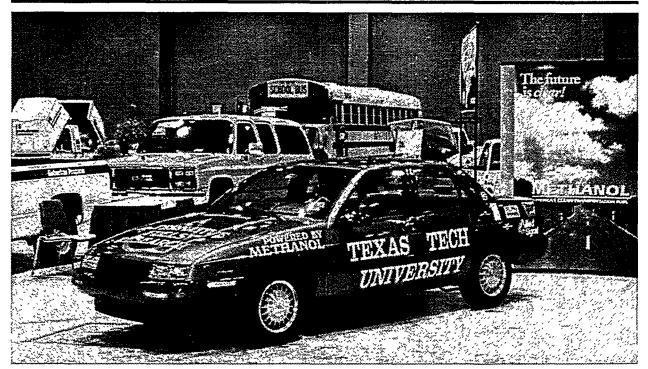


Figure 2. Test vehicle on display at the 4th Annual Texas Alternative Fuels Market Fair and Symposium in Austin

the amount of copper reached a certain level it appeared to precipitate out of solution and clog the pump, rendering it inoperative.

The failed pump was replaced with a new pump obtained from AC Rochester. The replacement pump lasted only a few minutes before it also failed. AC Rochester personnel indicated that some pumps were manufactured with inadequate plating and that the type of failure experienced with this second pump was characteristic of this manufacturing problem. A third pump obtained from AC Rochester was then installed in the vehicle in late June 1994. This pump also failed shortly thereafter (approximately two weeks). This pump was returned to AC Rochester and from there was passed on to the General Motors Corporation (GM) Fuels and Lubricants Department for analysis. A fuel sample was also sent to GM since it was suggested that the M100 might be contributing to the failures. Personnel from Air Products and Chemicals were also brought into the failure analysis discussions at this time since they provided the M100 for the program. No report as to the results of this analysis was provided by GM.

A methanol-compatible fuel pump was then purchased from the local GM performance parts supplier. This pump was preconditioned by pumping gasoline through it for several hours before installing it in the vehicle. This pump performed satisfactorily for the remainder of the program (approximately six months).

5. Engine and Component Wear

Tear-down of the engine after the mileage accumulation showed indications of detonation in three cylinders and significant wear and scuffing on one cylinder wall. Cylinders 1, 2, and 6 showed normal wear of approximately 0.0005 in cylinder diameter. Figure 3 shows the piston from Cylinder 2 after removal from the engine. The pistons from Cylinders1 and 6 are similar. There is no indication of wear on the piston itself and the rings still show the initial marks and imperfections. Note also the dark portion of the top of the second ring, which indicates that only a portion of the ring surface was in contact with the cylinder wall. Finally, there is no indication of combustion products or carbon buildup between the first and second rings of pistons from Cylinders 1, 2, and 6.

Cylinders 3 and 5 showed evidence of some detonation. The undersides of both pistons were lightly discolored, indicating excess heating typical of the higher temperatures produced by detonation. The rod bearings from these cylinders also showed some deformation typical of detonation. The piston from Cylinder 3 is shown in Figure 4. Note the dark deposits between the first and second rings. These deposits often result from detonation-produced flutter of the top piston ring. Also note that the top ring is very polished which indicates more than normal wear.

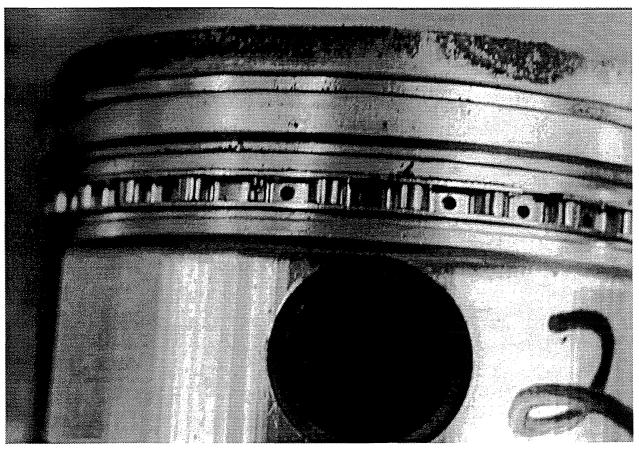


Figure 3. Side view of piston from Cylinder 2

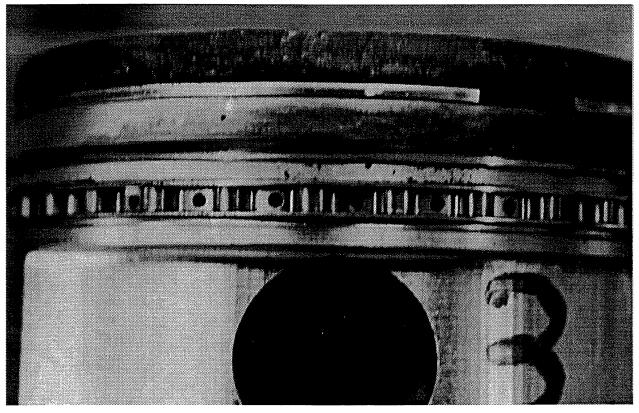


Figure 4. Side view of piston from Cylinder 3

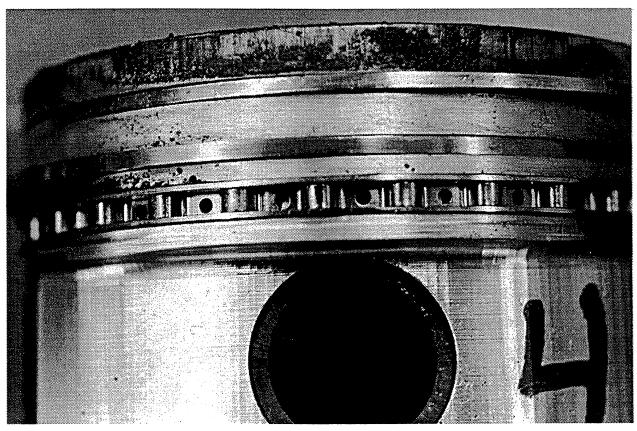


Figure 5. Side view of piston from Cylinder 4

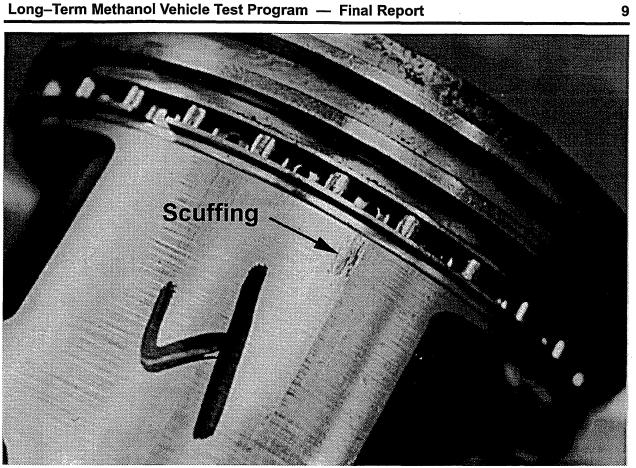


Figure 6. View of piston from Cylinder 4

Cylinder 4 showed the most significant abnormal wear. Views of the piston from Cylinder 4 are shown in Figures 5 and 6. Both the top and second ring show polished surfaces, indicating excessive wear for 22,000 miles of operation. There are almost no signs of the original markings on the rings. Some indication of scuffing of the piston surface between the rings is also apparent. Scuffing of the piston below the oil ring is clearly evident in Figure 6. The wall of Cylinder 4, depicted in Figure 7, clearly shows excessive scuffing. Note that the scuffing extends all the way to the top of the cylinder, above the highest position of the top ring. The scuffs in the cylinder become more pronounced at a point on the cylinder wall which coincides with the piston location a few crankshaft degrees past TDC, approximately where the force on the piston due to the combustion gases rapidly increases. The bottom of Piston 4 showed excessive heating and the rod bearings from Cylinder 4 were deformed in a manner typical of detonation. Cylinder 4 experienced the most severe detonation. Figure 8 shows the combustion chamber for Cylinder 4. Note the absence of the ceramic insulator in the spark plug. The insulator was probably dislodged by detonation. Otherwise the combustion chamber was clean and relatively free of deposits.

The wear experienced in Cylinder 4 and, to a lesser extent, in Cylinders 3 and 5 (see Tables 4 and 5), is thought to be related to the washing down of the cylinder walls by fuel during coldstarting. The engine was very difficult to start during the winter

Long–Term Methanol Vehicle Test Program — Final Report

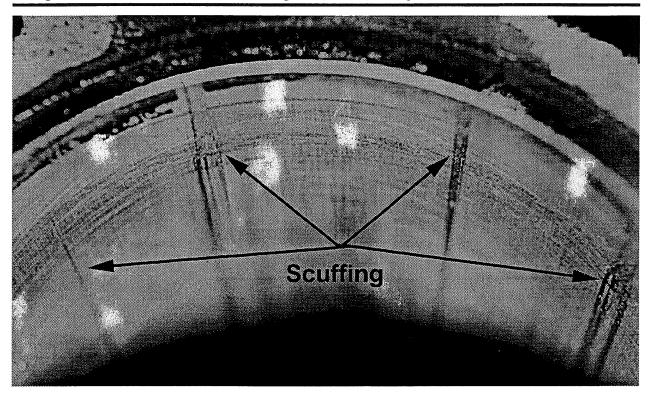


Figure 7. View of cylinder wall in Cylinder 4

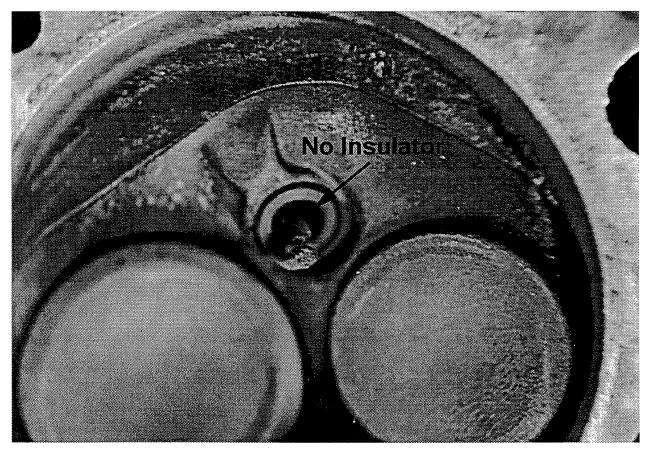


Figure 8. Cylinder head showing Cylinder 4 combustion chamber

Mechanical Engineering Department

				· ·	nje det sin de la seguera parti							
Cylinder block												
Cylinder bore diameter	Cyl 1	Cyl 2	Cyl 3	Cyl 4	Cyl 5	Cyl 6						
Тор	3.3303	3.3309	3.3303	3.3305	3.3305	3.3305						
Bottom	3.3306	3.3309	3.3306	3.3312	3.3306	3.3309						
Main bore (all ± 0.000		.847 in										
Deckheight (all ± 0.00	01 in) 7	.391 in	D	eckMilled	0.04 in							
		Connecti	ng rods									
Bore (all ± 0.0005 in)	2.125	5 in	Mass	440 g								
Length (all 0.0005 in) 5.7	in										
		Pisto	ons									
Diameter (all ± 0.001	in)		Ring land	d clearance	(all ± 0.0005	in)						
Top 3.3225 in			Тор	0.0022 in								
Middle 3.3241 in			Middle	0.0015 in								
Bottom 3.3264 in												
Mass 329 g			Piston He	eight 1.4	416 in							
Piston pins												
Pin to piston bore clea	arance (all±0	.0003 in)	0.0008 in	Ma	ass 122 g							
		Piston	rings									
Gap (all ± 0.0005 in)												
Top 0.0135 in			Mass 39 g									
Middle 0.0085 in			Oil ring tension (pull) 11.5—12.0 lbf									
		Crank	shaft									
Rod journal (all ± 0.00)05 in) 1.99	83 in										
Main journal (all ±0.0	005 in) 2.64	68 in										
Stroke (all ± 0.0003 in) 3.31	in										
		Rod be	arings									
Thickness (all ± 0.000	5 in)		Average	clearance	0.002 in							
Max 0.0622 in				, ,	an a							
Min 0.0595 in			Mass 3	3 g								
an a		Main be	arings									
Thickness (all ± 0.000	5 in)		Average	clearance	0.002 in							
Max 0.0958 in			Min 0	.0929 in								

Table 4. Short-Block Measurements Before Mileage Accumulation

months when temperatures were below 7 to 10°C. Hence, starting involved cranking the engine for several minutes. During the long cranking times methanol was continuously injected into the cylinder and washed the lubricating oil from the cylinder walls. The oil sample analysis for the oil change after the winter months of mileage accumulation showed high engine wear.

Cylinder block													
Cylinder bore diameter	Cyl 1	Cyl 2	Cyl 3	Cyl 4	Cyl 5	Cyl 6							
Тор	3.3315	3.3311	3.3313	3.3316	3.3315	3.3315							
Bottom	3.3308	3.331	3.3313	3.3312	3.331	3.3312							
Main bore (all ±0.000	5 in)	2.847 in											
Deck height (all ± 0.00)1 in)	7.391 in	D	eckMilled	0.04 in								
		Connec	ting rods										
Bore (all ± 0.0005 in)	2.12	25 in	Mass 4	440 g									
Length (all ± 0.0005 ir	า) 5.7	in											
Pistons													
Diameter (all ±0.001 in)			Ring land c	learance (all	±0.0005 in)							
Top 3.3225 in			Тор	0.0022 in									
Middle 3.3241 in			Middle	0.0015 in									
Bottom 3.3264 in													
Mass 329 g			Piston He	eight 1.4	416 in								
Piston pins													
Pin to piston bore clea	arance (all ±	0.0003 in)	0.0008 in	Ma	ass 122 g								
	New York Commencement of the survey of the	Pistor	n rings										
Gap (all ± 0.0005 in)													
Top 0.0155 in			Mass 39 g										
Middle 0.0105 in			Oil ring te	ension (pull)	11.5—12.	0 lbf							
,		Cranl	(shaft										
Rod journal (all ±0.00		983 in			·								
Main joumal (all ± 0.0		468 in		an a	والمحافظ وال								
Stroke (all ± 0.0003 in) 3.3	<u>1 in</u>											
		Rod be	arings										
Thickness (all ± 0.0005 ir	ו)		Average clearance 0.002 in										
Max 0.0623 in													
Min 0.0598 in	National Action of Contract of		Mass 3	3 g									
		Main b	earings										
Thickness (all ± 0.0005 ir	ו)		Average	clearance (0.002 in								
Max 0.0958 in			Min 0	.0929 in									

Table 5. Short-Block Measurements After Mileage Accumulation

In addition to the cylinder wall, piston, and ring wear described above, the exhaust valve guides showed approximately 0.001 in wear, which is not considered excessive. The bearings showed normal wear other than the detonation-associated wear on the rod bearings in Cylinders 3, 4, and 5. Tables 4 and 5 present the detailed short-block measurements for before and after mileage accumulation, respectively. Similarly, Tables 6 and 7 present the cylinder head measurements. Oil sample analyses also

12

		Cyl 1		Cyl 3		Cyl 5			
	Exhaust	Intake	Exhau	ist Intak	e Exhau	ist Intake			
Valve stem dia (in)	0.3131	0.3138	0.3139	0.3136	0.3138	0.3132			
Valve dia (in)	0.315	0.3151	0.3151	0.3151	0.3149	0.3152			
Installed height (in)	1.72	1.72	1.71	1.72	1.71	1.715			
Shim thickness (in)	0.075	0.075	0.06	0.075	0.06	0.075			
Spring coil bind (in)	1.19	1.19	1.19	1.19	1.19	1.19			
Spring pressure (lbf)	95	95	95	95	95	<u>95</u>			
Retainer to seal (in)	0.54	0.54	0.54	0.54	0.54	0.54			
Seal thickness (in)	0.16	0.16	0.16	0.16	0.16	0.16			
Comb chamber (cc)	26.6	26.6	26.6	-26.6	26.6	26.6			
		Cyl 2		Cyl 4		Cyl 6			
	Exhaust	Intake	Exhau	ist Intak	e Exhau	ist Intake			
Valve stem dia (in)	0.3135	0.3137	0.3138	0.3138	0.3138	0.3138			
Valve dia (in)	0.3152	0.3152	0.3151	0.315	0.315	0.315			
Installed height (in)	1.73	1.725	1.72	1.715	1.715	1.715			
Shim thickness (in)	0.075	0.075	0.075	0.075	0.06	0.075			
Spring coil bind (in)	1.19	1.19	1.19	1.19	1.19	1.19			
Spring pressure (lbf)	95	95	95	95	95	95			
Retainer to seal (in)	0.54	0.54	0.54	0.54	0.54	0.54			
Seal thickness (in)	0.16	0.16	0.16	0.16	0.16	0.16			
Comb chamber (cc)	26.6	26.6	27.2	26.6	26.8	26.6			
Gasket surface milled (in)	0.04		Head gas	ket thickness (in)	0.068	3			
Total swept volume (cc)	472.38		Head gas	ket volume (cc)	11.56				
Compression ratio	11.72								

Table 6. Cylinder Head Measurements	Before Mileage Accumulation
-------------------------------------	-----------------------------

indicated high upper-cylinder wear. Oil sample analysis sheets are included in Appendix B.

Several oil leaks were noted around gaskets and seals. Figure 9 shows one such oil leak on the rear of the cylinder block. Perhaps the blowby of methanol into the crankcase during cold starting affected the gaskets and seals. All gaskets and seals have been sent to FEL-PRO for further analysis.

The detonation is thought to have been caused by injector wear. If the injectors experienced wear due to the low lubricity of methanol, they could have provided poor atomization of the fuel and/or too little fuel to some cylinders. Either condition could have provided an effectively lean mixture for some cylinders and thus promoted detonation in those cylinders. A visual inspection of the fuel injectors indicated that the injector for Cylinder 4 contained some foreign material in its exit. The injectors have been sent to SwRI for further testing and evaluation.

		-											
		C	yi 1			C	yl 3		Cyl 5				
	Exh	aust	Inta	ake	Exh	aust	Int	ake	Exh	aust	Inta	Intake	
Valve stem dia (in)	0.3131	0.3129	0.3138	0.3135	0.3139	0.3135	0.3136	0.3134	0.3138	0.3137	0.3132	0.3129	
Valve dia (in)	0.3152	0.3155	0.3152	0.3155	0.3151	0.3155	0.3152	0.3168	0.315	0.3155	0.3152	0.3158	
Installed height (in)	1.72		1.72		1.71		1.72		1.71		1.715		
Shim thickness (in)	0.075		0.075		0.06		0.075		0.06		0.075		
Spring coll bind (in)	1.19		1.19		1.19		1.19		1.19		1.19		
Spring pressure (lbf)	95		95		95		95		95		95		
Retainer to seal (in)	0.54		0.54		0.54		0.54		0.54		0.54		
Seal thickness (in)	0.16		0.16		0.16		0.16		0.16		0.16		
Comb chamber (cc)	26.6		26.6		26.6		26.6		26.6		26.6		
	Cyl 2				Cyi 4					Cy	yl 6		
	Exh	aust	Inta	ake	Exh	Exhaust Intake			Exhaust Intake			ake	
Valve stem dia (in)	0.3135	0.3134	0.3138	0.3136	0.3137	0.3135	0.3138	0.3132	0.3138	0.03136	0.3137	0.3134	
Valve dia (in)	0.3153	0.3168	0.3152	0.3156	0.315	0.3155	0.3151	0.316	0.315	0.3155	0.3151	0.3155	
Installed height (in)	1.73		1.725		1.72		1.715		1.715		1.715		
Shim thickness (in)	0.075		0.075		0.075		0.075		0.06		0.075		
Spring coil bind (in)	1.19		1.19		1.19		1.19		1.19		1.19		
Spring pressure (lbf)	95		95		95		95		95		95		
Retainer to seal (in)	0.54		0.54		0.54		0.54		0.54		0.54		
Seal thickness (in)	0.16		0.16		0.16		0.16		0.16		0.16		
Comb chamber (cc)	26.6		26.6		27.2		26.6		26.8		26.6		
Gasket surface milled (in)	0.0	04			Head ga	asket thic	ckness (ir	1)	0.0	68			
Total swept volume (cc)	472.	38			Head ga	asket vol	ume (cc)		11.5	56			
Compression.ratio	11.	72											

 Table 7. Cylinder Head Measurements After Mileage Accumulation

· _ _

6. Engine Performance

Engine performance at peak load was determined on a SuperFlow dynamometer before the engine was installed in the vehicle and again at the end of the mileage accumulation and after the final emissions and oil consumption tests were completed. Figures 10, 11 and 12 show the engine as mounted on the SuperFlow dynamometer. Corrected torque and power curves for the before and after tests are presented in Figures 13 and 14. Data from two runs during each test session on the dynamometer are shown. The low torque reading for one of the initial runs at 3750 rpm is due to fuel calibration. The calibration was adjusted and the curve smoothed, as the other initial data point for 3750 rpm indicates.

