Non-cooperative Games to Control Learned Inverter Dynamics of Distributed Energy Resources

Paul Serna-Torre^{a,b}, Vishal Shenoy^c, Jorge I. Poveda^c, David Schoenwald^d, and Patricia Hidalgo-Gonzalez^{a,b,c}

^c Department of Electrical and Computer Engineering, University of California, San Diego ^a Department of Mechanical and Aerospace Engineering, University of California, San Diego b Center for Energy Research, University of California, San Diego</sup> dSandia National Laboratories, New Mexico

Sept 4, 2024

Table of Contents

1 [Introduction](#page-2-0)

2 **[Contributions](#page-18-0)**

- 3 Problem [formulation](#page-23-0)
- 4 [Control](#page-25-0) scheme design
- 5 [Simulations](#page-47-0) and Results
- 6 [Conclusions](#page-54-0) and Future Directions
- 7 [Supplemental](#page-67-0) information

Introduction

D ∍

b.

∢ ロ ▶ 《 何

 298

- Resiliency to extreme weather events¹
	- Single microgrid: provide access to power
	- Potential value of networked microgrids
- Support the transmission network
	- Wholesale electricity market and FERC 2222
	- Ancillary services (freq. reg., spinning reserves, capacity, etc.)

• Resiliency to extreme weather events¹

- Single microgrid: provide access to power
- Potential value of networked microgrids
- Support the transmission network
	- Wholesale electricity market and FERC 2222
	- Ancillary services (freq. reg., spinning reserves, capacity, etc.)

• Resiliency to extreme weather events $¹$ </sup>

- Single microgrid: provide access to power
- Potential value of networked microgrids

• Support the transmission network

- Wholesale electricity market and FERC 2222
- Ancillary services (freq. reg., spinning reserves, capacity, etc.)

つひひ

- Resiliency to extreme weather events $¹$ </sup>
	- Single microgrid: provide access to power
	- Potential value of networked microgrids
- Support the transmission network
	- Wholesale electricity market and FERC 2222
	- Ancillary services (freq. reg., spinning reserves, capacity, etc.)

1 Image source: <http://www.snopes.com>/

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024 4 / 49 University of California San Diego

つひへ

- Resiliency to extreme weather events $¹$ </sup>
	- Single microgrid: provide access to power
	- Potential value of networked microgrids
- Support the transmission network
	- Wholesale electricity market and FERC 2222
	- Ancillary services (freq. reg., spinning reserves, capacity, etc.)

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024 4 / 49 University of California San Diego

つへへ

¹ Image source: <http://www.snopes.com>/

Coordination of DERs in a microgrid

• DERs can work as a Virtual Power Plant (VPP) to provide services to support the upper-level grid.

Figure: A grid-connected microgrid [wit](#page-7-0)h [D](#page-9-0)[E](#page-7-0)[Rs](#page-8-0)

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024 5 / 49 University of California San Diego

Work using optimization techniques:

- \bullet Dall'Anese et al.² propose an online algorithm for a distribution grid to solve its ACOPF while satisfying an output power reference
- \bullet Behi et al.³ develop a bidding strategy for a VPP to maximize profits from selling load-following ancillary services, subject to customer preferences and hourly operational constraints

 2 Emiliano Dall'Anese et al. "Optimal Regulation of Virtual Power Plants". In: IEEE Transactions on Power Systems 33.2 (2018), pp. 1868–1881.

 $^{\rm 3}$ Behnaz Behi et al. "A Robust Participation in the Load Following Ancillary Service and Energy Markets for a Virtual Power Plant in Western Australia". In: *Energies* 16.7 (2023) . ISSN: 1996-1073. URL: <https://www.mdpi.com/1996-1073/16/7/3054>. \rightarrow 990

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024 6 / 49 University of California San Diego

Work using optimization techniques:

- \bullet Dall'Anese et al.² propose an online algorithm for a distribution grid to solve its ACOPF while satisfying an output power reference
- \bullet Behi et al.³ develop a bidding strategy for a VPP to maximize profits from selling load-following ancillary services, subject to customer preferences and hourly operational constraints

 2 Emiliano Dall'Anese et al. "Optimal Regulation of Virtual Power Plants". In: *IEEE*

 3 Behnaz Behi et al. "A Robust Participation in the Load Following Ancillary Service and Energy Markets for a Virtual Power Plant in Western Australia". In: *Energies* 16.7 (2023). ISSN: 1996-1073. URL: <https://www.mdpi.com/1996-1073/16/7/3054>. \geq 990

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024 6 / 49 University of California San Diego

