

Distributed Optimization for Infeasible Combined T&D Networks

Hamza Ali and **Amritanshu Pandey amritanshu.pandey@uvm.edu**

Team

Amritanshu Pandey

Emmanuel Badmus

Peng Sang M. Hamza

Bikram Panthee

Ali

Alby Penney

Part of a Bigger Team - CREATE

Combined T&D Interactions are Growing

• Future Grid will rely on approaches that enable joint operation and control of T&D resources

Source: VELCO

Combined T&D Interactions are Growing

• Consider a sunny Spring day in VT

Source: VELCO

DER Majority Generation is a New Reality

- VT's net load was only 100 MW on May' 23
	- \sim 80% of net generation from DERs in distribution nets

DER Growth in New-England is Accelerating

31630 MW is the expected summer demand for ISO-

Figure: Projected growth in PV within ISO-NE is accelerating.

Source: ISO-new England

Example: Improved Modeling DER is Critical

Event: Transmission line trip in NY resulted in a disturbance

Source: VELCO

Example: Improved Modeling DER is Critical

Event: Transmission line trip in NY resulted in a disturbance Consequence: 100 MW of DERs (\sim 15% of net VT load) tripped

Source: VELCO

Need: Combined T&D Steady-state Analysis

- To evaluate impact of high-penetration of DERs
	- Emergency operation similar to NY line trip event
	- Normal operation asset health when continuous backflow from distribution grids is present
- Initialization of combined T&D dynamic analysis

Need: Combined T&D Steady-state Analysis

- To evaluate impact of high-penetration of DERs
	- Emergency operation similar to NY line trip event
	- Normal operation asset health when continuous backflow from distribution grids is present
- Initialization of combined T&D dynamic analysis

Aggregating the resources may not work due to heterogenous type or control of various DER devices

SoA - Steady-state Combined T&D Analysis

- Co-simulation
	- Disparate models for T&D networks
	- Pros: Can mix-n-match various established tools
	- Cons: Lack of convergence, and robustness

SoA - Steady-state Combined T&D Analysis

- Co-simulation
- Co-modeling
	- Unified models and algorithms for joint T&D networks

and many more!

SoA - Steady-state Combined T&D Analysis

and many more!

None of these approaches work when the combined T&D network has no solution

Solving Infeasible Combined T&D Nets

- System planners require clear indications regarding why power flow simulations fail
	- Where are the system weaknesses
	- Where to consider adding new assets

Solving Infeasible Combined T&D Nets

• System planners require clear indications regarding why power flow simulations fail

Preliminaries

- For the positive sequence transmission net; concept of missing power^a, introducing slack current^b using circuit simulation
- For the three-phase distribution network; identifying the weak spots^c, identifying the problematic power flow constraints

^aT. J. Overbye $[2]$ ^bM.Jereminov, Pandey, *et al.* [3] ^cE.foster, Pandey, *et al.* [4]

Goal: Model and simulate infeasible large-scale combined positive-sequence T and three-phase D networks within the same solution and modeling framework

Infeasible: A combined T&D network that cannot satisfy power flow network constraints while satisfying device bounds

Model: Equivalent Circuit (Ckt) Formulation

- Insight: Model and analyze combined T&D network as an equivalent circuit²
	- KCL: linear network constraints, nonlinear injection models

²A. Pandey *et al.* [5]

Combined T&D Modeling - A Ckt Approach

Optimizing Combined T&D Infeasible Networks 19

University
of Vermont

Combined T&D Modeling - Coupling Ckt

• Coupling circuits³ model the interactions between T and D sub-circuits using symmetrical components

Figure: Coupled T&D layout (coupling circuit).

³A. Pandey *et al.* [6]

University f Vermont

Combined T&D Modeling – Coupling Ckt

• Real circuit coupling equations (primal setup)

t: is the normalizing constant α : is the $2\pi/3$

Combined T&D Solution: A Ckt Approach

• Solving this circuit requires solving the KCL equation at each node and maintaining voltage mag at some

A Circuits Approach: Adding Infeas Sources

Figure: Illustration of Combined T&D Ckt with Infeasibility Sources

University Vermon

A Circuits Approach: Adding Infeas Sources

Figure: Illustration of Combined T&D Ckt with Infeasibility Sources

Optimization to Solve Infeasible Networks

- The objective is to minimize the norm of infeasibility currents
	- Feasible network: the objective will be 0; recover the power flow solution from primal variables
	- Infeasible network: the non-zero dual variables localizes the system weaknesses

Choice of norm localizes system weakness differently!

$$
\begin{aligned} &\min_{X,\mathcal{I}} \sum_{s \in S^T} \lVert (\mathcal{I}_s^T) \rVert_p + \sum_{s \in S^D} \sum_{\Omega \in a,b,c} \lVert (\mathcal{I}_{s,\Omega}^D) \rVert_p \stackrel{\text{(Minimize infeasibility}}{\text{source)}} \\ &s.t. \\ &\mathcal{F}^T_{s_t}(X^T_{s_t}) - \mathcal{I}^T_{s_t} = 0 \quad \forall s_t \in S^T \text{ (T\&D power flows)} \\ &\mathcal{F}^D_{s_d,\Omega}(X^D_{s_d,\Omega}) - \mathcal{I}^D_{s_d,\Omega} = 0 \quad \forall \Omega \in \{a,b,c\} \quad \forall s_d \in S^D \\ &\mathcal{G}^T_{s_t}(X^T_{s_t}) \leq 0 \quad \forall s_t \in S^T \text{ (T\&D voltage bounds)} \\ &\mathcal{G}^D_{s_d,\Omega}(X^D_{s_d,\Omega}) \leq 0 \quad \forall \Omega \in \{a,b,c\} \quad \forall s_d \in S^D \\ &\mathcal{C}_k(X^T,X^D) = 0 \quad \forall k \in K \text{ (Coupling constraint)} \end{aligned}
$$