During the initial dynamometer tests the engine produced a maximum torque of 201 lbf-ft at 3750 rpm and a maximum power of approximately 161.5 hp at 5000 rpm. The end of project tests show maximum torque and power outputs of 192.4 lbf-ft at 4000 rpm and 155.4 hp at 5000 rpm. GM advertised the torque and power output of the stock 2.8-L engine on gasoline (with accessories) as 160 lbf-ft at 3600 rpm and 125 hp at 4500 rpm. These points are shown on the curves for reference. The engine showed

~ ~

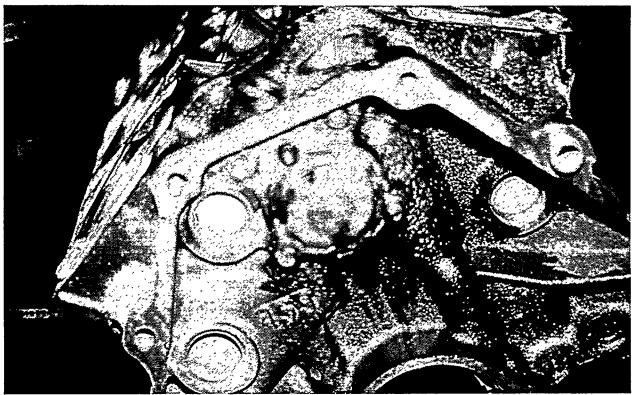


Figure 9. Rear of cylinder block showing oil leak

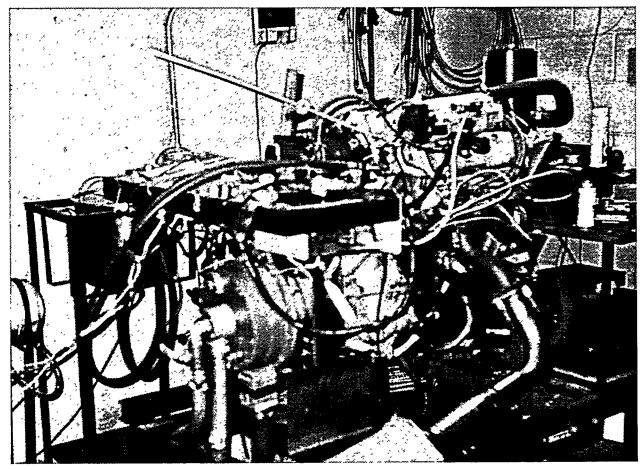


Figure 10. Engine mounted on SuperFlow dynamometer

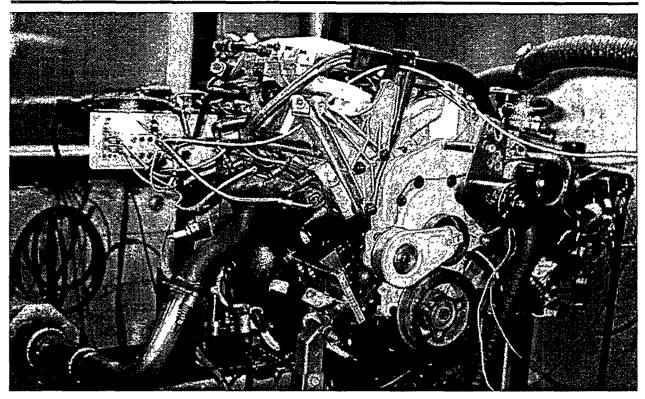


Figure 11. Engine mounted on SuperFlow dynamometer

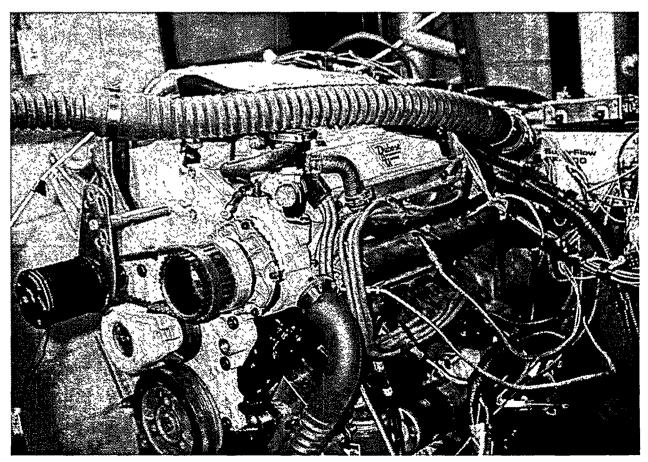
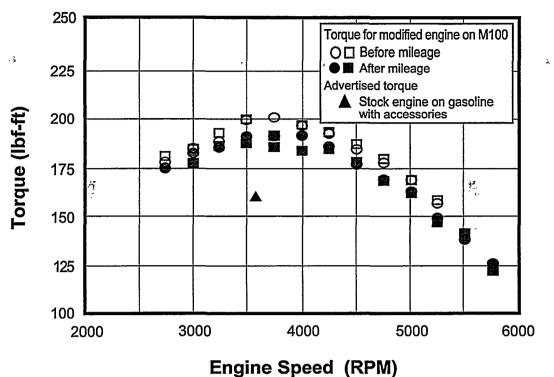
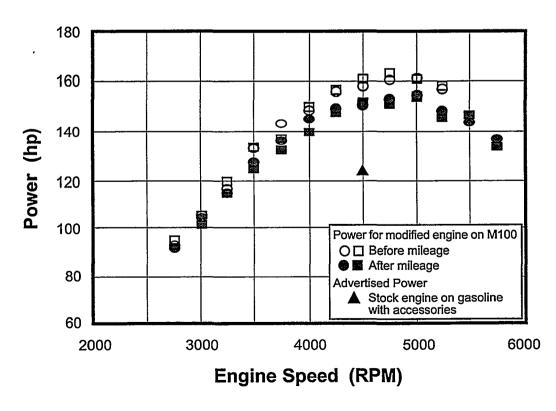



Figure 12. Engine mounted on SuperFlow dynamometer

n : ; ;


ej -

۰.,

here he areas

and the second s

Figure 13. Engine torque output

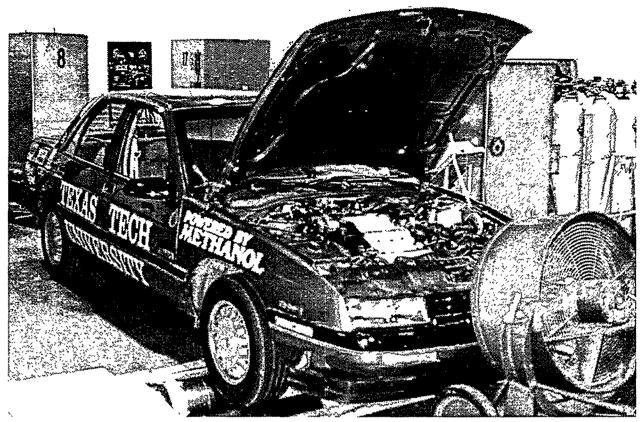


Figure 15. Vehicle during emissions tests at Southwest Research Institute

a decrease in maximum torque of about 4.3% and a decrease in maximum power of about 3.8% between the initial tests and the final tests. This amount of decrease is not considered unusual for 22,000 miles of operation; however, as was noted above, the engine suffered significant degradation in one cylinder.

7. Emissions And Fuel Economy

The vehicle was driven to SwRI in San Antonio, Texas, for full Environmental Protection Agency (EPA) FTP emissions testing at the beginning and completion of the program. Figure 15 depicts the vehicle during testing at SwRI. The emission test results at program initiation were very encouraging, with the vehicle meeting ultra-low emissions vehicle (ULEV) standards for all components except non-methane organic gases (NMOG). The pre- and post-test NMOG values are uncorrected since a reactivity adjustment factor (RAF) for M100 could not be obtained. Test results at program completion showed increased emissions for all exhaust components for all bags during the FTP testing, except non-methane hydrocarbons (NMHC). Emission results are given in Table 8. The SwRI reports are included in Appendix C.

The poorer emissions results during the second test are thought to have resulted from unburned fuel/air mixture that escaped the combustion process as a result of the scored

Constituent	SwRI Test Jan. 1993 (grm/mi)	SwRI Test Dec. 1994 (grm/mi)	ULEV (gm/mi)
1. THC	0.48	1.167	
2. CO	0.960	4.280	1.700
3. NO _x	0.150	0.690	0.200
4. CH₄	0.035	0.193	
5. NMHC	0.011	0.004	
6. Carbonyl	0.005	0.022	<u> </u>
7. Alcohol	0.464	0.948	
8. NMOG	0.479*	0.975*	0.040
9. Formaldehyde	0.0030	0.0200	0.008
10. Acetaldhyde	0.0002	0.0007	
11. Acrolein	0.0000	0.0000	
12. Acetone	0.0012	0.0007	—
13. Propionald	0.0000	0.0002	
14. Crotonald	0.0000	0.0000	
15. Isobutyr+MEK	0.00018	0.00064	
16. Benzaidehyde	0.0000	0.0000	
17. Hexanalde hyde	0.0000	0.0000	—
18. Methanol	0.4640	0.9470	
19. Ethanol	0.0000	0.0000	

 Table 8. Vehicle Emissions Results

* The RAF for M100 was unknown; thus, this value is uncorrected.

and scuffed cylinder wall and top piston ring in Cylinder 4. Lubricating oil left on the cylinder wall also undoubtedly contributed to the increased emissions. Incomplete combustion and detonation are also thought to have occurred in this cylinder as evidenced by the damaged spark plug and combustion product contamination. The pistons from Cylinders 3 and 5 also showed evidence of leakage past the top ring, which also contributed to increased emissions. To determine whether degraded catalyst performance also contributed to the increased emissions, the catalyst was removed from the vehicle and sent to Allied-Signal for analysis. At the time that this report was prepared, Allied-Signal had not completed their evaluation.

Fuel economy was measured during the FTP tests and highway economy was estimated during trips to and from San Antonio. FTP city mileage was measured to be 9.91 mpg (19 mpeg) during initial testing in January 1993 and 9.73 mpg (18.65 mpeg) during final testing in December 1994. This corresponds to a change of -1.8%. Highway mileage was estimated to be 16 mpg (31 mpeg). The highway fuel economy rating for the stock gasoline vehicle was 29 mpg. The relatively small change in city fuel economy could be due to test variability only and could have nothing to do with vehicle performance. No changes were made to the fuel-management control system during the program, and the O_2 exhaust sensor appeared to be operating properly during engine dynamometer testing; thus, if the vehicle fuel economy was actually reduced it was probably due to the degraded performance of Cylinder 4. Visual examination of the Cylinder 4 injector disclosed some discoloration and contaminate buildup, which may also have been due to the abnormal combustion process in this cylinder.

8. Oil Consumption Testing

The vehicle underwent initial oil consumption testing at SwRI in San Antonio. Initial tests were completed during March 1993 when the engine had logged about 1,500 miles. Additional oil consumption tests were completed during early 1995 after the vehicle had accumulated approximately 22,000 on-road miles. The SwRI oil consumption test reports are included in Appendices D and C. The initial test results reflect an oil consumption rate that is somewhat higher than typical gasoline-fueled vehicles that have been tested by SwRI. Data presented by Manni and Ciocci [3] also indicate that the initial oil consumption rate may have been higher than typical for gasoline fueled engines, especially at low engine speed. However, some of the data presented by Manni and Ciocci indicate oil consumption rates higher than those produced during the initial tests on the Corsica. In addition, Roberts [4] presents results from an Exxon test that correlate well with the initial Corsica test results. Thus, although the initial oil consumption results for the M100-fueled Corsica may be on the high end of the range for typical gasoline engines, the oil consumption was not exceptionally high. The initial oil consumption rate may have been affected by the lack of engine operating time before the test. The excellent results achieved during the emissions testing in January 1993 would reasonably have been expected to correlate with low oil consumption.

It was noted that there appeared to be a relationship between engine deceleration and increased oil consumption during the tests. The amount of valve lubricating oil drawn into the intake manifold may have increased with the greater manifold vacuum during deceleration. The SwRI report mentioned a relationship between high-temperature engine operation and increased oil consumption. Roberts [4] indicates that oil consumption is strongly related to both oil viscosity and oil volatility. Lower oil viscosity and higher oil volatility both promote higher oil consumption. The test oil used by SwRI was a 10W-30-grade oil with a viscosity of 9.85 cS at 100°C. This value of 100°C viscosity is on the lower end of the viscosity range of the oils used in the tests reported by Roberts [4].

The oil consumption tests run after the mileage accumulation showed significant increases in the oil consumption rates. Table 9 presents a summary comparison of the results from the two tests. The largest increase in the oil consumption rate was 123.6%, which was observed during steady-state operation at 2675 rpm. The increased oil consumption was almost certainly caused by the excessive scuffing and wear in Cylinder 4 and to a lesser extent by the wear in Cylinders 3 and 5. Moderate wear of the exhaust valve guides was noted earlier; however, there was no indication that the valve guide seals had deteriorated. Even the highest oil consumption rate reported by SwRI for the Corsica was only about 9% greater than oil consumption rates reported in reference [3] for gasoline engines. The condition of the engine at tear-down would indicate that the oil consumption should be even higher.

9. Conclusions

Long-term testing of the M100-fueled 1988 Corsica confirmed several reasonably well understood conditions and disclosed a few anomalies that may warrant further study. These are listed below:

- A. It seems apparent that no off-the-shelf fuel pump is available that will provide reliable long-term service in M100. The problems appear to be primarily related to materials incompatibility with the fuel, but the lack of lubricity of M100 may also be factor contributing to fuel pump component wear. This lack of lubricity may have also been a factor in the (apparent) degraded performance of the injectors, which is thought to have led to detonation in Cylinders 3, 4, and 5. If M100 is to continue to be considered as an alternative fuel for the future, this problem needs to be investigated thoroughly.
- B. Cold-starting is a severe problem when using M100 as a fuel below ambient temperatures of 15°C. Cold cranking of the Corsica is thought to have led to the degraded condition in Cylinders 3, 4, and 5, which contributed to combustion product buildup between the first and second piston rings in these cylinders and scoring of the cylinder wall and piston scuffing in Cylinder 4. An effective solution for this problem must be identified if M100 is to be a viable alternative fuel.
- C. The results of the FTP emissions test at program initiation were excellent, with all exhaust constituents below ULEV levels except NMOG. Emissions at program conclusion were increased significantly as a result of the degraded condition of Cylinders 3, 4, and 5. Catalyst poisoning due to increased lubricating oil consumption may also have been a contributing factor. Allied Signal has agreed to evaluate the catalyst condition. The results of this evaluation will be forwarded to NREL when received.
- D. Based on the results of this research, M100 is considered to have excellent potential as an alternative fuel. Cold-starting problems and component wear due to lack of lubricity will have to solved, but M100 has the potential for excellent emissions and, with a properly designed engine, provides outstand-

21

Long-Term Methanol Vehicle Test Program — Final Report

ing vehicle performance and fuel economy. No fuel safety or handling problems were encountered during the project. The one case of fuel degradation (one 55-gallon drum) is thought to have been related to long-term storage in relatively poor environmental conditions. No other fuel quality problems were encountered during the project.

E. The initial oil consumption rates measured for the M100-fueled engine are on the upper end of the range typical of gasoline-fueled engines. The wear and damage experienced by the engine significantly affected the increase in the oil consumption rate.

10 References

- 1. Truman, R., D. Bretherton, B. Smith, R. Taeuber, M. Walser, and J. Jones, Texas Tech 1989 SAE Methanol Marathon Entry, 1989.
- 2. Walser, M., R. Taeuber, G. Bourn, M. Kasik, J. Jones, and T. Maxwell, Texas Tech 1990 SAE Methanol Challenge Entry, 1990.
- 3. Manni, M. and G. Ciocci, An Experimental Study of Oil Consumption in Gasoline Engines, SAE Paper No. 922374.
- Roberts, D. C., Section 4.7 Review of Oil Consumption Aspects of Engines, Engine Oils and Automotive Lubrication, edited by Wilfried J. Bartz, Marcel Dekker, Inc., New York, 1993.

APPENDIX A ECM Calibration Tables

Table F1 Main Spark Advance vs. LV8 - Load

Conversion Equation N = E * 256 / 90

	400 rpm	المرقب هي هي مي است د در زي معتري را ^{ير} ا	1	mq1 008			800 rpm			1000 rpm			1200 rpm	
16 BK	Decimal	Engineering	16 Bit	Decimal	Engineering	16 Bit	Decimal	Engineering	16 Bit	Decimal	Engineering	16 Bit	Decimal	Engineering
Herdeolmei	Computer	Unit	Hexideolmel	Computer	Unit	Hexideoimal	Computer	Unit	Hexidecimal	Computer	Unit	Hexidecimal	Computer	Unit
Address	Unit	(deg.)	Address	Unit	(deg.)	Address	Unit	(deg.)	Address	Unit	(deg.)	Address	Unit	(deg.)
8011	63	22	801D	63	22	8029	63	22	8035	63	22	8041	63	22
8012	63	22	801E	63	22	802A	63	22	8036	63	22	8042	63	22
8013	63	22	801F	63	22	802B	63	22	8037	63	22	8043	63	22
8014	63	22	8 020	63	22	802C	63	22	8038	63	22	8044	63	22
8015	63	22	8021	63	22	802D	63	22	8039	63	22	8045	63	22
8016	57	20	8022	57	20	802E	57	20	803A	57	20	8046	57	20
8017	51	18	8023	51	18	802F	51	18	803B	51	18	8047	51	18
8016	51	18	8024	51	18	8030	51	18	803C	51	18	8048	51	18
8019	51	18	8025	51	18	8031	51	18	803D	51	18	8049	51	18
801A	48	17	8026	48	17	8032	48	17	803E	48	17	804A	51	18
601B	43	15	8027	43	15	8033	43	15	803F	43	15	804B	46	16
001C	34	12	8028	34	12	8034	34	12	8040	34	12	804C	34	12
	1400 rpm			1600 rpm			1800 rpm			2000 rpm			2200 rpm	
16 Bit	Decimal	Engineering	16 Bit	Decimal	Engineering	16 Bit	Decimei	Engineering	16 Bit	Decimei	Engineering	16 BH	Decimel	Engineering
	Computer	Unit	Hexidecimel	Computer	Unit	Hexidecimal	Computer	Unit	Hexidecimal	Computer		Hexidecimal	Computer	Unit
Address	Unit	(deg.)	Addrees	Unit	(deg.)	Address	Unit	(deg.)	Addrees	Unit	(deg.)	Address	Unit	(deg.)
804D	65	23	8059	77	27	8065	77	27	8071	80	28	807D	80	20
804E	66	23	805A	80	28	8068	85	30	8072	91	32	807E	91	32
804F	65	23	805B	80	28	8067	85	30	8073	91	32	807F	91	32
8050	65	23	805C	80	26	6068	85	30	8074	91	32	8080	91	32
8051	65	23	806D	80	28	6069	85	30	8075	91	32	8061	91	32
8052	65	23	805E	80	28	806A	85	30	8076	91	32	8062	91	32
8053	65	23	805F	80	28	806B	82	29	8077	88	31	8083	91	32
8054	65	23	8060	80	28	806C	80	28	8078	85	30	8084	68	31
8055	65	23	8051	71	25	606D	74	28	8079	74	26	8085	80	26
8056	57	20	8082	65	23	806E	65	23	807A	65 (68)	23 (24)	8086	71	25
		E								=	10/00/	8007	CALAES	19 (23)
8067	46	16	8063	67	20	806F	57	20	807B	54 (60)	19 (21)	8067	64 (65)	10 (23)

•

.

.

() Designates Original Value

Table F1 Hain Spark Advance vs. LV8 - Load

(Continued)

	2400 rpm			2800 rpm			3200 rpm			3600 rpm			4000 rpm	
16 BK	Decimal	Engineering	16 Bit	Decimal	Engineering	16 Bit	Decimal	Engineering	16 Bit	Decimal	Engineering	16 Bit	Decimal	Engineering
Hexideoimel	Computer	Unit	Hexideoimal	Computer	Unit	Hexideoimal	Computer	Unit	Hexidecimal	Computer	Unit	Hexideoimal	Computer	Unit
Address	Unit	(deg.)	Address	Unit	(deg.)	Addrees	Unit	(deg.)	Address	Unit	(deg.)	Addrees	Unit	(deg.)
8089	83	32.7	8095	85	30	80A1	85	30	80AD	85	30	8089	85	30
808A	91	32	8096	94	33	80A2	94	33	BOAE	91	32	80BA	91	32
8068	94	33	8097	94	33	80A3	94	33	80AF	91	32	8088	91	32
808C	94	33	9098	94	33	80A4	94	33	80B0	88	31	80BC	85	30
806D	94	33	8099	94	\$ 9	80A5	88	31	80B1	86	30	80BD	82	29
806E	91	32	809A	91	32	80A6	88	31	80B2	82	29	808E	82	29
806F	90	31.6	809B	88	31	80A7	85	30	8083	82	29	808F	82	29
8090	88	S1	809C	88	31	80A8	85	90	80B4	82	29	8000	82	29
8091	85	90 ·	809D	85	30	80A9	82	29	80 85	80	28	80C1	82	29
8092	74	26	809E	74	28	80AA	74	28	8086	74	26	80C2	80	28
8093	57 (85)	20 (23)	809F	57 (65)	20 (23)	80AB	63 (68)	22 (24)	8087	65 (71)	23 (25)	80C3	68 (74)	24 (26)
8094	49 (57)	17.2 (20)	80A0	48 (66)	17 (19.7)	80AC	51 (56)	18 (19.7)	80B8	50 (53)	17.5 (18.6)	8004	51 (50)	18 (19.7)
	4400 rpm			4800 rpm		Ļ								
16 BH		Engineering	16 BH		Engineering		LV8 - Load							
	Computer		Hexideoimal	Computer	Unit	ł	(for each							
Address	Unit	(deg.)	Addrees	Unit	(deg.)	L	seriee)		Main Spark Ti	ining Calcu	lation			
80C5	85	30	80D1	85	30	(32							
8008	91	32	8002	91	32		48	ŧ	Sp <mark>ark Advan</mark> oi				•	
8007	91	32	8003	91	32	1	64		(deg. BTC)	< 14	bie F1>	< Table f	F2 >	
80C8	91	32	8004	88	31		80							
8009	85	30	8005	85	30		96							
BOCA	82	29	80D6	85	30	1	112							
8008	82	29	80D7	85	90		128	8	Sperk Timing F	tenge is 50 c	ing. BTC to 10	deg, ATC		
8000	82	29	8008	85	30		144		/					
BOCD	82	29	8009	77	· 27	1	160	F	Rufe eorieren Pula	e at 60 deg.	BTC]
BOCE	80	28	80DA	68	24		176							
800F	68 (74)	24 (26)	80DB	63 (68)	22 (24)		192							
8000	54 (00)	19 (21)	80DC	60 (66)	21 (23.2)	ł	208							

() Designates Original Value

Table P2 Base Coolant Advance Correction vs. LV8 - Load Conversion Equation N = (E + KCTBIAS) * 256 / 90

-16	deg. C		1 4	deg. C		8	deg. C		20	deg. C		32	deg. C	
16 BR	Decimal	Engineering		Decimal	Engineering		Decimal	Engineering		Decimel	Engineering		Decimel	Engineering
Henddeoimei	Computer	Unit	Hexidecimel	Computer	Unit	Hexideoimel	Computer	Unit	Hexidecimal	Computer	Unit	Hexidecimal	Computer	Unit
Address	Unit	(deg.)	Address	Unit	(deg.)	Addrees	Unit	(deg.)	Address	Unit	(deg.)	Address	Unit	(deg.)
BOEA	111	4	80F3	111	4	BOFC	105	1.8	8105	83	-6	810E	89	-4
aceb	111	4	80F4	111	4	80FD	105	1.8	8106	83	-6	810F	89	-4
BOEC	111	4	80F5	111	4	80FE	105	1.8	8107	83	-6	8110	89	-4
BOED	111	4	8056	111	4	80FF	105	1.8	8108	83	-6	8111	89	-4
SOEE	111	4	60F7	111	4	8100	105	1.8	8109	100	0	8112	100	0
BOEF	114	6	80F8	114	5	8101	108	2.8	810A	100	0	8113	100	0
80F0	117	6	80F9	117	6	8102	111	4	810B	111	4	8114	105	1.8
80F1	119	6.7	80FA	119	6.7	8103	114	5	810C	114	6	8115	108	2.8
8052	122	7.7	BOFB	122	7.7	8104	117	6	810D	117	6	8116	111	4
44	deg. C		56	deg. C		68	deg. C		80	deg. C		92	deg. C	
16 BK	Decimal	Engineering	16 Bit	Decimal	Engineering	16 Bit	Decimai	Engineering	16 Bit	Decimal	Engineering	16 Bit	Decimal	Engineering
Hexidecimal	Computer	Unit	Hexideoimal	Computer	Unit	Hexidecimal	Computer	Unit	Hexidecimal	Computer	Unit	Hexidecimal	Computer	Unit
Addrese	Unit	(deg.)	Addrees	Unit	(deg.)	Address	Unit	(deg.)	Address	Unit	(deg.)	Address	Unit	(deg.)
8117	89	-4	8120	94	-2	8129	100	0	8132	100	0	813B	100	0
\$118	89	-4	8121	94	-2	812A	100	0	8133	100	0	813C	100	0
8119	89	-4	8122	94	-2	8128	100	0	8134	100	0	613D	100	0
611A	89	-4	8123	94	-2	812C	100	0	8135	100	0	813E	100	0
811B	100	0	8124	100	0	812D	100	0	8136	100	0	813F	100	0
811C	100	0	8125	100	0	812E	100	0	8137	100	0	8140	100	0
811D	102	0.7	8126	100	0	812F	100	0	6136	100	0	8141	100	0
811E	102	0.7	8127	102	0.7	8130	100	0	8139	100	0	8142	100	0
811F	106	2.8	8128	106	1.8	8191	100	0	819A	100	0	8143	100	0
	deg, C			deg. C										
16 BK	Decimal	Engineering	16 Bit		Engineering		LV8-Load							1
	Computer		Hexideoimai	Computer	Unit	1	(for each	1	Main Spark Ti	ming Calou	lation			1
Addrees	Unit	(deg.)	Address	Unit	(deg.)	L L	peries)							ł
8144	100	0	814D	100	0	1	0		Spark Advance					1
8145	100	0	814E	100	0		32		(deg. BTC)	< Ta	ble F1>	< Table F	2>	
6146	100	0	814F	100	0		64							l
8147	100	0	8150	100	0	1	98							
8148	100	0	8151	100	0	1	128	C	Coolarit Timing	Bias : Fund	tion of Coolan	t Temp. and M	IAP	1
8149	100	0	8152	100	0	1	160							1
814A	100	0	8153	94	-2		192							1
8148	94	-2	8154	91	-9		224							I
814C	94	-2					256							

Table F200 OL. (Open Loop) Base Pulse Inject vs. LV8 - Load and RPM Conversion Equation $N = E^{+} 66.696 / 5$

.