Benefits of optimization-based methods to control DERs:

- \checkmark online implementation
- $\sqrt{\ }$ fast computation
- However, they may disregard:
	- \times Selfish DERs, i.e., they seek to optimize their individual economic interests

Work using non-cooperative game theory:

- \bullet Mylvaganam et al.⁴ propose a control scheme to steer the state of a microgrid to nominal operating conditions by controlling the input impedance of storage units
- \bullet Zhang et al.⁵ develop a control scheme to coordinate DERs in an islanded MG to bring frequency deviations back to zero

 $\rm ^4T$. Mylvaganam and A. Astolfi. "Control of microgrids using a differential game theoretic framework". In: 2015 54th IEEE Conference on Decision and Control (CDC). 2015, pp. 5839-5844. DOI: [10.1109/CDC.2015.7403137](https://doi.org/10.1109/CDC.2015.7403137).

⁵Jing Zhang et al. "Coordination control of multiple micro sources in islanded microgrid based on diferential games theory". In: International Journal of Electrical $A \equiv \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \mathbf{1} \oplus \mathbf{1}$ 2990

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024 8 / 49 Valianus University of California San Diego

Work using non-cooperative game theory:

- \bullet Mylvaganam et al.⁴ propose a control scheme to steer the state of a microgrid to nominal operating conditions by controlling the input impedance of storage units
- Zhang et al.⁵ develop a control scheme to coordinate DERs in an islanded MG to bring frequency deviations back to zero

⁵ Jing Zhang et al. "Coordination control of multiple micro sources in islanded microgrid based on diferential games theory". In: International Journal of Electrical Power & Energy Systems 97 (2018), pp. 11-16. ISSN: 0142-0615. DOI: [https://doi.org/10.1016/j.ijepes.2017.10.028](https://doi.org/https://doi.org/10.1016/j.ijepes.2017.10.028). $A \Box B$ $A \Box B$ $A \Box B$ 2990

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024 8 / 49 University of California San Diego

 $\rm ^4T$. Mylvaganam and A. Astolfi. "Control of microgrids using a differential game theoretic framework". In: 2015 54th IEEE Conference on Decision and Control (CDC).

b.

不自下 \overline{A} 298

∍

Past work does not:

- **o** consider nonlinear dynamics of inverters,
- use learned state-space models that represent the dynamics of inverters, and
- implement the resulting controllers in high-fidelity models of inverters.

Figure: Inverters in a microg[rid.](#page-14-0) 4 母

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024 10 / 49 University of California San Diego

Past work does not:

- **•** consider nonlinear dynamics of inverters,
- use learned state-space models that represent the dynamics of inverters, and
- implement the resulting controllers in high-fidelity models of inverters.

Figure: Inverters in a microg[rid.](#page-15-0)

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024 10 / 49 University of California San Diego

Past work does not:

- **•** consider nonlinear dynamics of inverters,
- use learned state-space models that represent the dynamics of inverters, and
- implement the resulting controllers in high-fidelity models of inverters.

Figure: Inverters in a microg[rid.](#page-16-0)

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024 10 / 49 University of California San Diego

Contributions

D ∍

b.

◆ ロ ▶ → 母

 298

- We propose a non-cooperative game framework that incorporates inverter dynamics
- We learn a state-space representation of the inverter dynamics
- Our control scheme enables a microgrid to provide regulation services to support the upper-level grid
- We show the cost efectiveness and time-domain performance of our proposed control scheme compared with droop control and proportional-integral (PI) control.

We propose a non-cooperative game framework that incorporates inverter dynamics

We learn a state-space representation of the inverter dynamics

- Our control scheme enables a microgrid to provide regulation services to support the upper-level grid
- We show the cost efectiveness and time-domain performance of our proposed control scheme compared with droop control and proportional-integral (PI) control.

- We propose a non-cooperative game framework that incorporates inverter dynamics
- We learn a state-space representation of the inverter dynamics
- Our control scheme enables a microgrid to provide regulation services to support the upper-level grid
- We show the cost efectiveness and time-domain performance of our proposed control scheme compared with droop control and proportional-integral (PI) control.

- We propose a non-cooperative game framework that incorporates inverter dynamics
- We learn a state-space representation of the inverter dynamics
- Our control scheme enables a microgrid to provide regulation services to support the upper-level grid
- We show the cost efectiveness and time-domain performance of our proposed control scheme compared with droop control and proportional-integral (PI) control.

Problem formulation

∢ ロ ▶ 《 何

 298

Problem we want to solve

Figure: Need for controlling DERs in support to upper-level grid operation.