Methodology - Optimization problem

• The choice of infeasible sources:

$$
\mathcal{I} = \begin{cases} I^{R,\inf} + jI^{I,\inf} & \text{if } \mathcal{I} = I^\inf \\ (P^{\inf} - jQ^{\inf}) / (V^R - jV^I) & \text{if } \mathcal{I} = S^{\inf} \\ (G^{\inf} + jB^{\inf}) (V^R + jV^I) & \text{if } \mathcal{I} = Z^{\inf} \end{cases}
$$

- Current infeasibility (I) introduces only linear term
- Power infeasibility (S) can localize the lack of reactive power implicitly

Methodology – Distributed optimization

• Centralized problem

- Unable to solve tens of millions of variables under single machine single compute framework
- Distributed problem
	- Preserve privacy between separate T&D utilities
	- Inherent weak coupling between T&D allows natural decomposition

Methodology - Distributed optimization

- Centralized problem
- Distributed problem

In this work, we employ a distributed primal-dual interior point method (PDIP), which follows the framework of the Gauss-Jacobi Newton algorithm

BBD Matrix \rightarrow **Distributed Framework**

Figure: Coupled T&D layout bordered block diagonal (BBD) structure

BBD Matrix - Int. and Ext. Variables

Figure: Coupled T&D layout bordered block diagonal (BBD) structure

Methodology - Distributed PDIP

University

Vermont

Methodology - Decomposed KKT equations

Gauss step: Dual expr. for coupling eqns. (also primal)

$$
\begin{bmatrix} \lambda_{k,a}^{R,D} \\ \lambda_{k,a}^{I,D} \\ \lambda_{k,b}^{R,D} \\ \lambda_{k,b}^{I,D} \\ \lambda_{k,c}^{R,D} \\ \lambda_{k,c}^{I,D} \\ \lambda_{k,c}^{I,D} \end{bmatrix} = \frac{1}{\kappa} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \alpha^2 & 0 \\ 0 & \alpha^2 \\ 0 & 0 \\ 0 & \alpha \end{bmatrix} \begin{bmatrix} \lambda_k^{R,T} \\ \lambda_k^{I,T} \\ \lambda_k^{I,T} \\ \lambda_{k,c}^{I,D} \\ \end{bmatrix}
$$

 κ is the normalizing constant; α : is the $2\pi/3$.

Results - Experimental Setup

- Use case: Reactive power compensation
	- Corrective action to improve voltages on transmission net due to increased loading on the distribution nets

Table: Test cases description

D-net: Synthetic urban meshed network with 1420 three-phase nodes (4260 single-phase nodes)

ADMM runs terminated after 1800 sec.

Solving Real Combined T&D Network

- Combined T&D net with real VT dist. feeder
- Higher electrification → network infeasibility
	- Goal: Localize weak spots

Figure: VT Distribution Feeder

Solving Real Combined T&D Network

With L2 norm, the infeasibility is distributed throughout the system

Solving Real Combined T&D Network

With L2 norm, the infeasibility is distributed throughout the system

With L1 norm, the infeasibility is localized to few locations

Concluding Remarks

- Interactions between T&D nets are growing and grid operators and planners are looking for new tools:
	- Robust: Methods converge with some guarantee
	- $-$ Scalable: Can solve real setups with $>10e6$ variables
	- Generalized: Apply to a variety of problems

Come Visit Us!

Combined T&D - References

[1] Federal Energy Regulatory Commission, "FERC order 841: *Electric storage participation in markets operated by regional transmission organizations and independent system operator*," 2018.

[2] T. J. Overbye, A power flow measure for unsolvable cases," in *IEEE Transactions on Power Systems*, vol. 9, no. 3, pp. 1359-1365, Aug. 1994.

[3] M. Jereminov, D. M. Bromberg, A. Pandey, M. R. Wagner and L. Pileggi, "*Evaluating Feasibility Within Power Flow,*" in IEEE Transactions on Smart Grid, vol. 11, no. 4, pp. 3522- 3534, July 2020.

[4] E. Foster, A. Pandey, and L. Pileggi, "Three-phase infeasibility analysis for distribution grid studies," *Electric Power Systems Research*, vol. 212, p. 108486, 2022.

[5] A. Pandey, M. Jereminov, M. R. Wagner, D. M. Bromberg, G. Hug, and L. Pileggi, "Robust power flow and three-phase power flow analyses," *IEEE Transactions on Power Systems*, vol. 34, no. 1, pp. 616–626, 2019.

[6] A. Pandey, S. Li, and L. Pileggi, "Combined transmission and distribution state-estimation for future electric grids," in *Power Systems Operation with 100% Renewable Energy Sources*. Elsevier, 2024, pp. 299–315.

[7] M. P. Desai and I. N. Hajj, "On the convergence of block relaxation methods for circuit simulation," *IEEE Transactions on Circuits and Systems*, vol. 36, no. 7, pp. 948–958, 1989.