	0 rpm			400 rpm		T	800 rpm			1200 rpm)		1600 rpm	
16 BK	Decimal	Engineering	16 BH	Decimal	Engineering	16 BH	Decimal	Engineering	16 Bit	Decimel	Engineering	16 Bit	Decimal	Engineerin
Henddeoimel	Computer	Unit	Hexideoimei	Computer	Unit	Hexidocimal	Computer	Unit	Hexidecime	i Computer	Unit	Hexidecima	Computer	Unit
Address	Unit	(deg.)	Address	Unit	(maeo.)	Address	Unit	(meec.)	Addrees	Unit	(maec.)	Address	Unit	(meec.)
8615	0	0	8820	0	0	8837	0	0	8848	0	0	8859	0	0
8616	9 (13)	0.89 (1.0)	8827	9 (13)	0. 69 (1 .0)	8838	9 (13)	0. 69 (1. 0)	8849	9 (19)	0.89 (1.0)	885A	9 (13)	0.69 (1.0)
8617	16 (28)	1.22 (2.1)	8828	16 (28)	1.22 (2.1)	8839	16 (28)	1.22 (2.1)	854A	16 (28)	1.22 (2.1)	885B	16 (28)	1.22 (2.1)
8618	22 (45)	1.68 (3.4)	8829	22 (45)	1.68 (3.4)	883A	22 (45)	1.68 (3.4)	884B	22 (45)	1.68 (3.4)	885C	22 (45)	1.66 (3.4)
8619	49 (81)	3.74 (4.65)	882A	49 (81)	9.74 (4.65)	883B	49 (61)	3.74 (4.65)	884C	49 (61)	3.74 (4.65)	885D	49 (61)	3.74 (4.65)
861A	67 (77)	5.11 (5.9)	882B	67 (77)	5.11 (5.9)	883C	67 (77)	5.11 (5.9)	884D	67 (77)	5.11 (5.9)	885E	67 (77)	5.11 (5.9)
861B	81 (94)	6.18 (7.2)	882C	81 (94)	6.18 (7.2)	883D	81 (94)	6.18 (7.2)	884E	81 (94)	6.18 (7.2)	885F	81 (94)	6.18 (7.2)
861C	105 (110)	8.01 (8.4)	882D	105 (110)	8.01 (8.4)	883E	105 (110)	8.01 (8.4)	884F	105 (110)	8.01 (8.4)	8860	105 (110)	8.01 (8.4)
861D	118 (125)	9.0 (9.5)	682E	118 (125)	9.0 (9.5)	883F	118 (125)	9.0 (9.5)	8850	118 (125)	9.0 (9.5)	8861	118 (125)	9.0 (9.5)
881E	133 (141)	10.15 (10.8)	882F	133 (141)	10.15 (10.8)	8640	133 (141)	10.15 (10.8)	8851	133 (141)	10.15 (10.8)	8862	133 (141)	10.15 (10.8)
881F	155 (157)	11.83 (12)	8830	166 (157)	11.83 (12)	8841	155 (157)	11.83 (12)	8852	155 (157)	11.83 (12)	8863	155 (157)	11.63 (12)
8620	170 (172)	12.97 (13.1)	8831	170 (172)	12.97 (13.1)	8842	170 (172)	12.97 (19.1)	8853	170 (172)	12.97 (13.1)	8664	170 (172)	12.97 (13 1)
8621	188	14.34	8832	168	14.34	8849	186	14.34	8854	188	14.34	8865	188	14.34
8022	204	15.6	8833	204	15.6	8844	204	15.6	8855	204	15.6	8866	204	15.6
6023	219	16.7	8834	219	16.7	8845	219	16.7	8856	219	16.7	8867	219	16.7
8624	235	17.9	8835	236	17.9	8845	235	17.9	8657	235	17.9	6868	235	17.9
8825	251	19.15	8836	251	19.15	8847	261	19.15	8858	261	19.15	8889	261	19.15
	2000 rpm			2400 rpm			2800 rpm			3200 rpm			3600 rpm	
16 Bit	Decimal	Engineering	16 Bit	Decimal	Engineering	16 BK	Decimal	Engineering	16 Bit	Decimal	Engineering	16 BK	Decimal	Engineering
lexidecimei	Computer	Unit	Hexidecimel	Computer	Unit	Hexidecimal	Computer	Unit	Hexidecimal	Computer	Unit	Hexidecimal	Computer	Unit
Address	Unit	(meeo.)	Address	Unit	(meeo.)	Address	Unit	(meeo.)	Address	Unit	(meec.)	Address	Unit	(meec.)
A306	0	0	887 B	0	0	868C	0	0	C1988	0	0	68AE	0	0
8068	9 (13)	0.69 (1.0)	887C	9 (13)	0.09 (1.0)	668D	9 (13)	0.69 (1.0)	889E	9 (13)	0.09 (1.0)	88AF	9 (13)	0. 69 (1 .0)
800C	16 (26)	1.22 (2.1)	887D	16 (28)	1.22 (2.1)	868E	16 (26)	1.22 (2.1)	889F	16 (28)	1.22 (2.1)	88B0	16 (28)	1.22 (2.1)
006D	22 (45)	1.68 (3.4)	887E	22 (45)	1.68 (3.4)	888F	22 (45)	1.68 (3.4)	88A0	22 (45)	1.65 (3.4)	88B1	22 (45)	1.68 (3.4)
886E	49 (61)	3.74 (4.65)	887F	49 (61)	3.74 (4.65)	8890	49 (61)	3.74 (4.65)	88A1	49 (61)	3.74 (4.65)	68B2	49 (61)	3.74 (4.65)
886F	67 (77)	6.11 (5.9)	8880	67 (77)	5.11 (5.9)	8891	67 (77)	5.11 (5.9)	88A2	67 (77)	5.11 (5.9)	88B3	67 (77)	5.11 (5.9)
8670	81 (94)	6.18 (7.2)	8881	81 (94)	6.18 (7.2)	8892	81 (94)	6.18 (7.2)	68A3	81 (94)	6.18 (7.2)	88B4	81 (94)	6.18 (7.2)
8671	105 (110)	8.01 (8.4)	8882	105 (110)	8.01 (8.4)	8893	105 (110)	8.01 (8.4)	88A4	105 (110)	8.01 (8.4)	88B5	105 (110)	8.01 (8.4)
	118 (126)	9.0 (9.5)	8883	118 (125)	9.0 (9.5)	8894	118 (125)	9.0 (9.5)	88A5	118 (125)	9.0 (9.6)	88B6	118 (125)	9.0 (9.5)
	133 (141)	10.15 (10.8)	8884		10.15 (10.8)	8895	193 (141)	10.15 (10.8)	88A8	133 (141)	10.15 (10.8)	88B7	133 (141)	10.15 (10 8)
8674	155 (157)	11.83 (12)	8885	165 (157)	11.89 (12)	8896	165 (157)	11.83 (12)	88A7	155 (157)	11.83 (12)	88B8	155 (157)	11 63 (12)
		12.97 (13.1)			12.97 (13.1)			12.97 (19.1)	88A8	170 (172)	12.97 (13.1)	88B9	170 (172)	12.97 (13.1)
	168	14.34	8887	188	14.34	8896	188	14.34	88A9	188	14.34	88BA	188	14.34
8678		15.6	8888	204	15.0	8899	204	15.6	88AA	204	15.6	88BB	204	15.6
8677	204	10.0 1												
	204 219	16.7	8889	219	16.7	A956	219	16.7	88AB	219	16.7	68BC	219	16.7
8677	-	1			(219 235	16.7 17.9	88AB 88AC	219 235	16.7 17.9	68BC 68BD	219 235	16.7 17.9

	0 rpm			
16 Bit	Decimal	Engineering	LV8	
Hexideoimel	Computer	Unit	Load	
Address	Unit	(meec.)		Base Injection: Pulse Width Calculation
6815	0	0	0	
8816	9 (13)	0.69 (1.0)	16	BINJ - PW Table Value * { (A/F)closed loop / (A/F)destred) }
8817	16 (28)	1.22 (2.1)	32	(Total PW/2) < Table F200 OL> < Table F50 >
8818	22 (45)	1.68 (3.4)	48	OT .
8819	49 (61)	3.74 (4.65)	64	<table cl="" f200=""></table>
881A	67 (77)	6.11 (5.9)	80	
681B	81 (94)	6.18 (7.2)	96	
881C	105 (110)	6.01 (6.4)	112	(A/F)closed loop / (A/F)dssined >= 1
881D	118 (125)	9.0 (9.5)	128	
881E	133 (141)	10.15 (10.8)	144	Simultaneous Double Fire Injection: 1 Injection / Crankshaft Revolution
881F	155 (157)	11.83 (12)	160	
8820	170 (172)	12.97 (13.1)	176	Delivered PW 🛥 BINJ (Adeptive Mode * Decel Mode + Accel Mult.) + CL Corr + Inj Corr
8821	188	14.34	192	
8822	204	15.6	208	
8823	219	16.7	224	
8824	235	17.9	240	
6825	261	19.15	256	

Table F200 CL (Closed Loop) Base Pulse Inject vs. LV8 - Load Conversion Equation $N = E^{+} 65.536 / 5$

Table	FOI LVI) -Loe	id Aoi	oel Enrich	ment Multiplier	ve. Coolent Temp
-						•

.

Conversion Equation N = E* 128

•

16 Bit	Decimel	Engineering	Coolant	
Hexideolmai	Computer	Unit	Temperature	·
Address	Unit	(% Chng.)	deg. C	Acceleration Enrichment Multiplier Calculation
676C	245 (96)	1.92 (0.75)	-40	
676D	245 (92)	1.92 (0.72)	-28	Delivered PW - BINJ [Adeptive Mode * Decel Mode + Accel Mult.] + CL Corr + Inj Corr
876E	235 (88)	1.84 (0.69)	-16	- BPINJ
876F	191 (72)	1.49 (0.56)	-4	
8770	170 (64)	1.33 (0.5)	8	BPINJ = BPINJ + (BPINJ)(AE FACTOR)
8771	150 (58)	1.17 (0.44)	20	
8772	110 (40)	0.86 (0.31)	32	AE FACTOR [(Loed AE Mult. + Deita Throttle Poe. AE Mult.) - Limit] - Decay Rate
8773	98 (96)	0.77 (0.28)	44	< Table F91 > < Table F102>
6774	85 (32)	0.664 (0.25)	56	
8775	45 (16)	0.35 (0.125)	68	
8778	42 (16)	0.39 (0.125)	80	Additional fuel delivered 'synchronously' with base PW - based on rapid ohanges in
8777	16 (8)	0.14 (0.06)	92	measured air/cylinder
8778	18 (8)	0.14 (0.08)	104	
8779	18 (8)	0.14 (0.06)	116	
877A	18 (8)	0.14 (0.06)	128	

.

Table F102 Delta Throttle Accel Enrichment Multiplier vs. Coolant Temp

Conversion Equation N = E * 128

16 BK	Decimal	Engineering	Coolant	
Hexideoimal	Computer	Unit	Temperature	
Address	Unit	(% Chng.)	deg. C	Acceleration Enrichment Multiplier Calculation
646E	255 (144)	1.99 (1.125)	-40	
840F	255 (144)	1.99 (1.125)	-28	Delivered PW = BINJ (Adeptive Mode * Decel Mode + Accel Mult.) +. CL Corr + Inj Corr
8470	255 (128)	1.99 (1.0)	-16	- BPINJ
8471	255 (124)	1.99 (0.97)	-4	
8472	245 (118)	1.91(0.92)	8	BPINJ = BPINJ + (BPINJ)(AE FACTOR)
8473	164 (80)	1.28 (0.625)	20	
8474	130 (64)	1.02 (0.5)	32	AE FACTOR = [(Load AE Mult. + Delta Throttle Poe. AE Mult.) - Limit] - Decay Rate
8475	118 (56)	0.92 (0.44)	44	< Table F91 > < Table F102>
8476	92 (44)	0.72 (0.34)	56	
8477	66 (32)	0.52 (0.25)	68	
8478	50 (24)	0.39 (0.19)	80	Additional fuel delivered 'asynchronously' with base PW - based on rapid changes in
8479	17 (10)	0.13 (0.08)	92	measured throttle position (TPS)
847A	17 (10)	0.13 (0.08)	104	
847B	17 (10)	0.13 (0.08)	116	
847C	17 (10)	0.13 (0.08)	128	

Table F80 Cold Engine F/A % Chng vs. LV8 - Load and CLDEGFLT

Convension Equation N = % Change * 2.58

-28	deg. C	-28 deg.C		deg. C		20 deg. C			44	deg. C		68 deg. C			
16 BK	Decimal	Engineering		Decimal	Engineering		Decimal	Engineering		Decimel	Engineering		Decimel	Engineering	
Haddeoimai	Computer	Unit	Hexideoimel		Unit	Hexidecimal		Unit	Hexidecimal	Computer	Unit	Hexidecimal	Computer	Unit	
Address	Unit	(% Chng.)	Address	Unit	(% Chng.)	Address	Unit	(% Chng.)	Address	Unit	(% Ching.)	Addrees	Unit	(% Ching.)	
85D9	33 (36)	13 (14)	85EA	31 (34)	12.3 (19.9)	85FB	33 (36)	13 (14)	860C	12 (13)	4.5 (5)	861D	0	0	
85DA	33 (96)	19 (14)	85EB	31 (34)	12.3 (13.3)	86FC	33 (36)	13 (14)	860D	29 (32)	11.5 (12.5)	861E	0	0	
96DB	33 (36)	13 (14)	65EC	31 (34)	12.3 (15.3)	85FD	33 (36)	13 (14)	860E	31 (34)	12.3 (13.3)	861F	13	6	
86DC	33 (36)	13 (14)	86ED	31 (34)	12.3 (13.3)	85FE	33 (36)	13 (14)	860F	31 (34)	12.3 (19.3)	8620	26	10	
6500	36 (36)	14 (15)	85EE	33 (36)	13 (14)	86FF	33 (36)	19 (14)	8610	31 (34)	12.9 (13.9)	8621	36	14	
BEDE	37 (40)	14.6 (15.6)	86EF	36 (38)	14 (15)	8600	36 (38)	14 (15)	8611	33 (36)	13 (14)	6622	37	14,4	
85DF	39 (42)	15.4 (16.4)	85F0	37 (40)	14.6 (15.6)	8601	36 (39)	14.2 (15.2)	8612	36 (38)	14 (15)	8623	38	15	
85EO	46 (48)	17.8 (18.8)	85F1	44 (46)	17 (18)	8602	41 (44)	16 (17)	8613	97 (40)	14.6 (15.6)	8624	40	15.6	
85 E1	47 (50)	18.5 (19.5)	85F2	48 (48)	17.8 (18.8)	8603	46 (48)	17.8 (16.8)	8614	39 (42)	15.4 (16.4)	8625	41	16	
86 E2	51 (54)	20 (21)	86F3	49 (52)	19.9 (20.9)	8804	47 (60)	18.5 (19.5)	8615	41 (44)	16 (17)	8626	42	16,4	
85 E3	55 (57)	21.3 (22.3)	85F4	54 (56)	21 (22)	8605	49 (52)	19.3 (20.3)	8616	47 (50)	18.5 (19.5)	8627	43	16.8	
85 E4	58 (59)	22 (23)	86F5	56 (58)	21.7 (22.7)	8606	51 (54)	20 (21)	8017	49 (52)	19.3 (20.3)	8626	44	17	
85 E5	69 (61)	23 (24)	85 F6	57 (60)	22.4 (23.4)	8607	54 (56)	21 (22)	8618	51 (54)	20 (21)	8629	44	17	
85 E6	59 (61)	23 (24)	85F7	57 (60)	22.4 (23.4)	8608	56 (56)	21.7 (22.7)	8619	51 (54)	20 (21)	862A	44	17	
86 E7	59 (61)	23 (24)	85F8	67 (0 0)	22.4 (23.4)	8609	56 (58)	21.7 (22.7)	861A	51 (54)	20 (21)	862B	44	17	
85 E8	59 (61)	23 (24)	85 F9	57 (80)	22.4 (23.4)	860A	56 (58)	21.7 (22.7)	861B	51 (54)	20 (21)	862C	44	17	
65 E9	59 (61)	23 (24)	86FA	67 (00)	22.4 (23.4)	860B	58 (58)	21.7 (22.7)	861C	51 (54)	20 (21)	862D	44	17	
16 BK	deg. C Decimel	Engineering	16 Bit	deg. C Decimel	Engineering	┝	LV8 -Load								
	Computer			Computer	Unit	1	(for each								
Address	Unit	(% Chng.)	Addrees	Unit	(% Chng.)	1	series)							1	
002E	0	0	863F	0	0	r r	0	C	Open Loop F/	A Caloulatic	Mn.				
002F	0	0	8640	0	0	ļ	16		•					1	
8630	13	6	8641	13	5	4	32	c	Dpen Loop F/A	= C.L. F/A	{ (%Enrich.) +	(%Enrich. Tin	ne-Out) + (/	vdd. Mode)]	
6631	26	10	8642	26	10	1	48		•		Table F50 >	< Table Fi	• •		
8632	36	14	6643	36	14		64								
8633	37	14.4	8644	37	14.4		80								
8634	38	15	8645	38	15		96								
8635	39	15.2	8646	38	16	1	112								
8636	40	15.6	8647	38	15	1	128	9	Enrich. Time-	Out> 0 t	y a predeterm	ined exp. deci	ay function	1	
8637	40	15.6	8648	38	15		144							1	
8638	40	15.6	8649	38	15	[160	. %	Enrichment -	-> 1 at poli	nt where close	d loop switiche	8	1	
8639	40	15.6	864A	38	15	1	176							1	
863A	40	15.6	864B	38	16		192							1	
8698	40	15.6	864C	38	16	1	208								
863C	40	15.6	864D	38	16		224								
863D	40	15.6	864E	38	16	1	240							1	
863E	40	15.6	864F	38	15		258								

Table F51 Time Out F/A % Chang init Value vs. Coolant Temp Conversion Equation N = % Change * 1.28

.

16 Bit	Decimal	Engineering	Coolant	
Hexidecimel	Computer	Unit	Temperature	
Address	Unit	(% Chng.)	deg. C	Open Loop F/A Calculation
8650	150 (160)	117.2 (125)	-40	
8651	150 (160)	117.2 (125)	-28	Open Loop F/A = C.L. F/A [(%Enrich.) + (%Enrich. Time-Out) + (Add. Mode) }
8652	128 (139)	100 (108.6)	-16	<table f50=""> < Table F51></table>
8653	100 (112)	78 (87.5)	-4	
8654	49 (56)	38 (44)	8	Closed Loop F/A Calculation
8655	35 (42)	27 (33)	20	
8656	23 (28)	18 (22)	32	Closed Loop F/A = C.L. Stoloh F/A [1 + (%Enrich, Time-Out)]
8657	18 (22)	14 (17)	44	< Table F51 >
8668	13 (16)	10 (12.5)	66	
8659	13 (16)	10 (12.5)	68	
865A	13 (16)	10 (12.5)	80	
865B	11 (14)	8.6 (11)	92	%Enrich. Time-Out> 0 by a predatermined exp. decay function
865C	11 (14)	8.6 (11)	104	
865D	11 (14)	8.6 (11)	116	

.

.

٠

Table F64 Crank Fuel PW vs. Coolant Temperature

Conversion Equation N = E * 256 / KSCAL64

	Crolant	Engineering	Decimal	16 Bit
	Temperature	Unit	Computer	Hexidecimel
	deg. C	(msec.)	Unit	Addrees
C	-40	119 (131)	163 (179)	86 E6
	-28	114 (126)	158 (172)	86 E7
C	-16	99 (108.4)	135 (148)	86 E8
	-4	70 (77)	96 (105)	86 E9
	8	67 (63)	78 (86)	86 EA
	20	33 (35)	45 (48)	86 EB
Ci	32	27 (29)	37 (40)	86 EC
	44	22 (24)	30 (33)	88 ED
At	66	14 (15.4)	19 (21)	88 EE
	68	12 (13)	16 (18)	86 EF
	80	10 (12)	14 (16)	86F0
	92	10 (12)	14 (16)	86F1
	104	10 (12)	14 (16)	86F2
	110	12.5 (14)	17 (19)	86F3

Cranking Fuel Pulse Width Calculation
Crank PW / Rev = (Crank PW) (Crank PW Time - Out) (Constant) < Table F64 > < Table F65>
Crank PW - Duration per crank revolution (1/2 total fuel / cylinder)
At <450 rpm and <96 deg. F - 1/3 Crank PW injected 3 times per revolution

Table F65 Crank Fuel PW Multiplier vs. Reference Pulsee

Conversion Equation N = E * 256

16 Bit	Decimal	Engineering	Crank	
Hexideoimel	Computer	Unit	Reference	
Addrees	Unit	(maeo.)	Pulses	
B6F4	170 (192)	0.66 (0.75)	0	
86F5	105 (128)	0.41 (0.5)	8	Cranking Fuel Pulse Width Calculation
86F6	105 (128)	0.41 (0.5)	16	
86F7	105 (128)	0.41 (0.5)	24	Crank PW / Rev = (Crank PW) (Crank PW Time - Out) (Constant)
86F8	105 (128)	0.41 (0.5)	32	< Table F64 > < Table F65>
86F9	105 (128)	0.41 (0.5)	40	
86FA	105 (126)	0.41 (0.5)	48	
86FB	105 (128)	0.41 (0.5)	56	Crank PW Time-Out - Crank PW Multiplier
86FC	105 (128)	0.41 (0.5)	64	
86FD	105 (128)	0.41 (0.5)	72	At <450 rpm and <95 deg. F - 1/3 Crank PW Injected 3 times per revolution
86FE	105 (128)	0.41 (0.5)	80	• • •
86FF	105 (128)	0.41 (0.5)	88	3 Reference pulses per revolution
8700	105 (128)	0.41 (0.5)	96	· ·
8701	105 (128)	0.41 (0.5)	104	
8702	105 (128)	0.41 (0.5)	112	
8703	105 (128)	0.41 (0.5)	120	
8704	105 (128)	0.41 (0.5)	128	

16 Bit	Decimal	Engineering	Coolant	
Hexideoimel	Computer	Unit	Temperature	
Address	Unit	(rpm)	deg. C	IAC Command Speed Calculation
8957	136	1700	-40	
8958	128	1600	-28	Command Idle RPM - Base Idle RPM + RPM Offset
8959	112	1400	-16	< Table F17 >
895A	104	1900	-4	
895B	104	1300	8	Four Modes of Operation
896C	96	1200	20	
896D	98	1200	32	Start-up Delay - IAC motor initially moved to 'warm park' position
895E	80	1000	44	
895F	72	900	56	Open Loop - IAC motor retracts until actual rpm equals desired rpm
8980	72 (70)	900 (875)	68	
8961	72 (68)	900 (850)	80	Closed Loop - IAC motor regulates to achieve desired rpm
8982	72 (68)	900 (850)	92	
8963	72 (68)	900 (850)	104	Throttle/Load Compensation - IAC motor compensates kills speed for
8964	72 (09)	900 (863)	116	applied loads (A/C, Pwr Steering, etc.)
8965	72 (70)	900 (875)	128	
8966	72	900	140	
8967	72	900	152	

Table F17 idle Air Control (IAC) Command Speed vs. Coolant Temp Conversion Equation N = E / 12.5