4 0 8

 QQ

Þ

Control scheme design

4日下

 298

Description of our control scheme (cont.)

Figure: Control scheme considerations: (i) DERs are selfsh, (ii) grid-following inverters, (iii) load perturbations, (iv) $p_{microerid} \rightarrow p_{req}$ 299 Hidalgo-Gonzalez presenting Serna-Torre et al., 2024 16 / 49 University of California San Diego

Challenges:

- The state-space representation of each DER is needed
- Deriving exact system dynamics for each DER may come with difculties:
	- Privacy concerns
	- Multiple control loops with high computational complexity
	- Scalability issues for high number of inverters

4 **D F**

Challenges:

- The state-space representation of each DER is needed
- Deriving exact system dynamics for each DER may come with difficulties:
	- Privacy concerns
	- Multiple control loops with high computational complexity
	- Scalability issues for high number of inverters

Solution we propose:

Learned inverter dynamics

The dynamics of each inverter are modeled through System Identifcation (SI). This method identifes the transfer function of a dynamical system from observed input-output data.

Learned inverter dynamics

Figure: System Identifcation extracts dynamics for an inverter-interfaced DER

Using System Identification, the matrices A_i , B_i , C_i and D_i of the state-space representation of DER i is

$$
\dot{x}_i = A_i x_i + B_i u_i
$$
\n
$$
y_i = C_i x_i,
$$
\n(1)

where $A_i \in \mathbb{R}^{d \times d}$, $B_i \in \mathbb{R}^{d \times 1}$, $C_i \in \mathbb{R}^{1 \times d}$

Cluster of DERs as a Virtual Power Plant (VPP)

The state-space representation of the VPP that groups "N" DERs is

$$
\begin{bmatrix} \dot{x}_1 \\ \vdots \\ \dot{x}_N \end{bmatrix} = \begin{bmatrix} A_1 & & \\ & \ddots & \\ & & A_N \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} + \begin{bmatrix} B_1 & & \\ & \ddots & \\ & & B_N \end{bmatrix} \begin{bmatrix} u_1 \\ \vdots \\ u_N \end{bmatrix}
$$
 (3)

$$
y = \begin{bmatrix} C_1 & \dots & C_N \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix},
$$
 (4)

In compact form,

$$
\dot{x} = Ax + Bu \tag{5}
$$

$$
y = Cx, \tag{6}
$$

- State of the VPP: $x = \begin{bmatrix} x_1 & \dots & x_N \end{bmatrix}^\top \in \mathbb{R}^{N \cdot d}$
- \bullet Control action of DER i: u_i
- Power output of the VPP: y

Considerations:

- Power reference of the regulation service: $p_{\text{req}}(t) \in \mathbb{R}$,
- MG's power delivered to the upper grid $y(t) d(t) \rightarrow p_{\text{req}}(t)$,
- To comply with the regulation service, we use a compensator (i.e., achieving zero steady-state error) with state w, output v, matrices H, G and D.

Using the deviation of the states, the resulting augmented dynamics for the VPP is:

$$
\begin{bmatrix} \dot{\tilde{x}} \\ \dot{\tilde{w}} \end{bmatrix} = \bar{A} \begin{bmatrix} \tilde{x} \\ \tilde{w} \end{bmatrix} + \begin{bmatrix} \bar{B}_1 & \dots & \bar{B}_N \end{bmatrix} \tilde{u}
$$
\n
$$
\begin{bmatrix} \tilde{y} \\ \tilde{v} \end{bmatrix} = \bar{C} \begin{bmatrix} \tilde{x} \\ \tilde{w} \end{bmatrix},
$$
\n(8)

where
$$
\overline{A} = \begin{bmatrix} A & 0 \\ -GC & H \end{bmatrix}
$$
, $\overline{B}_i = \begin{bmatrix} 0 & \dots & B_i & \dots & 0 \end{bmatrix}^\top$, and $\overline{C} = \begin{bmatrix} C & 0 \\ 0 & D \end{bmatrix}$.

Considerations:

- Power reference of the regulation service: $p_{\text{req}}(t) \in \mathbb{R}$,
- MG's power delivered to the upper grid $y(t) d(t) \rightarrow p_{\text{req}}(t)$,
- To comply with the regulation service, we use a compensator (i.e., achieving zero steady-state error) with state w, output v, matrices H, G and D.

Using the deviation of the states, the resulting augmented dynamics for the VPP is:

$$
\begin{bmatrix} \dot{\tilde{x}} \\ \dot{\tilde{w}} \end{bmatrix} = \bar{A} \begin{bmatrix} \tilde{x} \\ \tilde{w} \end{bmatrix} + \begin{bmatrix} \bar{B_1} & \dots & \bar{B_N} \end{bmatrix} \tilde{u}
$$
(7)

$$
\begin{bmatrix} \tilde{y} \\ \tilde{v} \end{bmatrix} = \bar{C} \begin{bmatrix} \tilde{x} \\ \tilde{w} \end{bmatrix},
$$
(8)

Modeling of Regulation service

Considerations:

- Power reference of the regulation service: $p_{\text{rea}}(t) \in \mathbb{R}$,
- MG's power delivered to the upper grid $y(t) d(t) \rightarrow p_{\text{req}}(t)$,
- To comply with the regulation service, we use a compensator (i.e., achieving zero steady-state error) with state w, output v, matrices H, G and D.

Using the deviation of the states, the resulting augmented dynamics for the VPP is:

$$
\begin{bmatrix} \dot{\tilde{x}} \\ \dot{\tilde{w}} \end{bmatrix} = \bar{A} \begin{bmatrix} \tilde{x} \\ \tilde{w} \end{bmatrix} + \begin{bmatrix} \bar{B_1} & \dots & \bar{B_N} \end{bmatrix} \tilde{u}
$$
(7)

$$
\begin{bmatrix} \tilde{y} \\ \tilde{v} \end{bmatrix} = \bar{C} \begin{bmatrix} \tilde{x} \\ \tilde{w} \end{bmatrix},
$$
(8)

where
$$
\overline{A} = \begin{bmatrix} A & 0 \\ -GC & H \end{bmatrix}
$$
, $\overline{B}_i = \begin{bmatrix} 0 & \dots & B_i & \dots & 0 \end{bmatrix}^\top$, and $\overline{C} = \begin{bmatrix} C & 0 \\ 0 & D \end{bmatrix}$.

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024 21 / 49 University of California San Diego

Considerations:

- Power reference of the regulation service: $p_{\text{rea}}(t) \in \mathbb{R}$,
- MG's power delivered to the upper grid $y(t) d(t) \rightarrow p_{\text{req}}(t)$,
- To comply with the regulation service, we use a compensator (i.e., achieving zero steady-state error) with state w, output v, matrices H, G and D.

Using the deviation of the states, the resulting augmented dynamics for the VPP is:

$$
\begin{bmatrix} \dot{\tilde{x}} \\ \dot{\tilde{w}} \end{bmatrix} = \bar{A} \begin{bmatrix} \tilde{x} \\ \tilde{w} \end{bmatrix} + \begin{bmatrix} \bar{B}_1 & \dots & \bar{B}_N \end{bmatrix} \tilde{u}
$$
\n(7)\n
$$
\begin{bmatrix} \tilde{y} \\ \tilde{v} \end{bmatrix} = \bar{C} \begin{bmatrix} \tilde{x} \\ \tilde{w} \end{bmatrix},
$$
\n(8)

where
$$
\overline{A} = \begin{bmatrix} A & 0 \\ -GC & H \end{bmatrix}
$$
, $\overline{B}_i = \begin{bmatrix} 0 & \dots & B_i & \dots & 0 \end{bmatrix}^\top$, and $\overline{C} = \begin{bmatrix} C & 0 \\ 0 & D \end{bmatrix}$.
Considerations:

- Power reference of the regulation service: $p_{\text{rea}}(t) \in \mathbb{R}$,
- MG's power delivered to the upper grid $y(t) d(t) \rightarrow p_{\text{req}}(t)$,
- To comply with the regulation service, we use a compensator (i.e., achieving zero steady-state error) with state w, output v, matrices H, G and D.

Using the deviation of the states, the resulting augmented dynamics for the VPP is:

$$
\begin{bmatrix}\n\dot{\tilde{x}} \\
\dot{\tilde{w}}\n\end{bmatrix} = \bar{A} \begin{bmatrix}\n\tilde{x} \\
\tilde{w}\n\end{bmatrix} + \begin{bmatrix}\n\bar{B}_1 & \dots & \bar{B}_N\n\end{bmatrix} \tilde{u}
$$
\n(7)\n
$$
\begin{bmatrix}\n\tilde{y} \\
\tilde{v}\n\end{bmatrix} = \bar{C} \begin{bmatrix}\n\tilde{x} \\
\tilde{w}\n\end{bmatrix},
$$
\n(8)

where
$$
\overline{A} = \begin{bmatrix} A & 0 \\ -GC & H \end{bmatrix}
$$
, $\overline{B}_i = \begin{bmatrix} 0 & \dots & B_i & \dots & 0 \end{bmatrix}^\top$, and $\overline{C} = \begin{bmatrix} C & 0 \\ 0 & D \end{bmatrix}$.