Table F78 EGR Duty Cycle vs. LV8 - Load and RPM

Conversion Equation N = E * 258

	800 RPM		T	1000 RPM			1200 RPM		1	1400 RPM			1600 RPM	
16 BK	Decimal	Engineering	16 Bit	Decimal	Engineering	16 Błt	Decimal	Engineering	16 BH	Decimal	Engineering	16 Bit	Decimal	Engineering
Heideoimei	Computer	Unit	Hexidecimal	Computer	Unit	Hextdeoimal	Computer	Unit	Hexideoimal	Computer	Unit	Hexidecimal	Computer	Unit
Address	Unit	(DC%)	Addrees	Unit	(00%)	Addrees	Unit	(DC%)	Address	Unit	(DC %)	Addrees	Unit	(DC %)
630B	0	0	8314	0	0	831D	0	0	8326	0	0	832F	0	0
830C ·	0	0	8915	0	0	831E	0	0	8327	0	0	8330	0	0
830D	0	0	8316	0	0	891F	0	0	8328	0	0	8331	30 (26)	11.7 (10)
830E	0	0	8317	15 (13)	5.9 (5)	8920	43 (38)	16.8 (15)	8329	74 (64)	28.9 (25)	8332	103 (90)	40 2 (35)
830F	0	0	8318	30 (26)	11.7 (10)	8321	68 (51)	22.7 (20)	832A	103 (90)	40.2 (35)	8333	132 (115)	51.6 (45)
8910	0	0	8319	43 (38)	16.8 (15)	8322	74 (64)	28.9 (25)	8328	117 (102)	45.7 (40)	8334	147 (128)	57.4 (50)
8311	0	0	691A	68 (61)	22.7 (20)	8323	88 (77)	34.4 (90)	832C	132 (115)	51.6 (45)	8335	162 (141)	63.3 (55)
8312	0	0	831B	74 (64)	28.9 (25)	8324	103 (90)	40.2 (35)	832D	147 (128)	67.4 (50)	6336	165 (146)	65.6 (57)
8313	0	0	831C	68 (77)	34,4 (30)	8325	103 (90)	40.2 (95)	832E	162 (141)	63.8 (55)	8337	177 (154)	89.1 (80)
	1800 RPM			2000 RPM			2200 RPM			2400 RPM			2600 RPM	
16 BR	Decimal	Engineering	16 BR	Decimal	Engineering	16 Bit	Decimal	Engineering	16 Bit	Decimel	Engineering	16 Bit	Decimal	Engineering
Heoddeoimel	Computer	Unit	Hexideoimal	Computer	Unit	Hextelectmel	Computer	Unit	Hexideolmai	Computer	Unit	Hexideoimai	Computer	Unit
Address	Unit	(DC%)	Address	Unit	(DC%)	Addrees	Unit	(DC%)	Address	Unit	(DC %)	Address	Unit	(DC %)
9338	0	0	8341	0	0	834A	0	0	8353	0	0	835C	0	0
9339	0	0	8342	0	0	834B	0	0	8354	0	0	836D	0	0
833A	43 (S8)	16.8 (15)	8343	68 (51)	22.7 (20)	834C	43 (38)	16.8 (15)	8355	30 (26)	11.7 (10)	835E	0	0
8538	103 (90)	40.2 (35)	8944	103 (90)	40.2 (35)	834D	103 (90)	40.2 (35)	8356	88 (77)	34.4 (30)	835F	74 (64)	28.9 (25)
839C	132 (115)	51.6 (46)	8345	132 (115)	61.6 (45)	834E	147 (128)	51.6 (45)	8357	132 (115)	51.6 (45)	8360	117 (102)	45.7 (40)
8390	147 (128)	57.4 (60)	8346	147 (128)	67.4 (60)	834F	102 (141)	57.4 (60)	8358	147 (128)	51.6 (45)	8961	147 (128)	57.4 (60)
633E	177 (154)	0 9.1 (00)	8947	177 (154)	69 .1 (60)	8350	177 (164)	69.1 (60)	8350	177 (154)	09.1 (00)	8362	177 (154)	09.1 (00)
633F	185 (181)	72.3 (63)	8348	190 (166)	74.2 (85)	8951	190 (166)	74.2 (65)	835A	190 (166)	74.2 (65)	8969	190 (166)	74.2 (65)
8340	190 (166)	74.2 (65)	8349	205 (179)	80.1 (70)	8952	205 (179)	80.1 (70)	836B	190 (166)	74.2 (65)	8364	190 (166)	74.2 (65)
	2000 RPM			3000 RPM		L								1
16 BR	Decimal	Engineering	16 Bit	Decimal	Engineering		LV8-Loed	l	EGR Duty Cy	ole Caloulat	on			1
lexiciaoimei	Computer	Unit	Hexidecimal	Computer	Unit	1	(for each							1
Address	Unit	(DC%)	Address	Unit	(DC %)	L	series)	1	Egr DC = (1)	1
8365	0	0	836E	0	0		32		<	: Table F76 >	- < Tab	ble F77 >		
8366	0	0	836F	0	0	ļ	48							1
8367	0	0	8370	0	0		64	•	EVRV DC	EG	R Valve Press		R Valve Pos	
8368	74 (64)	28.9 (25)	8371	74 (64)	28.9 (25)	1	80		0%		etm.		ed (normally	ク
	117 (102)	45.7 (40)		117 (102)	45.7 (40)	1	96	0	< DC < 100%		· 10 - 24 kPa		Itil eldelta	
	147 (128)	57.4 (50)		147 (128)	57.4 (50)		112		100%	n	nan. Vacuum		tully open	ł
	177 (154)	69,1 (60)		177 (154)	69.1 (60)	1	128					•		
	190 (166)	74.2 (65)		190 (166)	74.2 (65)	ł	144	E	EVRV - Electr	onic Vacuun	h Hegulator Va	NVO.		ł
836D	190 (166)	74.2 (65)	8376	190 (166)	74.2 (65)		160			أنتقف والتعرير الألياني بالبنار بيعتب				

Table F77 EGR Duty Cycle Muttiplier vs. Coolant Temp

Conversion Equation N = E * 128

16 Bit Hexidecimai	Decimal Computer	Engineering Unit	Coolant Temperature	EGR Duty Cycle Calculation
Address	Unit	(gain)	deg. C	
8377	0	0	-40	EGR DC = (EGR Base DC) (EGR DC Coolant Mult)
6378	35 (32)	0.27 (0.25)	-28	< Table F76 > < Table F77 >
8379	85 (80)	0.66 (0.625)	-16	
837A	125 (120)	0.96 (0.94)	-4	EGR DC = 0 when:
837B	158 (152)	1.23 (1.19)	8	* perk / nuetral
837C	170 (166)	1.39 (1.31)	20	* manifold air temp. (MAT.) < -40 deg. C
		•••	1	 throttle position (TPS) < 2.7%, if not currently equal to zero
				 throttle position (TPS) < 4.3%, if ourrently equal to zero
			[power enrichment mode enabled - TPS > 60% engine warmed
ور و و و و و و و و و و و و و و و و و و				- power ennorment mode enabled - 125 > 60% engine warmed

APPENDIX B Oil Sample Test Reports

.

TEXAS TECH UN ATTN: DR. TIM P.O. BOX 4102 LUBBUCK , TX,	MAXWELL	TEST R Atlar	DRED ENANCE Haus Program REPORT	Company: M Location: LU Component. Make & Model Oil Capacity: Oil Tupo:	IC#577-492 ECH ENGINE BBOCK TX ENGINE CHEVY I 4 QTS. UBRIZOIL	EERING	
SAMPLE INFORMATION			COM	MENTS			······································
NO. 1- 009225920 nple Drawn: N/C vort Date: 09/22/93 HR Unit: 13,450 HR Oil: N/G Added:		PROBABLY ASSEMBLY CON TIME OF SAMPLING, (1			NATERIAL. CHANS	E DIL AND FILT	R
I NO. 2- ple Drawn: iort Date: IR Unit: IR Oil:	-						
Added:							
I NO. 3-							
nple Drawn: ort Date: IR Unit: IB Oil:	-						
Added:							
NO. 4-							
iple Drawn: ort Date:	F						
IR Unit:							
IR Oil:							
Added:			· · · · · · · · · · · · · · · · · · ·				
NO, 5- Iple Drawn:	_						
ort Date:							
IR Unit:							
IR Oil:							
<u>\dded;</u> NO. 6-							
ple Drawn:							
ort Date: IR Unit: IR Oil: Idded:							
PHYSICAL	DATA		MENTAL CONCENTR			······································	P \ 7 \
W F O L A T E L D S 00 C % Vol % Vol %	T N N	SILLERON N SULLERON M U U M	ALUMINUM NICKEL BDENUM	LEAD COPPER	BORON SODIUN VER	BAR-UM BAR-UM CALC-UM	N-NC N-NC
	.1 7 12	138 156 9	1 1 1	69 47 40	0 85 1		1009 2458
		3					

TEXAS TECH	TIM MAXWI			MOCO MITORED UNTENANCE Od Analysis Program EST REPORT	Unit N Comp Locati	any:	'88 COR TEXAS T LUBBOCK	ECH UNIV	H UNIVERSITY			
P.O. BOX 4		79409 Computer-Code-	Atla (404)	anta, GA 454-8000 1591 '88 CC	Make Oil Ca	& Model: apacity:	ENGINE CHEVY N N/G	/G				
			j									
SAMPLE INFO	E07070247	SPECIFICATIONS FOR	THIS OIL ARE	NOT-AVAILABLE.	TRACE WATER D	ETECTED.	NO GLYCO	L DETECTED.	-SUSPECT-			
Sample Drawn	06/30/94	CONDENSATE. SUSPECT	SILICON IS F	ROM ENGINE SEA	LANT (GASKET M	ATERIAL)	. SUSPECT	ABNORMAL (CYLINDER			
Report Date:	07/11/94	AREA WEAR. CHECK FO	R POWER LOSS,	BLOW-BY, SMOK	ING, OIL CONSU	MPTION,	ETC. CHAN	GE OIL AND	FILTER IF			
MI/HR Unit:	19457	NOT DONE AT TIME OF	SAMPLING. RE	SAMPLE AT NORM	AL INTERVAL. D	# VISCO	SITY APPEA	rs lower ti	IAN USUAL			
	3000	FOR MOTOR										
MI/HR Oil:	NORMAL	OIL.]										
Oil Added:	E09269705-	NOTE VISCOSITY. (LC	W: INSPECT-F	UEL-SYSTEM FOR	DEFECTS. TEL	ECON. (EVALUATOR-	MIKE COSTE	LLO) PER-DR	<u>. </u>		
LAB NO. 2-	09/20/94	TIM MAXWELL: UNIT H										
Sample Drawn	09/29/94	METHANOL.										
Report Date:	27000	1										
MI/HR Unit:	7000											
MI/HR Oil:	NORMAL											
Oil Added:		<u> </u>										
LAB NO. 3-												
Sample Drawn:		Г										
Report Date:												
MI/HR Unit:												
MI/HR Oil:												
Oil Added:		<u> </u>								—		
LAB NO. 4-												
1		F										
Report Date:												
MI/HR Unit:												
MI/HR Oil:												
Oil Added:												
LAB NO. 5-												
Sample Drawn:		F										
Report Date:												
MI/HR Unit:												
MI/HR Oil:												
Oil Added:												
LAB NO. 6-												
Sample Drawn:		+										
Report Date:												
MI/HR Unit:												
MI/HR Oil:												
Oil Added	0111-0			PI III								
	PHYSICAL				NCENTRATIONS I				- I - I -	77		
V W S T L 100C R B CSt % V	F SOL ELDS	F U E L SO O T	S 1 0 1 R 0 N L 1 C 0 N	NICKEL MOLYBDENDM	COPPER TIN ALUMIN	LWAD	SOD-UM	BORON MAGNUS-DM	CALCIU	PTONPTORDU		
B CSt St St	<u>oi % Vol % V</u>		IN			1 1		M	M	ប្ត		
8.1 0.2			44 293	21 1 7	9 11 60	35	14 C	1118	40 0	891		
1			ВВ		В							
2 7.8 <.05	s .1	0 0	19 80	5 13 3	8 0 4	20) 58	86 855	1167 0	12:		
3												
4										-		
5										-		
6	1	! []]			1 1	1	i	1	1	I		

TEXAS TECH UNIVERSITY ATTN: DR. TIM MAXWELL P.O. BOX 41021 LUBBUCK , TX, 79409								(At	EST F	ta,	RT GA		Co Lo Mi Oi		^{iy:} TI i [:] LUI ient: Model acity:	EXAS BBD(ENG)	CK T INE CHEV	ECH FX /Y N	UNI N/G	(VER 7616		Y	
SAMPLE IN	FORM	ATION												MENT	s									
3 NO. 1-	E070	7024	7	SPECI	FICAT	TIDKS	FOR T	HIS DI	L ARE	TON	AVAIL	ABLE.	TRAC	HAT	ER DET	ECTED	100	SLYCO	L DET	ECTED	SUS	PECT		
nple Drawn:	06/	30/9	4				USPECT																60	
port Date:		/11/9					ER LOS																	
HR Unit:		457					IXC. R																	
HR Oil:	3,8																							
Added:		anal.						-																
1 NO 2-					,							-,			·									
nple Drawn:			ļ	-																				
ion Date:																								
HR Unit:]																					
HR Oil:																								
Added;																								
1 NO, 3-																								
nple Drawn:																								·
ion Date:																								
-IR Unit:																								:
IR Oil:																								•
Added;																								
I NO. 4-																								
nple Drawn:				_																				ł
ort Date:																								÷
IR Unit:																								1
1R Oil:																								ĺ
Added:								·					·											
; NO. 5-																								
nple Drawn:				-																				
on Date:																								i
IR Unit:																								ļ
IR Oil:																								:
Added:																								
• NO. 6-																								i
ple Drawn:				-																				
ort Date:								•																i
IR Unit:														• ;			•							
IR Oil:															• •		•	•						
Added:																			·					
			AL DA	TA F 1 C	<u>, ñ</u>	<u> </u>		- 1	<u>, , , , , , , , , , , , , , , , , , , </u>		MENT													
W A		ً \ نِ	٩ /	H000L	20-04-	LARAH-OZ	Ι	r 1	<u>k</u> '	<u>н</u> 1	0 1	1 1		[]] 3	002.2.WE	EΙ			DRON N	SAGZW0-22		BAR 1	A TOWATORDW	Z .
SATER			1	5	¥ \ [ĘΙ	[*	× 00 ÷ u	R O N	DHROM -	¥	OKEL	M	М	5	6	LVER	11	Ô	Ř	A L C	11	§	й С Е
я / э о с	1	/	s	8 1	202	18	ľ	0		M	<u> </u>	51	24	1		/	FE	U I	N	<u>s</u>	11	M	ğ	<i>I</i> :
1	Voi	N 1/1	% Vol		Ň A/cm	Ň		N		M	<u>[</u>]		M				1	• • •		¥	M		ũ	ų
1.1 0.1		<u>%_V0I</u>		<u>76 VVI</u>					202						(0)	25		-	•		~		1	
1.1 0.1	" [K.1					44 B	292 R	21	0	6	8	11	60	35	0	40	8	118	39	0	898 2	181
Ki			†		;			1 ⁰	Di						5									
ļ				ł																				
				<u> </u>							<u> </u>													
				L																				
ł																								
	-+				<u>1</u>	<u> </u>					! 											ļ		
·								 		1														

÷

			LONICO MONITORED	Unit No: 123583 E	
TEXAS TECH			MAINTENANCE	Company TEXAS TECH UNIVERSIT	
ATTN: DR. T		ELL	Lute Oil Analysis Program TEST REPORT	Location.	<u> </u>
P.O. BOX 41	021		IEST REPORT	Component: ENGINE	
			Atlanta, GA	Make & Model: N/G N/G	
LUBBUCK TX		79409	(404) 454-8000	Oil Capacity: N/G	
		Computer-Code-	> 041591 123583		
		·····	<u></u>	······································	
SAMPLE INFOR		INSUFFICIENT INFO G	IVEN TO PROVIDE ACCURATE EVALUAT	MMENTS DATA. SUSPECT ABNORMAL CYLINDER AR	E A
ample Drawn:	11/18/94	WEAR. SUSPECT RING	WEAR. VALVE AREA WEAR INDICATED	(NICKEL). CHECK FOR POWER LOSS, BLOW-BY,	
Seport Date:	12/02/94	SMOKING, OIL CONSUM	PTION, ETC. SUSPECT ABNORMAL MAI	N/CONN. ROD BEARING WEAR. WEAR NOT MAJOR,	BUT
Al/HR Unit:	31000	SHOULD BE NOTED. CH	ECK FOR KNOCKING AND/OR LOSS OF	OIL PRESSURE. RECOMMEND CLOSE MONITORING.	
MI/HR Oil:	3500	RESAMPLE AT ONE HAL	F NORMAL INTERVAL. (EVALUATOR -	G.D.)	
Oil Added:	NORMAL				
LAB NO. 2-				······································	
· Sample Drawn:					
Report Date:		1			
MI/HR Unit:					
MI/HR Oil:					
Oil Added:					
_AB NO. 3-					
Sample Drawn:		-			
Report Date:					
MI/HR Unit:					
MI/HR Oil:					
Oil Added:					
· LAB NO. 4-					
Sample Drawn:		-			
Report Date:					
MI/HR Unit:					
MI/HR Oil:					
Oil Added:					
_AB NO. 5-			······································	······································	
Sample Drawn:		-			
Report Date:					
MI/HR Unit:					
MI/HR Oil:					
Oil Added:					
LAB NO. 6-					
Sample Drawn:		–			
Report Date:					
MI/HR Unit:					
MI/HR Oil:					
Oil Added:					
	PHYSICAL D			TRATIONS IN PARTS PER MILLION (PPM) BY WEIGH	
	F S		S I C M N A I R H O I L L O R V C U	T C L S S B M C 1 O E 1 O O A A	
		F 0 1 F U E D A T I O O T N O T N TAN		CALCALCALCALCALCALCALCALCALCALCALCALCALC	BARIJM M
			CONUS		Ŭ H N
L 100C R A CSt N V O S Vol			N U N U		
0 8.5 % Vol	1% Vol % V	01 % Wt A/cmA/cm	19 214 17 2 11 M	b b2 34 b 25 b 1832 32	0 113
1			19 214 1/ 2 11 / C B B	и в в в 1832 32	
2					
3					
	+	+			
4					
5					
6					

TEXAS TECH UNI ATTN: DR TIM P.O. BOX 41021 LUBBUCK , TX,	MAXWELL	CONOCO MAINTENANCE Labe Ol Anabus Program TEST REPORT Atlanta, GA (404) 454-8000	Unit No: 4 Company TEXAS TECH UNIVERSI Location LUBBOCK TX Component ENGINE Make & Modei: CHEVY N/G Oil Capacity: 5 QTS. Oil Type: LUBBITS	[ΤΥ
SAMPLE INFORMATION	T		LUBRIZOL	<u> </u>
NO. 1- D1 0017521 ple Drawn: 05/24/93 prt Date: 10/06/93 R Unit: 17,177 R Oil: 3,727 idded: NO 2-		TAR INDICATED. CHANGE DIL AND FI	NDT GIVEN. HIGH LEVEL OF DIRT DETECTED. GENERAL LTER IF NOT DONE AT TIME OF SAMPLING.	LIZED
ple Drawn; prt Date; R Unit;				
R Oil:				
dded:				
NO. 3- ple Drawn:	L			
ort Date:				
R Unit:				
R Oil:				
dded:	ļ			
NO. 4- ple Drawn:				
int Date:				
R Unit:				
R Oil:				
dded:				
NO. 5-				
ple Drawn:	<u> </u> -			
irt Date; R Unit:				
R Oil:				
dded:				
NO. 6-		······································		
ple Drawn:	+			
rt Date;				
R Unit: R Oil:				
dded:				
PHYSICAL D	ATA		TRATIONS IN PARTS PER MILLION (PPM) BY WEIGHT	
	$ \begin{array}{c c} F & O & N \\ U & X & T \\ U & D & A \\ S & T & A \\ S & T & O \\ O & T \\ O & N \\ Wt & A/cmlA/cml \end{array} $	А L U M A	В А Я - U М В А Я - U М В О Я О D - U М В О Я О D - U М В О Я О D - U М С О Р Р Е Я С О Р Р Е Я	N HOWFHORD
				1 1
3.5 <.05 <.1	8 12	98 207 31 2 3 1 6 8 8	9 30 47 27 0 47 0 2060 57 1	0 1072 2157
				:
				· .
				:
				:

- -

· ·····

APPENDIX C

-

Emissions Test Results from Southwest Research Institute

-

FAX COVER LETTER

MESSAGE:

Dear Jesse:

Here a new copies of the data, the are no changes but they're a bit easier to read. The reason the values for NMOG and THC are similar is because of how each is calculated. The calculations are as follows:

NMOG = NMHC + CARBONYL + ALCOHOL

THC = NMOG + 0.0043*CH4

As you can see, for CARB calculation purposes THC is a calculated number rather than from a FID analyser. This is how the confusion arose. Please note that this data does not have a RAF applied to it. It is 0.41 for M85, but I'm not sure what it is for M100. If you have any other questions, feel free to call me at 210-522-5869.

Sincerely, Kevin A. Whitney

Engineer Department of Emissions Research

SO COMPUTER PROGRAM LDT 1.0-R	UTHWEST RESEARCH INSTITUTE - 3-BAG CARB FTP VEHICLE E			008
VEHICLE HURBER 577 VEHICLE HODEL 88 CHEVY CORSICA ENGINE 2.8 L (171 CID)-V-6 TRANSMISSION 5H ODORFTER 9258 MILES (1489	TEST CC-TT-Ol DATE 1/19/93 DYNO 2 E ACTUAL ROAD LO 6 KN) TEST WEIGHT 3	RUN AG CART 2 AD 7.70 HP (5.74 KG 500 LBS (1587 KG)	NETHANOL ER-139 PUEL DENSITY 6. H .126 C .375	9-F 620 f.B/GAL 0 .499 X .000
		• · • ·		
BAROMETER 29.30 IN HG (744.2 MH HC RELATIVE HUNIDITY 38.6 PCT. BAG BUMBER BAG DESCRIPTION ROW TIME SECONDS DRY/WET CORRECTION FACTOR, SAMP/N MEASURED DISTANCE MILES (KM) BLOWER FLOW RATE SCFM (SCMM) GAS METER FLOW RATE SCFM (SCMM) TOTAL FLOW SCF (SCM)	COLD TRANSIENT (0-505 SEC.)	2 STABILIZED (505-1372 SEC.)	BOT TRANSIENT (0- 505 SEC.)	
RUM TIME SECONDS	505.2	867.0	505.4	
DRY/WET CORRECTION FACTOR, SAMP/I	BACK .977/.989	.980/.989	.978/.989	
NEASURED DISTANCE MILES (KH)	3.58 (5.76)	3.83 (6.16)	3.57 (5.74)	
BLOWER FLOW RATE SCPN (SCHN)	557.2 (15.78)	556.9 (15.77)	556.5 (15.76)	
GAS HETER FLOW RATE SCFH (SCHH)	.27 (.01)	.27 (.01)	.27 (.01)	
TOTAL FLOW SCF (SCH)	4694. (132.9)	8051. (228.0)	4689. (132.8)	
HC SAMPLE METER/RANGE/PPH (BAG) HC BCKGRD METER/RANGE/PPH CO SAMPLE METER/RANGE/PPH CO BCKGRD METER/RANGE/PPH CO2 SAMPLE METER/RANGE/PCT CO2 BCKGRD METER/RANGE/PCT HOX SAMPLE METER/RANGE/PPH (BAG) NOX BCKGRD HETER/RANGE/PPH CH4 SAMPLE PPM (1.120) CH4 BCKGRD PPM	37.8/ 2/ 37.78	11.9/ 2/ 11.89	11.5/ 2/ 11.49	
HC BARGED BETER/RANGE/PPA	1.0/ 2/ 1.00	9.9/ 2/ 9.89	9.1/ 2/ 9.09	
CU SAMPLE RETEK/KANGE/PPR	33.0/ 12/ 32.00	1/.1/ 12/ 10.4/	10.0/ 12/ 10.10	
(M) CINDLE PETER / PINCE / DOT	77 8/ 34/ 6003	1.4/ 12/ 1.33 57 4/ 14/ 4640	1.3/ 12/ 1.23 74 1/ 14/ 5601	
CO2 BOKGED NETER/RANGE/PCT	14.0/ 14/ .0478	13.7/ 14/ .0466	13.8/14/.0470	
NOT SAMPLE NETER/RANGE/PON (BAG)	(D) $45.8i \ 1/31.43$	2.7/ 1/ .68	27.0/ 1/ 6.77	
NOT BOKGED HETER/RANGE/PPH	1.5/ 1/ .38	1.9/ 1/ .48	1.1/1/28	
CH4 SAMPLE PPN (1,120)	4.29	3.55	4,39	
CE4 BCKGRD PPM	2.54	2.52	2.51	
DILUTION FACTOR HC CONCENTRATION PPH CO CONCENTRATION PPH CO2 CONCENTRATION PCT	18.42	24.78	20.57	
HC CONCENTRATION PPH	30.59	2.40	2.27	
CO CONCENTRATION PPN	30.61	14.77	8.70	
CO2 CONCENTRATION PCT	.5751	.4193	.5154	
NOX CONCENTRATION PPN	11.07	.22	6.51	
CH4 CONCENTRATION PPH	1.88	1.13	2.00	
NUMC CONCENTRATION PPH	.13	1.07	.02	
THC MASS GRAMS	6.521	. 365	.189	
co nass grans	4.737	3.920	1.345	
CO2 HASS GRAMS	1399.64	1750.06	1253.19	
hox mass grans	2.478	.085	1.454	
CH4 HASS GRAHS	.16?	.172	.178	
HMHC MASS GRAMS (FID)	.010	.141	.001	
FUEL MASS KG	1.031	1.279	.914	
FUEL ECONOMY NPG (L/100KM)	10.43 (22.55)	8.98 (26.18)	11.71 (20.08)	ALL.
3-BAG COMPOSITE RESULTS				CARRER MIR 818 575 ANNETTE GUERREC 3, 12 GR 1
THC G/NI	.40	CH4 G/NI	.047	818 0 -
CO G/HI	.91	NNEC G/HI	.020	Anne
HOX G/NI	.27	CARBONYL G/HI	.009	PNNEWARC
		ALCOHOL G/MI	.36?	0+A #1-1
FUEL ECONOMY NE	G (L/100KH) 9.91 (23.73)	NHOG G/NI	.396	3,12 621

ډ

COMPUTER PRO	GRAN LDT 1.0		RESEARCH INSTITUTE - 1 AG CARB FTP VEHICLE E				
	とつう				,		
VEHICLE NUMBER	5//		TEST CC-IT-01 DATE 1/19/93 DYNO 2 B ACTUAL ROAD LO			NETHANOL LA-1399-F	
VEHICLE HODEL	88 CHEVY CO	RSICA	DATE 1/19/93	RUN	-	FUEL DENSITY 6.620	LB/GAL
ENGINE	2.8 L (171	CID)-V-6	DYNO 2 B	LG CART 2		H.126 C.375 O.	499 X .000
TRANSMISSION	5M		ACTUAL ROAD LO. TEST WEIGHT 3	AD 7.70 HP (5.74 (0)		
ODONETER	9258 NILE	S (14896 KM)	TEST WEIGHT 3	500 LBS (1587	KG)		
BAROHETER 29.3 RELATIVE HUNIDI			DRY BULB TEHPERATURE	72.0'F (22.	2°C)	NON RUNIDITY C.F.	.880
BAG NUNBER		1	2	3			
			Z STABILIZED		'DUTT 1)	1/9//10/08/0	
DAG DASCELPTIC						alabruuru	
NADEL F ADDURD	(0	-DOD SEC. 3	(505-1372 SEC.)	(0- 505	SEC.)		
FORMALDEHYDE						· · ·	
PPK		.252	.008	.011		.014	
NASS HG		38.71	.00	.00			
ACETALDEHYDE							
PPH		-035	.015	.005		.002	
KASS KG		7.83	5.54	.65			
ACROLEIN							
PPH		.015	.000	.000		.000	
HASS NG		4.39	.00	.00		••••	
ACETONE		7.42	• • • •	,00			
PPN		.048	.059	.036		.013	
MASS HG		11.22	25.06	.038 7.57		.015	
PROPIONALDERY		11+66	20+00	(13)			
	05	010	000	000		000	
PPN NG		.010	-000	.000		.000	
HASS NG	_	3.13	.00	•00			
CROTONALDEHYD	R						
PPN		.000	.000	.000		.000	
HASS HG		-00	.00	.00			
ISOBUTYR+KKK							
PPH		.000	.001	.000		.001	
hass ng	•	•00	.04	.00			
BENZYTDEHADE							
PPH		-000	.000	.000		.000	
HASS HG		.00	.00	.00			
HEXANALDEHYDE	1 1						
PPN		.000	.000	.000		.000	
HASS HG		.00	.00	.00			
RETHAHOL							
PPH		36.444	.238	.173		.171	
HASS KG	62	279.27	21.59	1.45			
ETHANOL							
PPH		.000	.000	.000		.000	
NASS NG		.00				•000	
68.33 <i>R</i> u		•00	.00	.00			
3-BAG COMPOSITE	RESULTS						
	ORMALDEHYDE	NG/NI	2.247	CROTONALD.	NG/HI	.000	
	CETALDEHYDE		1.253	ISOBUTYR+NEK	NG/NI NG/NI	.005	
	CROLEIN	HG/HI		BENZALDEHYDE		.005	
	CETONE	HG/HI	4.622	HEXANALDERIDE		.000	
	PROPIONALD.		.182	NETHANOL	NG/NI NG/NI		
1	AULTANUTO.	no) ni	• 702	ETHANOL	-	367.478	
				DIDUDU	NG/HI	.000	

المستسابي المستحاني والمستعلا المراكبين المستشد ستشف سنحا تشادته يروران

- - ---'

المستشادة بماليهموه فالبسينية فيستنا شقة بماكي مناما الارتباطية والم

CONPUTER PRO		RESEARCH INSTITUTE - D BAG CARB FTP VEHICLE EN		RESEARCH PROJECT NO. 08-4527-008
VERICLE NUMBER 577 VEHICLE HODEL 88 CHEVY CORSICA ENGINE 2.8 L (171 CID)-V-6 TRANSMISSION 5H		TEST CC-TT-02 DATE 1/20/93 RUB DYNO 2 BAG CART 2 ACTUAL ROAD LOAD 7.70 HP (5.74 KW) TEST WEIGHT 3500 LBS (1587 KG)		NETHANOL EN-1399-F FURL DENSITY 6.620 LB/GAL H .126 C .375 O .499 X .000
			70 0 7 / 01 1 0	
EDATIVE SURIDI	13 44.2 Ful .	,	2	9
DAG SUBDER	0¥		<i>لا</i> محربہ 170 دھی	J DATE TO A MATERIAL CONTRACTOR OF A MATERIAL CONTRACTOR OF A MATERIAL CONTRACTOR OF A MATERIAL CONTRACTOR OF A M
DAG DESCRIPTIO		WHU TRANSLERT	STADLULANU	IVI TAABGLEET
		(U-505 SEC.)	(505-1372 SEC.)	(0- 505 SEC.)
RUN TIME SECO	NDS	505.3	867.7	507.1
DRY/WET CORRE	CTION FACTOR, SAMP/BACK	.976/.989	.979/.989	.977/.989
NEASURED DIST.	ARCE HILES (KN)	3.57 (5.74)	3.82 (6.15)	3.57 (5.74)
BLOWER FLOW R	ATE SCFH (SCNH)	557.5 (15.79)	557.1 (15.78)	556.6 (15.76)
GAS METER FLO	W RATE SCEN (SCHE)	.27 (.01)	.27 (.01)	.27 (.01)
TOFAL FLOW SC	F(SCH)	4697. (133.0)	8061, (228,3)	4706. (133.3)
	()			
TA CINDER NE	TED DINCE DOW (BIC)	AS () 2/ 45 97	12 1/ 2/ 12 00	12 1/ 2/ 12 00
	NED (DARGE / DON		12.1 0/ 2/10.00	10 7/ 2/ 10:07
	TDAY BARGE/ FEA MED /DAMCE/DEM	2.1/ 4/ 3.22 50 1/ 19/ 55 01	12.0j $2j$ 10.99	11 0/ 10/ 11 23
	IDK/ MANUD/ FFR	3011/12/ 30101	13.0/ 12/ 13.00	11.0/ 12/ 11.32
	1DR/RABUL/FFR		2.3/ 16/ 2.19	Z. (16 Z.D)
CUZ SARPLE RE	TAK/RABGE/PUI	//.5/ 14/ .0152	0/.// 14/ .4080	/4.// 14/ .0095
COZ BUNGKU MA	TEK/KARGE/PCI	14.4/ 14/ .0494	19.5/ 14/ .0496	14.9/ 14/ .0010
NUX DARFLE RE	TEK/KANGE/PPR (DAG) (D)	39.9/ 1/ 9.9/	1.5/ 1/ .38	7.8/ 1/ 1.96
NOI BOKGRD HE	TER/RANGE/PPR	2.3/ 1/ .58	3.1/ 1/ .78	1.0/ 1/ .25
CH4 SAMPLE PP	A (1.120)	4.10	3.90	4.77
CH4 BOKGKD PP	TER/RANGE/PPN (BAG) TER/RANGE/PPN TER/RANGE/PPN TER/RANGE/PPN TER/RANGE/PCT TER/RANGE/PPN (BAG) (D) TER/RANGE/PPN H (1.120) N	3.30	3.18	3.12
DTIMTION FLOW	NOR LATION PPN LATION PPN LATION PCT	10 17	24 59	20. 22
DUDITOR INCL	ANTAN BON	10.97	1 55	1 02
	ALLOR FFR	57.07	1.00	1.73 a 57
	AILON PER	22.30	10-83	0.00
HOX CONCENTR		9.42	37	1.72
CH4 CONCENTR		.98	.85	1.80
NNHC CONCENTI	ALLUN PPR	.00	.59	04
THC HASS (RANS	8.136	.210	.163
CO NASS (8.112	2.824	1.328
CO2 HASS G		1384.57	1756.07	1270.27
HOX HASS (2.139	-000	.391
CH4 MASS (
		-087	.130	.160
NNEC MASS (• •	000.	.078	.000
FUEL HASS H		1.025	1.282	.926
FUEL ECONOMY	HPG (L/100KH)	10.45 (22.51)	8.96 (26.26)	11.56 (20.35)
3-BAG COMPOSITI	e results			
	TEC G/NI	.48	CH4 G/HI	.035
•	•	.96	NHHC G/HI	.011
	-	.15	CARBONYL G/MI	.005
		T 	ALCOHOL G/MI	.464
	FUEL ECONONY NPG (L/	100KH) 9.87 (23.84)		.479

computer pro	GRAH LDT 1.0		RESEARCH INSTITUTE - DAG CARB FTP VEHICLE B			ESEARCH ROJECT NO. 08-4527-008
VEHICLE NUNBER	577		TEST CC-TT-02			NETHANOL EN-1399-F
VEHICLE NODEL	88 CHEVY CO	RSICA	DATE 1/20/93	RUN		- FUEL DENSITY 6.620 LB/GAL
ENGINE	2.8 L (171 (CID)-V-6	DYNO 2 B	AG CART 2		H .126 C .375 0 .499 X .04
TRANSMISSION	5%		ACTUAL ROAD LO	AD 7.70 HP (5.74 KW)	
ODOWETER	9258 NILE	5 (14896 KM)	TEST WEIGH 3	500 LBS (1587	KG)	NETHANOL EN-1399-F - FUEL DENSITY 6.620 LB/GAL H .126 C .375 O .499 X .00
BAROMETER 29.3 RELATIVE HUNIDI			DRY BULB TEMPERATURE	70.0°F (21.	1°C}	NOX HUNIDITY C.F892
BAG HUHBER		1	2	3		
BAG DESCRIPTI	OH COLD	TRANSIENT	2 STABILIZED	HOP TRANSI	ENT	BACKGROUND
	6)	-505 SEC.)	(505-1372 SBC.)	{ 0- 505	SEC.)	
FORMALDEHYDE			(<i>1</i>	,	-	đ.
Fornaldehyde PPN	,	.363	.015	.013		.017
hass hg		56.32	.00	.00		
ACETALDEHYDE		GARAT		•••		
PFX		-012	.003	.001		.002
MASS NG		2:36	.43	.00		
ACROLEIN			• • •			
PPN		.000	.000	.000		.000
MASS NG		.00	.00	.00		
ACETONE						
PPN		.043	.008	.015		.005
MASS NG		12.14		3.09		
PROPIONALDEHY						
PPN		.000	.000	.000		.000
HASS HG		.00	.00	.00		
CROTOWALDEHYI	Ж		•••			
PPN		.000	.000	,000		.000
hass hg		.00	.000	.00		.000
ISOBUTYR+MEK		.00	.00	•00		
PPH		.007	.001	.001		.001
MASS NG		2.61	.14	.10		.001
BENZALDEHYDE		2.01	111	• 7 4		
PPN		.000	.000	.000		.000
HASS NG		.00	.00	.00		.000
HEXANALDEHYD	2			••••		
PPH	3	.000	.000	.000		.000
HASS HG		.00	.00	.00		.000
METHANOL		.00	•00	•00		
PPA		46.346	.274	.209		.284
HASS HG	70	40.340)75.38	.00	.209		• 204
ETHABOL	/1		•••	•••		
PPH		.000	.000	.000		.000
HASS HG		.00	.00	.00		.000
		.00	.00	.00		
3-BAG COMPOSIT		NC /NT	2 226	(1000001117)	¥C /#T	~~~
	FORMALDEHYDE		3.276		NG/HI	.000
	ACETALDEHYDE	•	.196		NG/NI	.179
		HG/HI	.000	BENZALDEHYDE	•	.000
	ACETONE	hg/hi	1.194	HEXANALDEHYDE	-	.000
	PROPIONALD.	KG/HI	.000	NETHANOL	KG/NI	463.908
				ETHANOL	HG/HI	.000

FAX COVER LETTER

DATE:02/19/93	
PLEASE DELIVER TO: Nr. Jesse Jones	
FAX NUMBER:806-742-3540	
FROM:	
Southwest Research Institute Department of Emissions Research Automotive Products and Emissions Research Division Fax Number (512) 522-3950	
WE ARE TRANSMITTING PAGES (including this cover page)	
If transmission is not complete, please call (512) 522-2609	

MESSAGE:

Dear Jesse:

Sorry it took me a while to get around to this. Here are copies of the emissions data from the two tests you ran. After going over the data, I feel the low NOx number in bag 2 on the test CC-TT-02 is valid. The NOx level was probably low enough that instrumentation variability caused the background bag to read higher than the sample bag. This especially makes sense when you look at the data from the previous test (CC-TT-01). NOx was very low in bag 2 on that test, also. If you have any questions, feel free to call me at 210-522-5869.

Sincerely. Ka-

Kevin A. Whitney Engineer Department of Emissions Research

SOUTHWEST RESEARCH INSTITUTE - DEPARMENT OF EMISSIONS RESEARCH COMPUTER PROGRAM LDT 1.0-P 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-4527-008								
			TEST CC-TT-02 DATE 1/20/93 RUN DYNO 2 BAG CAET 2 ACTUAL ROAD LOAD 5.74 KW (7.70 HP) TEST WEIGHT 1587 KG (3500 LBS)					
ODOWEFKR	14896 KM (9258 HILES)	TE	ST WEIGHT	1587 KG (3	500 LBS)	-	
		A TH HAL	DOV DUID	100 AUTO 1210 2 1017	1 1 1 1	70.0*31	NOX HUMIDITY (3 HOT TRANSIENT { 0- 505 SEC.} 507.1 .977/.989 5.74 { 3.57} 15.76 { 556.6} .01 { .27} 133.3 { 4706.}	G B 000
BAG DESCRIPTI	(OH)		COLD TR	USIENT	STABII	IZED	HOT TRANSIENT	
			(0-505	SEC.)	(505-137	2 SBC.)	(0- 505 SEC.)	
RUN TIME SECO	nds.		505	.3	867.	.7	507.1	
DRY/WET CORRE	CTION FACTOR,	SAHP/BACK	.976/.	.989	.979/.	.989	.977/.989	
REASURED DIST	ANCE KN (ALLE	(S) 141	5.74 (3.57)	6.15 (15 20 /	3.82}	5.74 (3.57) 15 76 (556 c)	
CIG NOPED PLA	ail duri (dui Middire Cuint /	n) (C/PRE)	10.10	227.27	10.10	27)	15.76 (330.6)	
TOTAL FLOW SC	W (SCF)	ocul	133.0 (4697.1	228.3 (8061.)	133.3 (4706.)	
HC SAMPLE ME	TER/RANGE/PPI	I (BAG)	46.0/ 3	2/ 45.9 7	12.1/ 2	2/ 12.09	12.1/ 2/ 12.09	
HC BCKGRD HE	TER/RANGE/PPH	E	9.4/ 2	2/ 9.39	11.0/ 2	2/ 10.99	10.7/ 2/ 10.69	
CO SAMPLE HI	TER/RANGE/PP	l .	58.1/ 12	2/ 56.81	13.6/ 12	2/ 13.06	11.8/ 12/ 11.32	
CO BCKGRD ME	STER/RANGE/PPI	[2.9/ 1	2/ 2.76	2.3/ 12	2/ 2.19	2.7/12/2.57	
CO2 SAMPLE NI	TER/RANGE/PCI		77.5/ 1	4/ .6152	67.7/14	4680	74.7/ 14/ .5695	
NOY SAMPLE HE	TER/ KANGE/ PCI	((BIG) (D)	20 0/ 1	1/ 0.07	14.5/ 14	1/ 38 1/ 38	7.8/ 1/ 1.96	
HOX BCKGRD HE	TER/RANGE/PPI	((2007 (D 7	2.3/	1/ .58	3.1/	.78	1.0/ 1/ .25	
CH4 SAMPLE PI	21 (1.120)	-		4.10	,	3.90	4.77	
CH4 BCKGRD PH	ห่		:	3.30	3	3.18	12.1/ 2/ 12.09 10.7/ 2/ 10.69 11.8/ 12/ 11.32 2.7/ 12/ 2.57 74.7/ 14/ .5695 14.9/ 14/ .0515 7.8/ 1/ 1.96 1.0/ 1/ .25 4.77 3.12	
					•		20.23 1.93 8.56 .5206	
DILUTION FACT	UK		1	8.4% 7 Ag	24	1.55 1.55	20.23	
CO CONCENT	RATION PPH		ა 5	2.38	11	0.63	8.56	
CO2 CONCENT	NATION PCT			5685	.1	1202	.5206	
NOX CONCENTI				9.42		37	1.72	
CH4 CONCENTI				.98		.85	1.80	
HARC CONCENT	RATION PPH			•00 ·		.59	-,04	
mun Mace (7D1 140		۵	126		210	163	
CO MASS (.136 .112		.210 .824	.163 1.328	
CO2 HASS				4.57		6.07	1270.27	
NOX HASS				.139		.000	.391	
CH4 MASS				.087		.130	.160	
	GRAMS (FID)			.000		.078	.000	
FUEL HASS I	L/100KN (NPG	1		.025 (10 45)		.282 (8 96)	.926 20.35 (11.56)	
	Britona (mg	,	26.71	(10143)	20120	(0.30)	20.33 (11.30)	
3-BAG COMPOSIT	e results							
-	THC G/HI				G/MI			
-	CO G/HI		.96	NHHC	G/HI G/HI	.01		
	KOX G/HI		.15	CARBONYL	G/XI	.00		
EIDI EANIANI	100 /1 /1009	۱. <u>۱</u>	7 (72 04)		ALCOHOL NHOC	-	.46	
LUEL FOUNDAY	ura (1/1008	9.8	/ {23.84}		NKOG	g/HI	.479	

COMPUTER PRO	SOU RAM LIDT 1.0-R	FRUEST RESEARCH INSTITUTE - 3-BAG CARB FTP VEHICLE E		RESEARCH PROJECT NO. 08-4527-008	
ENGINE	88 CHEVY CORSICA 2.8 L (171 CID)-V-0		RUN AG CARF 2	METRANOL EN-1399-F FUEL DENSITY 6.620 LB/GAL H .126 C .375 O .499 Y .0	000
		MILES) TEST WEIGHT 1		1	
BARONETER 744.7 RELATIVE HUNIDIS		G) DRY BULB TEMPERATURE	21.1°C (70.0°F)	NOX HUMIDITY C.F892	
	1	2	3		
	M COLD TRANSI	EFT STABILIZED C.) (505-1372 SEC.)	BOT TRANSIENT	BACKGROUND	
	(0-303 SE		1 0- 303 350.1		
PORICALDEHYDE	2(2	015	ð15	.017	
PPH NASS KG	.363 56.32	.015 .00	.013 .00	.017	
ACETALDEHYDE					
PPN	.012		.001	.002	
HASS HG ACROLEIN	2.36	.43	.00		
PPH	.000	.000	.000	.000	
HASS NG ACETONE	.00	.00	.00		-
PPH	.043	-008	.015	.005	
NASS HG PROPIONALDEHY	12.14	1.85	3.09		
PPK	.000	.000	.000	.000	
HASS HG CROTONALDEHYD	.00	.00	.00		
PPH		000	000	000	
	.000	.000	.000	.000	
NASS NG ISOBUTYR+NEK	.00	.00	•00		
PPH	.007	.001	.001	.001	
NASS NG BENZALDEHYDE	2.61	.14	.10		
PPH	.000	.000	.000	.000	
NASS NG HEXANALDEHYDE	.00	.00	.00		
PPN	.000	.000	.000	.008	
HASS HG METHANOL	.00	.00	.00		
PFN	46.346	.274	.209	284	
NASS HG ETHANOL	7975.38	.00	.00		
PPN	.000	.000	.000	.000	
HASS NG	.00	.00	.00	1000	
3-BAG COMPOSITI					
	HG/KN (HG/NI)	2.036 (3.276)		IG/KH (HG/HI) .000 (
	HG/KM (HG/HI)	.122 (.196)		IG/KH (MG/NI) .111 (-
	HG/KN (HG/NI)	.000 (.000)	BENZALDEHYDE		•
	HG/KH (NG/NI) NG/KH (HG/HI)	.742 (1.194) .000 (.000)	HEXANALDEHYDE I NETHANOL I	HG/KH (HG/HI) .000 (HG/KH (HG/HI) 288.321 (•

SOUTHWEST RESEARCH INSTITUTE - DEPARNENT OF EMISSIONS RESEARCH COMPUTER PROGRAM LDT 1.0-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-4527-008

 VKHICLE NUMBER
 577
 TEST CC-TT-01
 METHANOL EN-1399-P

 VEHICLE NODEL
 88 CHEVY CORSICA
 DATE 1/19/93
 RUN
 FUEL DENSITY 6.620 LB/GAL

 EHGINE
 2.8 L (171 CID)-V-6
 DYNO 2
 BAG CART 2
 H .126 C .375 0 .499 X .000

 TRANSMISSION
 5M
 ACTUAL ROAD LOAD 5.74 KW (7.70 HP)
 H .126 C .375 0 .499 X .000
 BAROMETER 744.2 MN HG (29.30 IN HG) DRY BULB TEMPERATURE 22.2°C (72.0°F) NOX HUMIDITY C.F. .880

 HAROMETER 744.2 HA HG (29.30 IN HG)
 DET BOLB TEMPERATORE 22.2 C (72.0 F)
 NOX HUMIDITY

 PELATIVE HUNIDITY 38.6 PCT.
 BAG MUMBER
 1
 2
 3

 BAG MUMBER
 1
 2
 3

 BAG DESCRIPTION
 COLD TRANSIENT
 STABILIZED
 HOT TRANSIENT

 RUN TIME SECONDS
 505.2
 867.0
 505.4

 DRY/WET CORRECTION FACTOR, SAMP/BACK
 .977/.989
 .980/.989
 .978/.989

 MEASURED DISTANCE KH (MILES)
 5.76 (3.58)
 6.16 (3.83)
 5.74 (3.57)

 BLOWER FLOW RATE SCHM (SCFN)
 15.78 (557.2)
 15.77 (556.9)
 15.76 (556.5)

 GAS METER FLOW RATE SCHM (SCFN)
 .01 (.27)
 .01 (.27)
 .01 (.27)

 TOTAL FLOW SCH (SCF)
 132.9 (4694.)
 228.0 (8051.)
 132.8 (4689.)

 HC
 SAMPLE NETER/RANGE/PPM
 37.8/
 2/37.78
 11.9/
 2/11.89
 11.5/
 2/1
 11.5/
 2/1
 11.5/
 2/1
 11.5/
 2/1
 11.5/
 2/1
 11.5/
 2/1
 11.5/
 2/1
 11.5/
 2/1
 11.5/
 2/1
 11.5/
 2/1
 11.5/
 2/1
 11.5/
 2/1
 11.5/
 2/1
 11.5/
 2/1
 11.5/
 2/1
 11.5/
 2/1
 11.5/
 2/1
 11.5/
 2/1
 11.5/
 2/1
 11.5/
 2/1
 11.5/
 2/1
 11.5/
 2/1
 11.5/
 11.5/
 2/1
 11.5/
 11.5/1
 2/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1
 11.5/1</td DILUTION FACTOR18.42HCCONCENTRATION PPM30.59COCONCENTRATION PPM30.61CO2CONCENTRATION PCT.5751HOXCONCENTRATION PPM11.07CH4CONCENTRATION PPM1.88NHHCCONCENTRATION PPM.13 24.78 2.40 14.77 .4193 .22 1.13 1.07 20.57 2.27 8.70 .5154 6.51 2.00 .02

 THC
 NASS GRAMS
 6.521
 .365
 .189

 CO
 MASS GRAMS
 4.737
 3.920
 1.345

 CO2
 MASS GRAMS
 1399.64
 1750.06
 1253.19

 KOX
 MASS GRAMS
 2.478
 .085
 1.454

 CC4
 MASS GRAMS
 .167
 .172
 .178

 NHHC
 MASS GRAMS (FID)
 .010
 .141
 .001

 FUBL
 NASS KG
 1.031
 1.279
 .914

 FUEL
 ECONONY L/100KN (NPG)
 22.55 (10.43)
 26.18 (8.98)
 20.08 (11.71)

 3-BAG COMPOSITE RESULTS
 G/HI
 .40
 CE4
 G/HI

 G/HI
 .91
 NNHC
 G/HI

 G/NI
 .27
 CARBONYL
 G/NI
 THC .05 00 .02 HOX .01 ALCOHOL G/HI HNOG C/HI .37

C/HI

.396

FUEL ECONOMY NPG (L/100KM) 9.91 (23.73)

COMPUTER PRO	GRAN 1.0		RESEARCH INSTITUTE - D AG CARB FTP VEHICLE EN			008
				STATU HERE		
VEHICLE NUMBER			TEST CC-TT-01		HETHANOL ER-139	
		WY CORSICA			FUEL DENSITY 6.	
		(171 CID)-V-6		g CART 2		0.499 X.000
TRANSMISSION	5H		ACPUAL ROAD LOA		'}	
ODONETER	14896	KH (9258 HILES)	TEST WEIGHT 15	87 KG (3500 LBS)		
BAROHETER 744.2 RELATIVE HUNIDI			DRY BULB TEMPERATURE	22.2°C (72.0°F)	NOX HUNIDITY C.F	880
BAG NUNBER		1	2	3		
			STABILIZED		BACKGROUND	
			(505-1372 SEC.)			
FORNALDEHYDE		(0.000 0400)	(
PPH		.252	.008	.011	.014	
HASS NG		38.71	.00	.00		
ACETALDEHYDE						
PPN		.035	.015	.005	.002	
HASS HG		7.83	5.54	.65		
ACROLEIN						
PPN		.015	.000	.000	.000	
KASS NG		4.39	.00	.00		
ACETONE						
PPK		.048	.059	.036	.013	
HASS MG		11.22	25.06	7.57		
PROPIONALDERY	DE					
PPH		.010	.000	.000	.000	
MASS HG		3.13	.00	.00		
CROTONALDEHYD)E					
PPN		.000	.000	.000	.000	
MASS NG		.00	.00	.00		
I SOBUTYR+NEK						
PPN		.000	.001	.000	.001	
hass hg		.00	.04	.00		
BENZALDEHYDE						
PPN		.000	.000	.000	. 000	
MASS HG		.00	.00	.00		
HEXANALDEHYDI	E					
PPN		.000	.000	.000	.000	
HASS NG		.00	.00	.00		
RETHANOL						
PPN		36.444	.238	.173	.171	
HASS HG		6279.27	21.59	1.45		
ETHANOL						
PPH		.000	.000	.000	.000	
WASS NG		.00	.00	.00		
3-BAG COMPOSIT	E RESH	TS.				
FORMALDEHYDE			1.396 (2.247)	CROTONAI D.	NG/KN (NG/NJ)	.000 (.0(
ACETALDEHYDE			.779 (1.253)	ISOBUTYK-NEK	• •	.003 (.01
ACROLEIN		(HG/MI)	.158 (.255)	BENJALDEHYDE		.000 (.0(
ACETONE	-	(HG/NI)	2.872 (4.622)	HEXANALDEHYDE		.000 (.01
PROPIONALD.	•		.113 (.182)	HETHANOL	NG/KH (NG/HL) NG/KH (NG/HL)	228.389 (367.4 ⁻ .000 í .0!

SOUTHWEST RESEARCH INSTITUTE

FAX COVER LETTER

DATE: March 31, 1995
PLEASE DELIVER TO: JESSE JONES
COMPANY/FIRM: TEXAS TECK
FAX NUMBER: 806-742-3540
FROM: <u>kevin Whitney</u> SWRI CHARGE NO.
U Southwest Research Institute Department of Emissions Research Automotive Products and Emissions Research Division FAX NUMBER (210) 522-3950
WE ARE TRANSMITTING PAGES (including this cover page) If transmission is not complete, please call (210) 522-2609
MESSAGE:

To:	Jesse Jones	
	Texas Tech	
	806-742-3563 voice	
	806-742-3540 FAX	Ø
From:	Kevin Whitney	De ho
	Southwest Research Institute 210-522-5869 voice	Alter
Jesse,	Fidtran	Or b

Attached are 6 pages of test data from your Corsica. The data has been processed according to CARB methodology, so there are no OMHCE numbers. The NMOG numbers are calculated using the FID results for the gasoline portion of the exhaust. The initial tests in January 93 are CC-TT-01 and CC-TT-02. The test after mileage is TECH12/94. On the 12/94 test we had extreme difficulty on the cold start. The vehicle had to be cranked about 15 seconds, and it ran rough while in open-loop.

The data from the 12/94 test shows higher emissions for all exhaust components over all 3 bags of the FTP. In addition, fuel economy is only slightly lower on this test than previous tests. I suspect this is an indication of a failed catalyst.

Please feel free to call me at the voice number listed above if you have further questions.

Sincerely,

KENN.

Kevin Whitney

SOUTHWEST RESEARCH INSTITUTE - DEPARTMENT OF EMISSIONS RESEARCH COMPUTER PROGRAM LDT 1.2-R 3-BAG CARB FTP VEHICLE EMISSION RESULTS PROJECT NO. 08-6761-004
 VEHICLE NUMBER
 577
 TEST TECH12/94
 METHANOL
 N85
 AS RECEIV

 VEHICLE NODEL
 88 CHEVY CORSICA
 DATE 12/16/94
 RUN
 FUEL DENSITY
 6.620 LB/GAL

 EHGINE
 2.8 L (171 CID)-V-6
 DYNO 2
 BAG CARI 2
 H .126 C .375 0 .499 X .000
 TRANSHISSIONM5ACTUAL ROAD LOAD7.70 HP (5.74 KW)ODOMETER30983 MILES (49851 KH)TEST WEIGHT 3500 LBS (1587 KG) BAROMETER 29.32 IN HG (744.7 NN HG) DRY BULE TEMPERATURE 68.0 P (20.0 C) NOX HUNIDITY C.F. 1.048 RELATIVE HUNIDITY \$0.7 PCT.

 ELATIVE HURIDITY 30.7 PCT.

 BAG NURBER
 1
 2
 3

 BAG DESCRIPTION
 COLD TRANSIENT
 STABILIZED
 HOT TRANSIENT

 (0-505 SEC.)
 (505-1372 SEC.)
 (0-505 SEC.)

 RUN TIME SECONDS
 505.5
 867.2
 505.7

 DRY/WET CORRECTION FACTOR, SAMP/BACK
 .968/.981
 .972/.981
 .970/.981

 MEASURED DISTANCE MILES (KN)
 3.61 (5.80)
 3.84 (6.18)
 3.58 (5.77)

 BLOWER FLOW RATE SCFM (SCMM)
 .27 (.01)
 .28 (.01)
 .28 (.01)

 YOTAL FLOW SCF (SCM)
 4766. (135.0)
 8202. (232.3)
 4747. (134.4)

 HC
 SAMPLE METER/RANGE/PPH (BAG)
 82.5/
 2/
 82.45
 10.9/
 -2/
 10.89
 14.5/
 2/
 14.49

 HC
 BCKGED METER/RANGE/PPH
 5.7/
 2/
 5.70
 5.3/
 2/
 5.30
 4.7/
 2/
 4.70

 CO
 SAMPLE METER/RANGE/PPH
 88.0/
 13/
 214.97
 37.6/
 12/
 36.74
 43.6/
 13/
 99.87

 CO
 BCKGED METER/RANGE/PPH
 .2/
 13/
 .44
 .2/
 12/
 .20
 .2/
 13/
 .44

 CO2
 SAMPLE METER/RANGE/PPH
 .2/
 14/
 .6589
 66.4/
 14/
 .4456
 72.8/
 14/
 .5354

 CO2
 SAMPLE METER/RANGE/PCT
 12.1/
 14/
 .0387
 11.9/
 14/
 .0380
 12.3/
 14/
 .0395

 NOX SAMPLE METER/RANGE/PCT
 12.1/
 14/
 .0387
 11.9/
 14/
 .0380
 12.3/
 14/
 .0395

 NOX SAMPLE METER/RANGE/PCH
 .6/
 1/
 .16
 .5/
 1/
 .3
 .0/
 1/
 .0395

 NOX SAMPL
 DILUTION FACTOR
 16.78
 25.69
 21.17

 BC
 CONCENTRATION PPN
 77.10
 5.80
 10.02

 CO
 CONCENTRATION PPN
 204.71
 35.11
 95.25

 CO2
 CONCENTRATION PCT
 .6225
 .4090
 .4978

 NOX
 CONCENTRATION PPN
 13.07
 3.16
 13.91

 CH4
 CONCENTRATION PPN
 6.77
 4.95
 7.88

 NMEC
 CONCENTRATION PPN
 -3.33
 .06
 .55

			د ده د		• • • •
THC HASS GRAMS			17.296	.777	.830
co hass grans			32.166	9.494	14.906
CO2 NASS GRAMS			1538.14	1739.54	1225.11
HOX HASS GRAMS			3.535	1.471	3.746
CH4 MASS GRAMS			.609	.766	.706
MINHC HASS GRAHS (FI))		.000	.008	.043
FUEL MASS KG			1.174	1.278	.910
PUEL ECONONY MPG (L/10))))))))		9.23 (25.50)	9.02 (26.08)	11.83 (19.89)
3-BAG COMPOSITE RESULT	6				
TEC	G. MI	1.167		CH4 G/HI	.193
ω	G/HI	4.280		HNHC G/HI	-004
IOI	G/HI	.690		CARBOHYL G/HI	.022
				ALCOHOL G/MI	.948
FUEL	ECONONY	NPG (L/100KK)	9.73 (24.18)	NHOG G/HI	.975 (RAF=1.00)

		RESEARCE INSTITUTE - I		
				S PROJECT NO. 08-6761-004
VEHICLE NUMBER	577	TEST TECH12/94		METHANOL N85 AS RECEIV FUEL DENSITY 6.620 LB/GAL H .126 C .375 O .499 X .000 KG)
VEHICLE NODEL	88 CHEVY CORSICA	DATE 12/16/94	RUN	FUEL DENSITY 6.620 LB/GAL
ENGINE	2.8 L (171 CID)-V-6	DYNO 2 B	IG CART 2	H.126 C.375 O.499 X.000
TRANSHISSION	115	ACTUAL ROAD LO	AD 7.70 HP (5	5.74 KW)
ODORETER	30983 HILES (49851 KH)	TEST WEIGHT 3	500 LBS (1587	KG)
BARONETER 29.3	2 IN BG (744.7 NH HG)	DRY BULE TEXPERATURE	68.0 [°] F (20.0	C) NOX HUNIDITY C.F. 1.048
RELATIVE HUMIDI	TY 80.7 PCT.			
BAG MUNBER	1 OH COLD TRANSIENT	2	3	
BAG DESCRIPTI	ON COLD TRANSIENT	STABILIZED	HOT TRANSIE	HT BACKGROUHD
		(505-1372 SEC.)	(0- 505 S	EC.)
POPRALDEHYDE				•••
PPN				.009
	345.48	.76	.52	
ACETALDEHYDE		AV4	200	AA1
PPH No. No.		.001		.001
	11.87	.00	.00	
ACROLEIN	000	000	000	000
PPN No. No.	.000	.000	.000	.000
NASS RG	-00	.00	.00	
ACETOHE	.020	005	076	202
PPN NASS KG	4.32	.005 .00	.026 5.95	.007
PROPIONALDEHY		•00	5.55	
PPN	.012	.002	.004	.002
NASS NG	3.10	.00	.49	.002
CROTOMALDEHYE		•••		
PPH	.000	.000	.000	.000
RASS NG	.00	.00	.00	
ISOBUTYR+NEK				
PPA	.022	.006	.010	.005
RASS HG	6.88	.68	1.97	
BENTALDEHYDE				
PPN	.000	.000	.000	.000
HASS HC	.00	.00	.00	
HEXANALDEHYDI	8			
PPN	.000	.000	.000	.000
NASS NG	.00	.00	.00	
NETEAHOL				
PPN	93.944	.199	.612	.201
MASS NG	16315.29	1.35	72.64	
ETHANOL				
PPN	,000	.000	.000	.000
NASS NC	.00	.00	.00	
	24 10270 7			
3-BAG COMPOSIT	e kesults Fornaldehyde ng/ni	20.094	CROTONALD.	NG/NI .000
	ACETALDEHIDE NG/NI	.686	ISOBUTYR+NEK	-
	ACROLEIN NG/HI	.000		NG/NI .000
	ACETONE HG/HI	.707	HEXANALDEHYDE	
	PROPIONALD. NG/NI	.216		KG/NI 947.966
	a - sular - stoj st	****		NG/NI .000

	SOL	THWEST RESEARCH INSTITUTE	- DEPARTENT OF ENISSION	is restluct
COMPUTER PRO				PROJECT NO. 08-4527-008
VERICLE NORSER	DIT COREUN CORETON	TEST CC-TT-C DUTE 1/20/C	12 12 DIN	- PHER DEVELOR C CON TO CAL
	2 1 1 (17) CIDI-U	-C DAIS 1/20/:	אטא כיז גער קער אינג	TUEL DEBSITI 0.020 LD/GAL
TRANSMISSION	5W	ACTUAL ROAD	LOAD 7.70 HP (5.74 Ki	E.128 C.375 C.479 X.000
ODONETER	9258 MILES (14	896 KK) TEST WEIGHT	3500 LBS (1587 KG)	NETHANOL EM-1399-F - FUEL DENSITY 6.620 LB/GAL H .126 C .375 O .499 X .000 N)
	· • 11	(0-505 SEC.)	(505-1372 SEC.)	(0- 505 SEC.)
RUN TIME SECO DRY/WET CORRE MEASURED DIST BLOWER FLOW I GAS METER FLO TOTAL FLOW SC	NDS CTION FACTOR, SAMP NAME NILES (KM) ATE SCFM (SCM) W RATE SCFM (SCM) F (SCM)	EG) DRY BULB TEMPERATO 1 COLD TRANSIENT (0-505 SEC.) 505.3 /BACK .976/.989 3.57 (5.74) 557.5 (15.79) .27 (.01) 4697. (133.0)	867.7 .979/.989 3.82 (6.15) 557.1 (15.78) .27 (.01) 8061. (228.3)	507.1 .977/.989 3.57 (5.74) 556.6 (15.76) .27 (.01) 4706. { 133.3}
HC SAMPLE N HC BCKGRD M CO SAMPLE M CO BCKGRD M CO2 SAMPLE M CO2 BCKGRD M HOX SAMPLE M	RTER/RANGE/PPH (BAG RTER/RANGE/PPH RTER/RANGE/PPH RTER/RANGE/PPH RTER/RANGE/PCT RTER/RANGE/PCT RTER/RANGE/PPM (RAG	<pre>46.0; 2/ 45.97 9.4/ 2/ 9.39 58.1/ 12/ 56.81 2.9/ 12/ 2.76 77.5/ 14/ .6152 14.4/ 14/ .0494 () (D) 39.9/ 1/ 9.97</pre>	12.1/ 2/ 12.09 11.0/ 2/ 10.99 13.6/ 12/ 13.06 2.3/ 12/ 2.19 67.7/ 14/ .4680 14.5/ 14/ .0498 1.5/ 1/ .38	12.1/ 2/ 12.09 10.7/ 2/ 10.69 11.8/ 12/ 11.32 2.7/ 12/ 2.57 74.7/ 14/ .5695 14.9/ 14/ .0515 7.8/ 1/ 1.96
DILUTION PAC HC CONCENT CO CONCENT CO2 CONCENT NOI CONCENT CE4 CONCENT NNHC CONCENT	RATION PCT RATION PPN RATION PPN	2.3/ 1/ .58 4.10 3.30 18.47 37.09 52.38 .5685 9.42 .98 .00	24.58 1.55 10.63 .4202 37 .85 .59	20.23 1.93 8.56 .5206 1.72 1.80 04
FUEL MASS	GRAMS GRAMS GRAMS GRAMS GRAMS (FID)	8.136 8.112 1384.57 2.139 .087 .000 1.025 10.45 (22.51)	.210 2.824 1756.07 .000 .130 .078 1.282 8.96 (26.26)	.163 1.328 1270.27 .391 .160 .000 .926 11.56 (20.35)
3-BAG COMPOSIT	E RESULTS			
	TEC G/HI	.51	CH4 G/HI	.035
	CO G/HI	.96	NHHC G/HI	.011
	BOX G/HE	.15	CARBONYL G/NI	
	FUEL ECONONY	NPG (L/100K0K) 9.87 (23.3	ALCOHOL G/NI B4) NKOG G/NI	.464 .479

COMPUTER PRO		RESEARCH INSTITUTE - I NG CARB FTP VEHICLE I		IS RESEARCH PROJECT NO. 08-4527-008
				RETHANOL EN-1399-F FUEL DENSITY 6.620 LB/GAL
VEHICLE MODEL	88 CHEVY CORSICA	DATE 1/20/93	RUN	FUEL DENSITY 6.620 LB/GAL
ENGINE	2.8 L (171 CID)-V-6	DYNO 2 B	G CART 2	H 126 C 375 0 499 X 000
TRANSMISSION	5X	ACTUAL ROAD LOI	D 7.70 HP (5.74 KW	H .126 C .375 O .499 X .000
ODOWETER	9258 NTLES (14896 KW)	TEST WEIGHT 3	100 LRS (1587 KG)	• 7
STR LETTE BOATS T				NOX HUMIDITY C.F892
BAG JUNBER	1	2	3	
BAG DESCRIPTI	IY 44.2 PCT. 1 ON COLD TRANSIENT (0-505 SEC.)	STABILIZED	HOT TRANSIENT	BACKGROUND
	(0-505 SEC.)	(505-1372 SEC.)	(0- 505 SEC.)	
FORMLIDEHYDE		-		
PPH	.363	.015	.013	.017
KASS HG	56.32	.00	.00	
ACETALDEHYDE				
PPH	.012	.003	.001	.002
KASS NG			.00	
ACROLEIN				
PPH	.000	.000	.000	.000
HASS HG	-00	.00	.00	
ACETONE				
PPM	.043	.008	.015	.005
HASS HG	12.14	1.85	3.09	
PROPIONALDERY				
PPH	-000	.000	.000	.000
RASS NG		.00	.00	
CROTOWALDEHYD				
PPH	.000	.000	.000	.000
HASS HG		.00	.00	.000
ISOBUTYR+NEX			•••	
PPN	.007	.001	.001	.001
HASS NG	2.61	.14	.10	
BENZALDEHYDE		121	• • • •	
PPN	.000	.000	.000	.000
KASS KG	.00	.00	.00	.000
HEXANALDEHYDE		.00	•••	
PPH	.000	.000	.000	.000
WASS HG	.00	.00	.00	.000
HETHANOL			•••	
PPN	46.346	.274	. 209	.284
RASS NG	7975.38	.00	.00	.204
ETHANOL	1773.30	,00	•00	
FPN	.000	.000	.000	.000
HASS NG	.00	.00	.00	
	• • • •	•••	٠ . .	
3-BAG COMPOSITI	E RESULTS			
	FORMALDEHYDE NG/NI	3.276	CROTONALD. NG/NI	.000
•		.196	ISOBUTYR+NEK NG/NI	.179
ACETALDEHYDE NG/NI			,	
ACEOLEIN RG/HI		.000	BENZALDEHYDE NG/HI	000.
	ACETORE HG/HI	1.194	HEXANALDEHYDE NG/NI	.000
	PROPIONALD. NG/NI	.000	NETHANOL KG/HI	463.908
			ETHANOL NG/NI	.000

		RESEARCE INSTITUTE -			
				PROJECT NO. 08-4527-008	
VEHICLE NUMBER	577	TEST CC-TI-01		NETHANOL EM-1399-F	
VEHICLE HODEL	88 CHEVY COBSICA	DATE 1/19/93	RUN	- FUEL DENSITY 6.620 LB/GAL	
EKGLIE	2.8 L (171 CID)-V-6	DYNO 2 E	LAG CART 2	H.126 C.375 O.499 X.	000
YRANSHISSION ODONEYER	5N 9258 NILES (14896 KH)	ACTUAL ROAD LO TEST WEIGHT 3	DAD 7.70 HP (5.74 Ki 1500 LBS (1587 KG)	HETHABOL EM-1399-F FUEL DENSITY 6.620 LB/GAL H .126 C .375 O .499 X .	
BAROMETER 29.30 IN EG (744.2 NH HG) RELATIVE HUMIDITY 38.6 PCT. BAG NUMBER BAG DESCRIPTION RGW TIME SECONDS DEY/WET CORRECTION FACTOR, SAMP/BACK MEASURED DISTANCE MILES (KN) BLOWER FLOW RATE SCFM (SCHM) GAS HETER FLOW RATE SCFM (SCHM) TOTAL FLOW SCF (SCH)					
BAG NUMBER		1	2	3	
BAG DESCRIPTI	[GH	COLD TRANSIENT	STABILIZED	HOT TRANSLENT	
		(0-505 SEC.)	(505-1372 SEC.)	(0- 505 SEC.)	
RUS TIME SEC	MDS	505.2	867.0	505.4	
DELYNEI UDER	PARTICE FACIUE, SAMP/DAUK	·9///·989 3 58 (5 76)	.960/.989 3 83 (6 16)	·9/8/·989 3 57 / 5 74)	
RESOLUTION DESEMBLE RELES (RR)		557.2 (15.78)	556.9 (15.77)	556.5 (15.76)	
GAS METER FLO	OW RATE SCFR (SCHR)	.27 (.01)	.27 (.01)	.27 (.01)	
TOTAL FLOW SC	CF (SCH)	4694. (132.9)	8051. (228.0)	4689. (132.8)	
HC SAMPLE N	ETER/RANGE/PPN (BAG)	37.8/ 2/ 37.78	11.9/ 2/ 11.89	11.5/ 2/ 11.49	
HC BCKGRD M	eter/Range/Pph	7.6/ 2/ 7.60	9.9/ 2/ 9.89	9.7/ 2/ 9.69	
CO SAMPLE M	eter/Range/PPM	33.6/ 12/ 32.60	17.1/ 12/ 16.47	10.6/ 12/ 10.16	
OD BOXGRD H	ETER/RANGE/PPN	1.1/12/1.04	1.4/ 12/ 1.33	1.3/12/1.23	
OD2 BOKGED H	ETER/RANGE/PCT	14.0/ 14/ .0478	13.7/ 14/ .0466	13.8/ 14/ .0470	
NOI SAMPLE I	ETER/RANGE/PPK (BAG) (D)	45.8/ 1/ 11.43	2.7/ 1/ .68	27.0/ 1/ 6.77	
NOI BORGED H	eter/Range/PPN	1.5/ 1/ .38	1.9/ 1/ .48	1.1/ 1/ .28	
CH4 SAMPLE P	PM (1.120)	4.29	3.55	4.39	
CHI DURGED P	PR.	2.54	2.52	2.51	
DILUTION FAC	ETER/RANGE/PPN (BAG) ETER/RANGE/PPN ETER/RANGE/PPN ETER/RANGE/PPN ETER/RANGE/PCT ETER/RANGE/PPN (BAG) (D) ETER/RANGE/PPN PN (1.120) PN TOR EATION PPN RATION PPN RATION PCT	18.42	24.78	20.57	
HC CONCENT	RATION PPN	30.59	2.40	2.27	
CO CONCENT	RATION PPH	30.61	14.77	8.70	
CO2 CONCENT NOX CONCENT					
CH4 CONCENT		11.07 1.88	.22 1.13	6.51 2.00	
HHEC CONCENT		.13	1.07	.02	
THC HASS	GRAMS	6.521	.365	.189	
co mass		4.737	3.920	1.345	
CO2 HASS	_	1399.64	1750.06	1253.19	
HOX MASS		2.478	.085	1.454	
CH4 HASS	GRANS GRANS (FID)	.167 .010	.172	.178 .001	
FUEL MASS		1.031	1.279	.914	
	RPG (L/100KK)				
3-BAG COMPOSIT	e results				
	THC G/MI		CH4 G/HI	.047	
	CO G/HI	.91	NNHC G/NI	.020	
	HOX G'HI	.27	CARBONYL G/HI		
	PUEL ECONONY HPG (L/	100КМ) 9.91 (23.73)	ALCOHOL G/NI NHOG G/NI	.367 .396	

	SOUTHWEST .	DECENDER THEORYMOUTS -	DEPARHENT OF EMISSIONS	DECENDE
COMPUTER PRO	KRAN LDT 1.0-R 3-B			
TERICLE NURBER	577	TEST CC-TT-01		HETHANOL EN-1399-F
VEHICLE NODEL	88 CHEVY CORSICA	DATE 1/19/93	RUN	FUEL DENSITY 6.620 LB/GAL
ENGINE	2.8 L (171 CID)-V-6	DYNO 2 B	AG CART 2	H .126 C .375 O .499 X .000
TRANSMISSION	5N	ACTUAL ROAD LO	AD 7.70 HP (5.74 KW)	
ODONETER	9258 MILES (14896 KH)	TEST WEIGHT 3	500 LBS (1587 KG)	
	10 IN HG (744.2 MN HG) TY 38.6 PCT.	DRY BULB TENPERATURE	72.0°F (22.2°C)	NOX HUMIDITY C.F880
BAG HERRER	1	2	3	
BAG DESCRIPTI	COLD TRANSIENT	STABILIZED	HOT TRANSLENT	BACKGROUND
	COLD TRANSLENT (0-505 SEC.)	(505-1372 SEC.)	(0- 505 SEC.)	
POPULIDEIYDE				
PPK			.011	.014
RASS NG		.00	.00	
ACETALDEHYDE	055	A • A		
PPN Nice ve	.035	.015	.005	-002
NASS HG ACROLEIN	7.83	5.54	₄6 5	
PPH	.015	.000	.000	.000
MASS NG	4.39		.00	•000
ACETONE				
PPK	.048	-059	.036	.013
MASS NG	11.22	25.06	7.57	
PROPIONALDEHY				
PPN			.000	-000
MASS NG	3.13	.00	.00	
CROTONALDEHYI		000	000	000
PPH TROC NO		.000	.000	.000
HASS HG	.00	.00	.00	
ISOBETYR+HEK PPH	.000	.001	.000	.001
HASS HG	.000	.04	.000	.001
BETTALDEHYDE			••••	
PPH	.000	.000	.000	-000
HASS HG	.00	.00	.00	
HEXAMALDEHYD				
PPH	.000	.000	.000	.000
HASS HG	.00	.00	.00	
NETHAHOL	26.444	22.0	105	171
PPH NASS NG	36.444 6279.27	.238	.173	.171
ETEANOL	02/9.2/	21.59	1.45	
PPK	.000	.000	.000	.000
HASS HC	.00	.00	.00	
3-BAG COMPOSIT		2.247		000
	FORMALDEHYDE MG/NI ACETALDEHYDE MG/NI	2.247 1.253	CROTONALD. KG/MI	.000 .005
λCEOLEIN NG/NI		-255	ISOBUTYR+NEK NG/HI BENZALDEHYDE NG/HI	.005
		4.622	HEXANALDERYDE NG/NI	.000
	PROPIONALD. HG/HI	.182	HETHANOL HG/HI	367.478
	• •		ETHANOL MG/MI	.000

-

APPENDIX D

Initial Oil Cnsumption Test Results from Southwest Research Institute

SOUTHWEST RESEARCH INSTITUTE

6220 CULEBRA ROAD . POST OFFICE DRAWER 28510 . SAN ANTONIO, TEXAS, USA 78228-0510 . (512) 684-5111 . TELEX 244846

ENGINE , FUEL, AND VEHICLE RESEARCH DIVISION TELECOPIER: 512/522-2019

July 7, 1992

Dr. Tim Maxwell Department of Mechanical Engineering Texas Tech University Lubbock, Texas 79409 Fax. 806-742-3540

Subject: Southwest Research Institute Preproposal No. EVR-1126, "Oil Consumption Measurement for A Methanol Vehicle Under Emission Cycle"

Dear Dr. Maxwell:

We are pleased to submit the above preproposal. The following is the content of the proposed tasks.

OBJECTIVE

The objective of this proposal is to measure oil consumption of a methanol vehicle on chassis dynamometer under EPA Federal Test Procedure.

APPROACH

The approach is to use the on-line oil consumption measurement system developed by SwRI using SO_2 tracer method. I have enclosed two SAE papers and one brochure for your reference. This literature describes the capability of the on-line oil consumption measurement system. Currently, the system uses relatively long exhaust gas sampling line as described in the literature and it is not appropriate for the FTP transient cycle test. However, another system is being setup in the one of SwRI engine test cell. This new system will be able to measure true real-time oil consumption; therefore, it is appropriate for the proposed project and planned for the proposed project.

Briefly, the engine will be operated on relatively high sulfur oil (~1%wt). This oil has good sulfur balance over a certain distilled fraction and it will be available for the proposed project. Since the fuel is methanal, there is no provision necessary for the fuel preparation in terms of sulfur content. By knowing fuel and air flow rate, the oil consumption in grams per unit time can be calculated by measuring SO_2 concentration in the exhaust gas since sulfur concentration in the oil is known. SwRI has developed a PC data acquisition system for the online oil consumption measurement. The oil consumption will be continuously monitored and stored for the data analysis.

Dr. Tim Maxwell Texas Tech Univeristy Southwest Research Institute EVR-July 7, 1992 Page 2

PROJECT TASK

Pretest Preparation

The oil consumption measurement system will be relocated to the vehicle emissions test laboratory of Department of Emissions Research at SwRI and prepared for the measurement. The engine will have to be run on no sulfur oil for a while in order to eliminate sulfur background. This test will usually last about 4 to 8 hours. Then, the oil is replaced with the qualified high sulfur oil, and the preliminary test will be conducted for making sure all the instrumentation functions. As soon as the measurement results are determined to be acceptable, the vehicle test under the FTP transient cycle will be initiated as follows.

Test 1

The oil consumption under the FTP transient cycle will be measured before the vehicle is tested for the long term road test. The oil consumption measurement results will be analyzed and plotted against the test time.

Test 2

The oil consumption under the FTP transient cycle will be measured after the vehicle test is completed. The oil consumption measurement results will be analyzed and plotted against the test time.

REPORTING

A comprehensive final report will be prepared and submitted to Texas Tech University at the completion of the project.

COST AND TIME ESTIMATE

The cost plus fixed fee contract cost estimate is \$41,000. The estimate project duration is two (2) months. Upon receiving your acceptance, SwRI will prepare a formal proposal and submit it to Texas Tech University with contractual documentation.

CLOSURE

Engine tribological problems associated with Alcohol engines still exist. The result of this project is expected to provide an additional information useful for investigating such problems. It is particular interest to observe how much of the effect of component dimensional change due to the wear on the oil consumption will affect the emissions characteristics under transient conditions. SwRI is very interested in participating to the program and hoping to provide Texas Tech University the valuable results.

Dr. Tim Maxwell Texas Tech Univeristy Southwest Research Institute EVR-July 7, 1992 Page 3

If you have any questions, please feel free to call me at 512-522-3194. Our facsimile number of 512-522-2019 for your convenience.

Sincerely,

TAX (1772A

Susumu Ariga Acting Manager Engine Tribology Section Department of Engine Research

Approved:

 \sim

Shannon Vinyard, Director Department of Engine Research

/sjh

SOUTHWEST RESEARCH INSTITUTE

6220 GULEBRA RIVADI . POST OFFICE DRAWER 28510 . CAN ANTONIO TEXAS USA 28228 0510 . CLUMBA 5111 . TELEX 244846

ENGINE. FUEL, AND VEHICLE RESEARCH DIVISION TELECOPIER (210) 522-2019

April 23, 1993

Dr. Tim Maxwell Professor Department of Mechanical Engineering Texas Tech Research Lubbock, Texas 79409 Fax: 806-742-3540

Subject: Progress Report No. 1 for Southwest Research Institute Project 03-5461, "Oil Consumption Measurement for A Methanol Vehicle Under Emission Cycle"

Dear Dr. Maxwell:

This is the first progress report for the subject project. The work has been completed for the first oil consumption meaurement as Test 1, and the car has been picked up by a student from Texas Tech Research. The following describes the work accomplishment, problems, and future plans.

OBJECTIVE

The objective of this project is to measure oil consumption of a methanol vehicle on a chassis dynamometer under EPA Federal Test Procedures before and after the vehicle durability tests.

WORK ACCOMPLISHMENTS

The oil consumption measurement system was refined to increase the sampling response time by means of electronic sample gas pressure closed loop control in order to increase the accuracy of the measurement under transient operating conditions. The device was designed, fabricated, and tested by actually conducting the oil consumption measurement on one engine installed at SwRI. After the acceptable gas sampling response time (less than one second) was determined, the oil consumption measurement system hardware and a PC data acquisition system were relocated from the engine research laboratory to the vehicle emissions test laboratory and prepared for the measurement.

In order to prepare for the oil consumption testing, the methanol powered vehicle (GM Corsica 2.8 liter V6 engine) was instrumented for flow rates of intake air and fuel and engine pertinent temperatures and pressures. A laminar flow element (LFE) with pressure transducers was used for the intake air flow measurement in real-time, and a micro-motion real-time mass fuel flow meter was used for fuel flow measurement. An exhaust gas sampling probe was fitted

Dr. Tim Maxwell Texas Tech Research April 23, 1993 Page 2

to the exhaust pipe close to the manifold flange. The original oil was drained, saved, and a zero sulfur synthetic oil was installed. The vehicle was then driven at normal operating temperatures to mix the zero sulfur oil with any residue of the original oil. This process was repeated through three changes of zero sulfur oil to insure that any sulfur residue from the original oil had been flushed from the system.

The vehicle was installed on the dynamometer and tested to establish baseline performance of the oil consumption instrumentation with zero sulfur oil in the vehicle. The zero sulfur oil was then drained, and replaced for the balance of the testing with an oil of known sulfur concentration that has proven to be very stable in maintaining this fixed concentration throughout the testing cycle.

The test preparation went smoothly. The EPA Urban Dynamometer Driving Test cycle was performed on the vehicle from cold start condition, followed by a repeat of the cycle from hot start condition. The total length of the test is approximately 60 minutes, including soaking time, and the actual vechicle operating time is 40 minutes. In addition, the vehicle was operated under three steady-state conditions to obtain additional oil consumption information from this particular vehicle. The results are descussed below.

After the completion of the first test, the vehicle was returned to Texas Tech on April 12, 1993.

PROBLEMS

The oil consumption measurement system had a problem dealing with the SO_2 detection instrumentation. The problem was found when the system was being used for another SwRI project. The correction could be made; however, it took about one month to complete the investigation and applying the solution. The problem was that the NO_x signal interfered with the SO₂ signal. Therefore, the measured SO₂ concetration was actually higher than the true value. This incident delayed the test schedule by about one month.

DISCUSSION OF TEST 1 RESULTS

The EPA Urban Dynamometer Driving Test cycle was performed on the vehicle from cold start condition, followed by a repeat of the cycle from hot start condition. Figures 1 and 2 represent plots of real-time oil consumption and vehicle speed during these two test cycles. Note that Figure 1, the cold start cycle, shows considerably less oil consumption during the first 800 seconds of the cycle when compared to the hot start cycle of Figure 2. Figures 3 through 9 illustrate these same two test cycles plotted together, but with an expanded time base to allow a more detailed comparison. While changes in vehicle speed during these test cycles is the primary cause of variations in oil consumption, engine temperature seems to be another major contributor. Figures 10 and 11 show coolant temperature out of the block, plotted with oil consumption. Note that the low oil consumption during the first 800 seconds of the cold start test, Figure 10, shows lower temperatures during the same time period. Dr. Tim Maxwell Texas Tech Research April 23, 1993 Page 3

Following the cycling tests, three additional tests were performed at steady-state conditions. These were 2675 RPM in fourth gear, 1500 RPM in fifth gear, and idle at 900 RPM. Results of these tests are presented in Figures 12 through 14. It is quite apparent in these figures that engine temperature, as monitored by coolant temperature, has a very marked effect on the oil consumption. These data suggest that total engine oil consumption could be significantly reduced by a moderate reduction in coolant temperature perhaps to as low as 180°F. It will be extremely important when the vehicle has accumulated the required road miles and is returned to have these tests repeated, that the engine temperatures are duplicated very closely so that any variations in oil consumption reflect only effects of the accumulated miles.

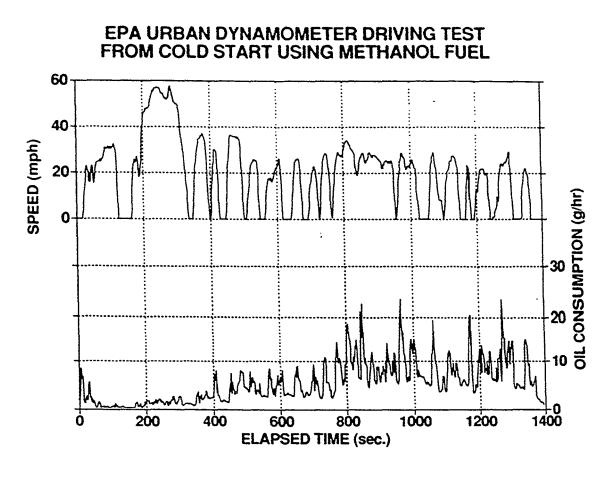
FUTURE PLANS

Test 2 will commence after the vehicle durability test is completed. The vechile durability test will be conducted by Texas Tech Research.

If you have any questions, please feel free to call me at 210-522-3956. Our facsimile number of 512-522-2019 for your convenience.

Sincerely,

House Air In


Jim Barbee ² Engineering Technologist Department of Engine Research

Approved:

Bistinick

Susumu Ariga, Acting Manager Engine Tribology Department of Engine Research

ckh

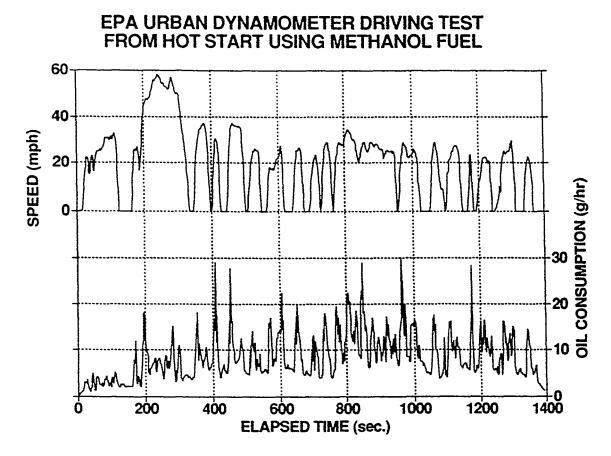
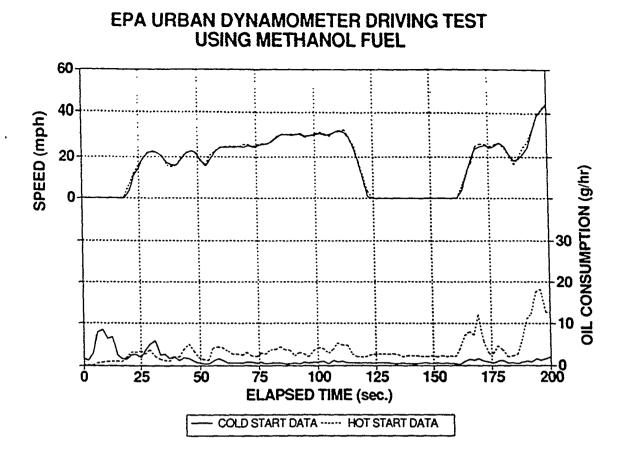
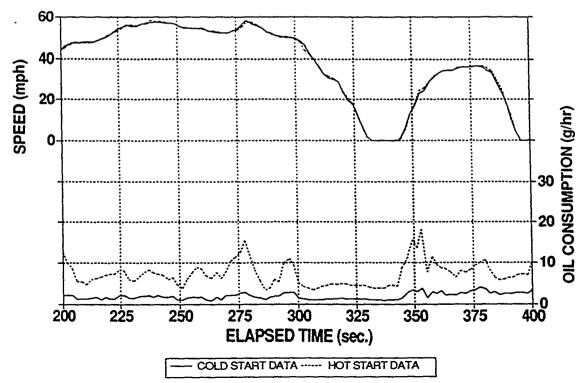




FIGURE 2

FIGURE 3

EPA URBAN DYNAMOMETER DRIVING TEST USING METHANOL FUEL

FIGURE 4

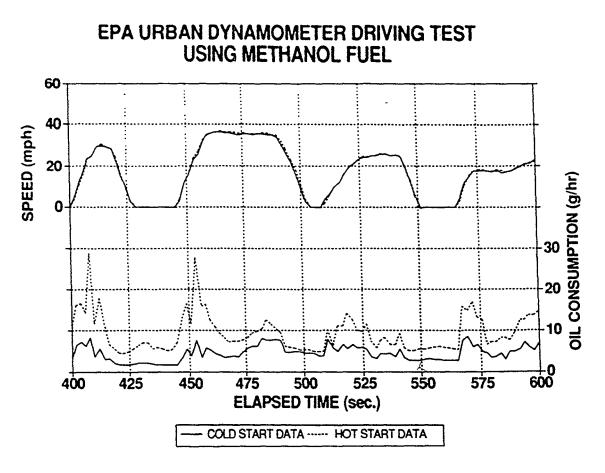
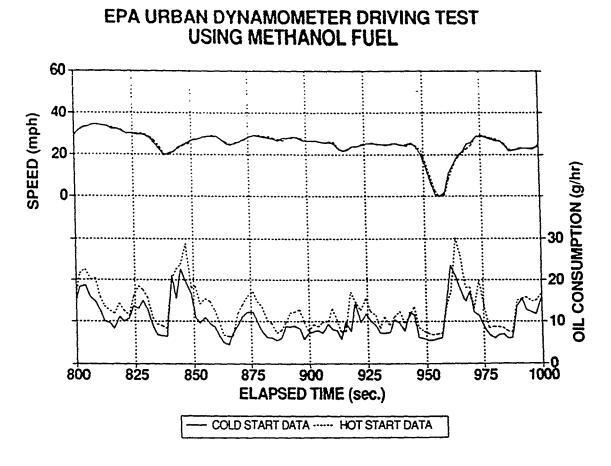



FIGURE 5

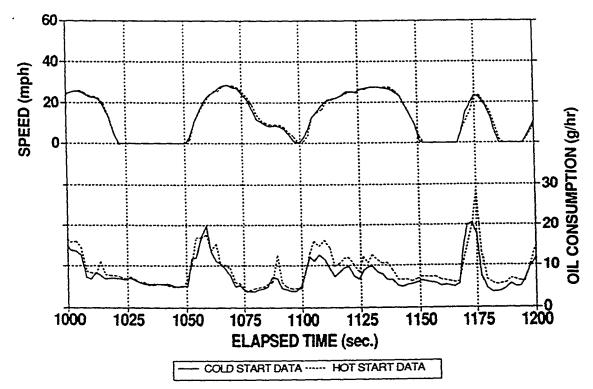

EPA URBAN DYNAMOMETER DRIVING TEST USING METHANOL FUEL SPEED (mph) OIL CONSUMPTION (g/hr) -+0 800 **0**0 ELAPSED TIME (sec.) COLD START DATA HOT START DATA

FIGURE 6

FIGURE 7

EPA URBAN DYNAMOMETER DRIVING TEST USING METHANOL FUEL

FIGURE 8

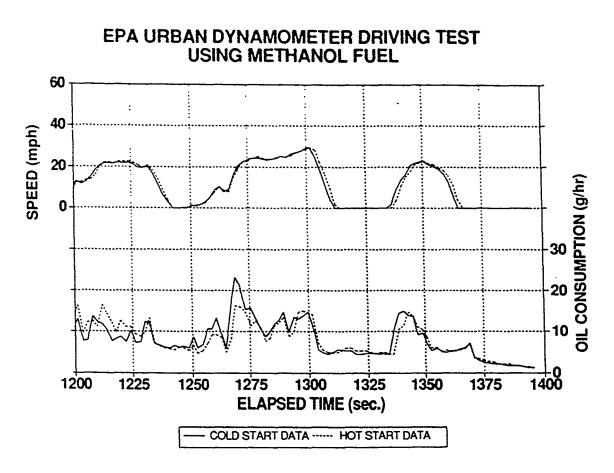


FIGURE 9

EPA URBAN DYNAMOMETER DRIVING TEST FROM COLD START USING METHANOL FUEL

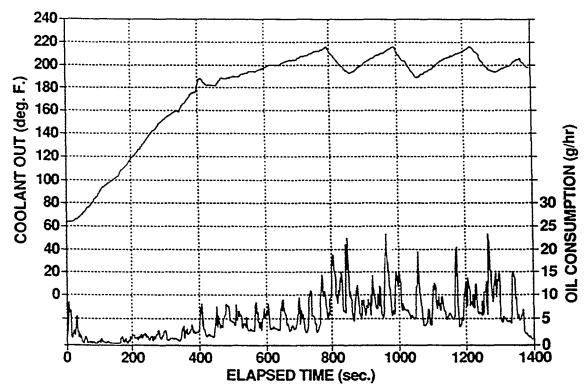


FIGURE 10

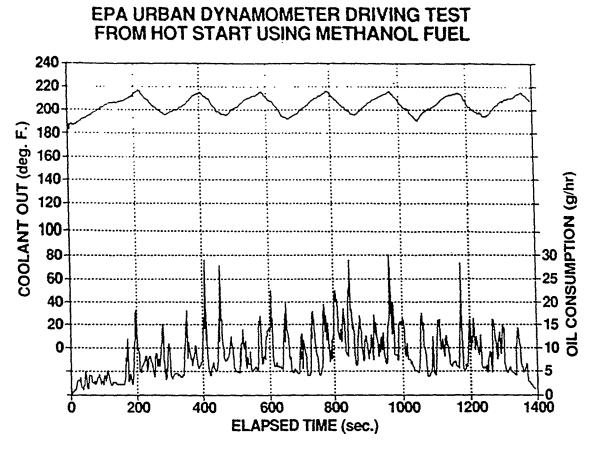


FIGURE 11

2675 RPM STEADY STATE CONDITION

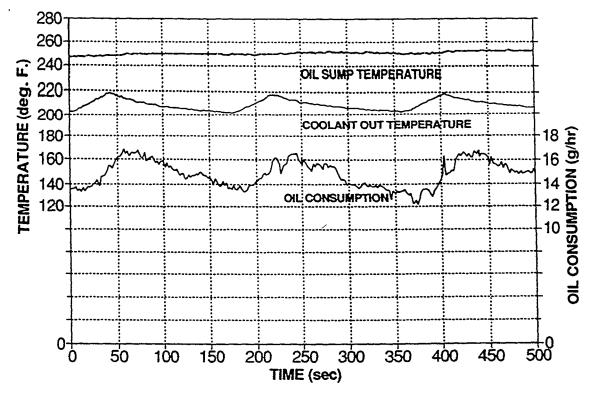


FIGURE 12

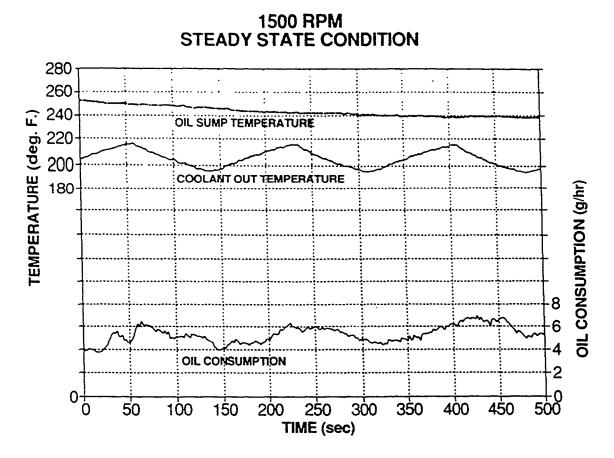
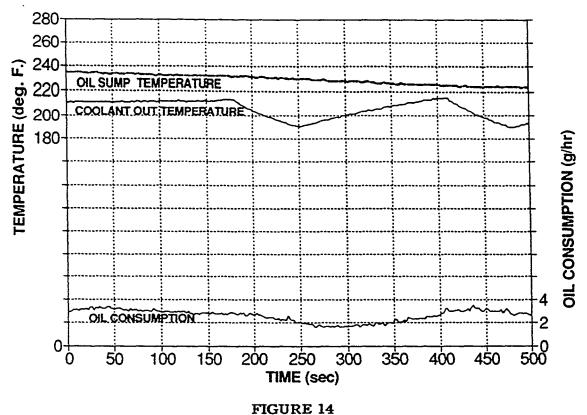



FIGURE 13

900 RPM (idle) STEADY STATE CONDITION

APPENDIX E

and the second sec

Final Oil Consumption Test Results from Southwest Research Institute

OIL CONSUMPTION MEASUREMENT FOR A METHANOL VEHICLE UNDER EMISSIONS CYCLE

SwRI Project No. 03-5461

Prepared for:

Dr. T. Maxwell Professor Department of Mechanical Engineering Texas Tech Research Foundation P.O. Box 43106 Lubbock, Texas 79409-3106

Prepared by:

Susumu Ariga

Approved:

١

S. M. Shahed Director Department of Engine Research Engine and Vehicle Research Division

EXECUTIVE SUMMARY

Methanol-fueled engines have a higher wear rate of power cylinder components, especially when the vehicle is operated under cold temperature conditions. Excessive components' wear may increase blowby gas flow and oil consumption. Oil deterioration is, then, accelerated and an increased amount of lubricant additives emits to the exhaust system, contributing to the catalyst deactivation.

The objective was to measure the oil consumption of a methanol-fueled vehicle under the conditions of the EPA dynamometer urban driving cycle test procedure. The Southwest Research Institute (SwRI) developed on-line oil consumption measurement system was employed to accomplish the real-time measurement of oil consumption under transient operating conditions. Oil consumption was measured before and after the vehicle accumulated a driving distance of more than 20,000 miles under city driving conditions and was compared to evaluate the effect of the durability test.

The oil consumption rate (g/hr) increased during the durability test. The degree of the increase varied, depending on the measurement conditions under either a cold- or hot-start test. The average oil consumption rate measured under the cold-start transient test conditions increased by 26 percent and that measured under the hot-start transient conditions increased by 9 percent.

Oil consumption over the duration of the EPA urban cycle (~1400 seconds) was significantly higher (52 percent) under the hot-start conditions than under the cold-start conditions. This trend was the same, regardless of pre- or post-durability testing, although the difference measured in the post-durability test was lower (31 percent).

Oil consumption of the post-durability test measured under steady-state conditions significantly increased (223 percent) when the engine speed was relatively high, e.g., 2950-rpm.

Whether the level of increase is high or low is not certain because there was no oil consumption data obtained for the gasoline engine under the same test procedure. Therefore, it is recommended that oil consumption of the gasoline engine be measured for comparison. A comprehensive test is recommended to understand the relationship between oil consumption, catalyst efficiency, and lubricant additives trapped in the catalyst in order to determine the significance of oil consumption increase for a long driving distance. Further investigation will be necessary to explain the high increase in oil consumption measured under a steady-state condition after the durability test has been completed.

TABLE OF CONTENTS

. •

2

1

ł

Page

1.0	BACKGROUND	1
2.0	OBJECTIVE	2
3.0	TEST APPARATUS AND PROCEDURE	3
4.0	DISCUSSION OF THE TEST RESULTS	4
5.0	CONCLUSIONS	9
6.0	RECOMMENDATIONS	10

LIST OF FIGURES

--

Figur	<u>e</u> <u>Page</u>
1	OIL CONSUMPTION MEASURED UNDER COLD- START EPA URBAN DYNAMOMETER DRIVING TEST CYCLE
2	OIL CONSUMPTION MEASURED UNDER HOT-START EPA URBAN DYNAMOMETER DRIVING TEST CYCLE
3	AVERAGE OIL CONSUMPTION RATE DURING TRANSIENT CYCLE
4	COOLANT TEMPERATURE DIFFERENCE BETWEEN COLD- AND HOT-START
5	OIL CONSUMPTION UNDER STEADY-STATE CONDITIONS BEFORE (TEST 1) AND AFTER (TEST 2) THE DURABILITY TEST
6	THE RELATIONSHIP BETWEEN HYDROCARBON CONVERSION EFFICIENCY AT A CATALYST AND THE AMOUNT OF PHOSPHOROUS REACHING THE CATALYST

1.0 BACKGROUND

Wear of the power cylinder components of a methanol engine is higher than that of a gasoline engine, especially under cold temperature operating conditions. The primary reason is the corrosiveness of methanol combustion products formed in the crevices of the piston and ring pack. A large degree of component wear increases blowby and oil consumption in a relatively short time. A high blowby increases the rate of lubricant deterioration. An increased oil consumption accelerates the catalyst deactivation due to chemical poisoning caused by the lubricant additives. Specially-formulated lubricant additives are normally used to reduce the wear of a methanol engine's components. However, there has not been test data available to show the level of oil consumption increases caused by component wear, especially those under transient operating conditions.

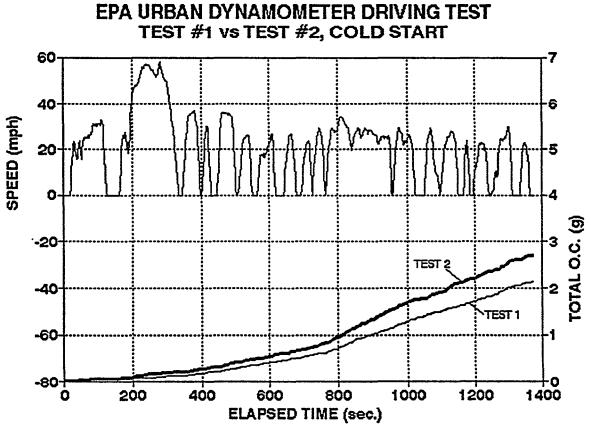
2.0 OBJECTIVE

The objective is to measure the oil consumption of a methanol vehicle on chassis dynamometer under the EPA dynamometer urban driving cycle test procedure before and after the vehicle durability test has been completed.

•

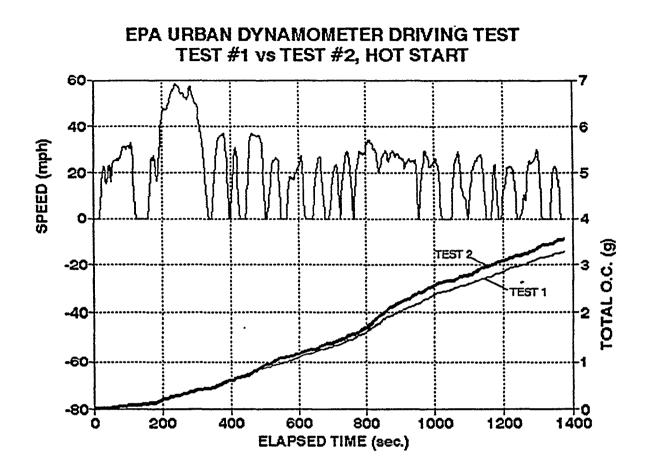
3.0 TEST APPARATUS AND PROCEDURE

The SwRI-developed on-line oil consumption measurement system has been used to measure oil consumption under step transients. The sampling gas pressure was manually controlled to maintain a certain level to achieve an acceptable measurement accuracy. It is impossible to manually adjust the sampling gas pressure under the EPA's transient cycle. Thus, the gas sampling technique was refined with an electronic, closed-loop control system. The sampling gas pressure was maintained at constant, regardless of speed and load change. This provision achieved the accuracy of the oil consumption measurement under transient conditions.


In order to prepare for oil consumption testing, the methanol-fueled vehicle (GM Corsica 2.8 liter V6 engine) was instrumented for flow rates of intake air and fuel, and engine pertinent temperatures and pressures. A laminar flow element (LFE) with pressure transducers was used for the intake air flow measurement in real-time, and a micro-motion, real-time mass fuel flow meter was used for fuel flow measurement. An exhaust gas sampling probe was fitted to the exhaust pipe close to the manifold flange. The standard oil was drained, saved, and a zero sulfur synthetic oil was installed. The vehicle was, then, driven at normal operating temperatures to mix the zero sulfur oil with any residue of the original oil. This process was repeated through three changes of zero sulfur oil to insure that any sulfur residue from the original oil had been flushed from the system.

The vehicle was installed on the chassis dynamometer and tested to establish baseline performance of the oil consumption instrumentation with zero sulfur oil in the vehicle. The zero sulfur oil was then drained and replaced, for the balance of the testing, with an oil of known sulfur concentration that has proven to be thermally stable in maintaining the fixed concentration throughout the testing cycle.

The EPA urban dynamometer driving test cycle was performed on the vehicle from cold-start conditions, followed by a repeat of the cycle from hot-start conditions. The total length of the test is approximately 60 minutes, including soaking time, and the actual vehicle operating time was 40 minutes. In addition, the vehicle was operated under three steady-state conditions to obtain additional oil consumption information from this particular vehicle. The same tests were repeated after the vehicle was returned from the field test. The results are discussed below.


4.0 DISCUSSION OF THE TEST RESULTS

The Effect of a 21,000 Mile Durability Test: Figures 1 and 2 show plots of cumulative oil consumption in gram and vehicle speed during two test cycles. Each figure also shows the results obtained before (9,260 miles) and after the durability test (31,050 miles) was completed. The effect of the durability test (21,790 miles) was significant when the test was conducted under the cold-start conditions. Oil consumption increased by 26 percent after the durability test was completed. Under the hot-start conditions, the increase, due to the durability test, was 9 percent.

FILE: MPH7A.WOL

FIGURE 1. OIL CONSUMPTION MEASURED UNDER COLD-START EPA URBAN DYNAMOMETER DRIVING TEST CYCLE

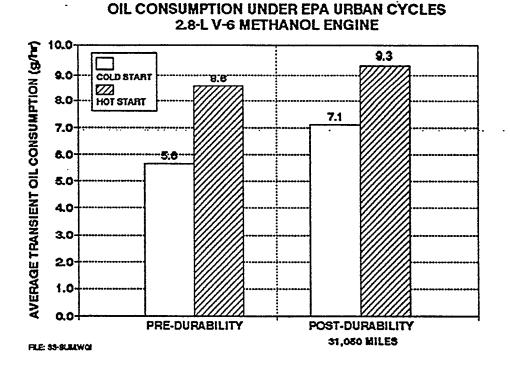


FIGURE 2. OIL CONSUMPTION MEASURED UNDER HOT-START EPA URBAN DYNAMOMETER DRIVING TEST CYCLE

The Effect of Cold- and Hot-Start: The difference in oil consumption between cold- and hot-start was high and the trend was the same, regardless of the pre- and the post-durability test, e.g., 52 and 31 percent, respectively. Figure 3 compares the average oil consumption rate in g/hr between cold- and hot-start and that between pre- and post-durability test.

Coolant temperature of the first 800 seconds was quite different between the cold and the hot-start test as shown in Figure 4. Thus, the difference in oil consumption between cold- and hot-start could primarily be caused by the difference in component temperatures. Low viscosity oil at high component temperature increases oil flow through the ring pack, while it decreases oil film thickness on the cylinder wall. The oil flow increase, due to the low viscosity, was probably significant enough to increase the amount of oil present in the cylinder compared to the oil volume reduction due to a reduced oil film thickness. Therefore, the amount of oil supplied to the combustion chamber likely increased, causing it to increase oil consumption under hot-start conditions. The trend of high oil consumption under hot-start conditions was the same, regardless of pre- and post-durability test.

5

•

- Z.,

FIGURE 3. AVERAGE OIL CONSUMPTION RATE DURING TRANSIENT CYCLE

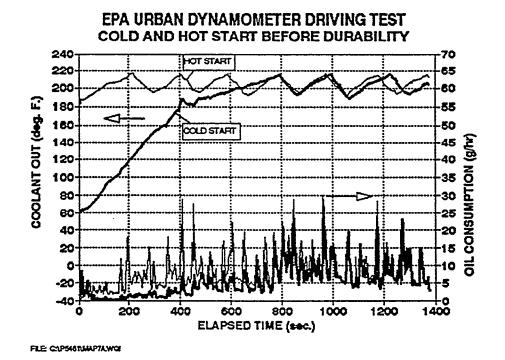
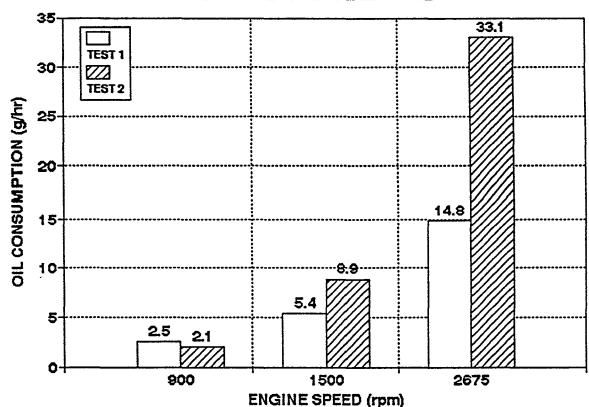
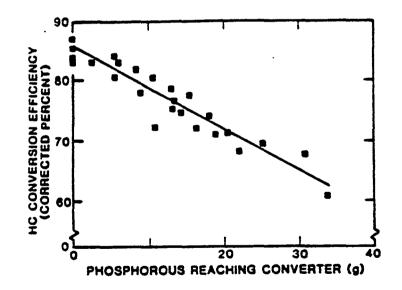



FIGURE 4. COOLANT TEMPERATURE DIFFERENCE BETWEEN COLD-AND HOT-START

Steady-State Tests: Following the transient cycle tests, three additional tests were performed under steady-state conditions. These were a 2675-rpm engine speed in fourth gear, 1500-rpm in fifth gear, and idle at 900-rpm. Results of these tests are presented in Figure 5. The increase in oil consumption of the post-durability test was significant at a higher engine speed. At 2675-rpm, the oil consumption of the post durability test was more than double (223 percent) compared to that of the pre-durability test. The rate of increase was significantly higher than that observed in the results obtained under transient cycles. A further investigation will be necessary to understand the differences observed between the steady-state and transient test results.

OIL CONSUMPTION UNDER STEADY-STATE 2.8-L V-6 METHANOL ENGINE


FIGURE 5. OIL CONSUMPTION UNDER STEADY-STATE CONDITIONS BEFORE (TEST 1) AND AFTER (TEST 2) THE DURABILITY TEST

Summary: Since there was no gasoline engine data, a comparison could not be made to determine the level of oil consumption increase measured in the methanol engine after the durability test was completed. However, a rough estimate of oil consumption over 100,000 miles can be made with the results obtained in this project. Oil consumption of the post-durability test (about 21,000 miles) increased by 9 to 26 percent, depending on whether there was a hot- or cold-start operating condition. In 100,000 miles, oil consumption could increase by 1.43 to 2.23 times, depending on cold- and hot-start, and on the assumption that the effect of component wear or other factors on the oil consumption increase remain the same throughout the 100,000 miles. The oil consumption rate, however, is likely to increase as the vehicle accumulates its mileage,

and it increases exponentially rather than linearly. Thus, the oil consumption increase will probably be greater than the above estimate.

The impact of the oil consumption increase is catalyst poisoning. Figure 6 shows the data found in the referenced literature¹ regarding the relationship between hydrocarbon conversion efficiency of the catalyst and the amount of phosphorous contained in lubricating oil reaching the catalyst. Suppose the amount of phosphorous increased by a factor of 2 because oil consumption increase was twice the above estimate, the catalyst efficiency drops by about 10 percent. This may not appear significant; however, the increase in hydrocarbon emissions downstream of the catalyst becomes about 50 percent higher on the assumption that hydrocarbon emissions out of the engine do not change. In reality, the emissions out of the engine also increase as the vehicle accumulates miles. Therefore, the catalyst poisoning must be reduced. If engine oil no longer requires such additives as ZDDP, yet low component wear is warranted, the catalyst poisoning could be minimized. Otherwise, oil consumption should be reduced to a minimum level.

Research into the details of the relationship between oil consumption, catalyst efficiency, and additives accumulated reaching to the catalyst is one subject that should be considered for future research. The results will provide quantitative characterization of the effect of oil consumption on catalyst poisoning and will help to determine the level of oil consumption that should be targeted for future engines.

FIGURE 6. THE RELATIONSHIP BETWEEN HYDROCARBON CONVERSION EFFICIENCY AT A CATALYST AND THE AMOUNT OF PHOSPHOROUS REACHING THE CATALYST

¹J. A. Spearot and F. Carraciolo, "Engine Oil Phospherus Effects on Catalytic Converter Performance in Federal Durability and High Speed Vehicle Tests," SAE Transaction, Vol. 86, 1977.

5.0 CONCLUSIONS

- 1. Oil consumption of a methanol-fueled vehicle under the EPA urban driving test cycle w successfully measured with the sulfur tracer technique.
- 2. Vehicle durability tests of more than 20,000 miles increased oil consumption 26 percent under cold-start conditions and by 9 percent under hot-start conditions.
- 3. Oil consumption under hot-start conditions was higher than under cold-start conditio by as much as 56 percent.
- 4. The effect of component temperatures on oil viscosity appears to be the primary can of high oil consumption under hot-start conditions.
- 5. Oil consumption under steady-state conditions significantly increased (223 percent) a 2675-rpm engine speed after the durability test was completed.

terni.

6.0 RECOMMENDATIONS

- 1. It is recommended that oil consumption of a gasoline-fueled vehicle be measured under conditions similar to those used for the methanol-fuel vehicle in order to normalize the effect of methanol operation on the oil consumption.
- 2. The relationship between oil consumption, catalyst efficiency, and additives trapped in the catalyst should be investigated by obtaining the measurement results of all three variables at the same time. The results will be useful in understanding whether catalyst poisoning due to lubricant additives is serious.
- 3. A further investigation will be necessary to understand the differences in the degree of oil consumption increase depending on steady-state and transient conditions.

REPORT	Form Approved OMB NO, 0704-0188		
Public reporting burden for this collection of sources, gathering and maintaining the data aspect of this collection of information, inclu Reports, 1215 Jefferson Davis Highway, Su Washington, DC 20503.	needed, and completing and reviewing th ding suggestions for reducing this burden.	e collection of information. Send commentation to Washington Headquarters Services, Dir	s regarding this burden estimate or any other rectorate for Information Operations and
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE September 1995	3. REPORT TYPE AND DATES CO Final Subcontract Report, 1	VERED November 1992 - 1 February 1995
4. TITLE AND SUBTITLE	1	.	5. FUNDING NUMBERS
Long-Term Methanol Vehicle Te	C: AAE-5-12245-01		
6. AUTHOR(S)	TA: FU521010		
J. C. Jones and T. T. Maxwell			
7. PERFORMING ORGANIZATION NAM Texas Tech University Mechanical Engineering Depart Lubbock, Texas			8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING/MONITORING AGEN	10. SPONSORING/MONITORING AGENCY REPORT NUMBER		
National Renewable Energy La 1617 Cole Blvd.	boratory		TP-425-7633
Golden, CO 80401-3393			DE95009289
11. SUPPLEMENTARY NOTES		··· ···	I
NREL Technical Monitor: C. C	Colucci		
12a. DISTRIBUTION/AVAILABILITY ST	ATEMENT		12b. DISTRIBUTION CODE
			UC-1500
13. ABSTRACT (Maximum 200 words)			I
exhaust emissions during long overall vehicle performance we vehicle performance, oil consu- was removed from the vehicle any preexisting wear. All gash seats were lapped, and the cra- installed, and the computer sy phase, the vehicle emissions I	-term use. Engine wear, gasket ere monitored over approximately imption, and emissions baselines and disassembled, and all bearing tets, seals, bearings, and piston ankshaft journals were polished. stem was calibrated for M100 fue evel, oil consumption, and engine	performance, fuel economy, emis 22,000 miles of vehicle operatio were established to be used for ng and ring clearances and cam rings were replaced. The cylinde Higher flow rate fuel injectors su el. At the completion of the progr	am, after the mileage accumulatior nined. The engine was removed from the engine was r
14. SUBJECT TERMS			15. NUMBER OF PAGES 92
vehicle ; methanol ;			16. PRICE CODE

17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICATION	20. LIMITATION OF ABSTRACT
OF REPORT	OF THIS PAGE	OF ABSTRACT	
Unclassified	Unclassified	Unclassified	

•••••