Non-cooperative linear quadratic diferential game for DER coordination

Each DER seeks to minimize its individual cost $J_i(\tilde{x}_0, \tilde{w}_0, \tilde{u})$ during the power regulation service. The cost is given by

$$
J_i(\widetilde{x}_0, \widetilde{w}_0, \widetilde{u}) = \int_{t_0}^{\infty} \left\{ \begin{bmatrix} \widetilde{x} \\ \widetilde{w} \end{bmatrix}^\top Q_i \begin{bmatrix} \widetilde{x} \\ \widetilde{w} \end{bmatrix} + \widetilde{u}_i^\top R_i \widetilde{u}_i \right\} dt, \tag{9}
$$

• where $Q_i = Q_i^{\top} \geq 0$ and $R_i \geq 0$ Subject to:

$$
\begin{bmatrix}\n\dot{\tilde{x}} \\
\dot{\tilde{w}}\n\end{bmatrix} = \bar{A} \begin{bmatrix}\n\tilde{x} \\
\tilde{w}\n\end{bmatrix} + \begin{bmatrix}\n\bar{B}_1 & \dots & \bar{B}_N\n\end{bmatrix} \tilde{u}
$$
\n(10)\n
$$
\begin{bmatrix}\n\tilde{y} \\
\tilde{v}\n\end{bmatrix} = \bar{C} \begin{bmatrix}\n\tilde{x} \\
\tilde{w}\n\end{bmatrix},
$$
\n(11)

Each DER employs a linear feedback strategy given by

$$
\widetilde{u_i} = \begin{bmatrix} K_i & F_i \end{bmatrix} \begin{bmatrix} \widetilde{x} \\ \widetilde{w} \end{bmatrix},\tag{12}
$$

We determine the set of admissible strategies $\{u_1, \ldots, u_N\}$ of the form [\(12\)](#page-38-0) using the concept of Nash equilibrium

$$
J_i(\widetilde{x}_0, \widetilde{w}_0, [\widetilde{u}_1^*, ..., \widetilde{u}_i^*, ..., \widetilde{u}_N^*]) \leq J_i(\widetilde{x}_0, \widetilde{w}_0, [\widetilde{u}_1^*, ..., \widetilde{u}_i^*, ..., \widetilde{u}_N^*]),
$$
 (13)
for $i = \{1, 2, ..., N\}.$

Nash equilibrium strategy for DERs (cont.)

$$
u_i^* = -R_i^{-1} \bar{B}_i P_i \begin{bmatrix} \widetilde{x} \\ \widetilde{w} \end{bmatrix}
$$
 (14)

for $i = \{1, ..., N\}$.

The matrices P_i are the symmetric stabilizing solution of the coupled Algebraic Riccati equations:

$$
\left(\bar{A} - \sum_{j \neq i}^{N} S_j P_j\right)^{\top} P_i + P_i \left(\bar{A} - \sum_{j \neq i}^{N} S_j P_j\right) - P_i S_i P_i + Q_i = 0 \tag{15}
$$

for $i = \{1, ..., N\}$, where $S_i = \bar{B}_i R_i^{-1} \bar{B}_i^T$.

We use an iterative algorithm⁶ to obtain P_i .

⁶ Jacob Engwerda. "Algorithms for computing Nash equilibria in deterministic LQ games". In: Computational Management Science 4.2 (Apr. 2007), pp. 113–140. issn: QQ ∢ □ ▶ ⊣ [△] э

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024 24 / 49 University of California San Diego

Nash equilibrium strategy for DERs (cont.)

$$
u_i^* = -R_i^{-1} \bar{B}_i P_i \begin{bmatrix} \widetilde{x} \\ \widetilde{w} \end{bmatrix}
$$
 (14)

for $i = \{1, ..., N\}$.

The matrices P_i are the symmetric stabilizing solution of the coupled Algebraic Riccati equations:

$$
\left(\bar{A} - \sum_{j \neq i}^{N} S_{j} P_{j}\right)^{\top} P_{i} + P_{i} \left(\bar{A} - \sum_{j \neq i}^{N} S_{j} P_{j}\right) - P_{i} S_{i} P_{i} + Q_{i} = 0 \hspace{1cm} (15)
$$

for $i = \{1, ..., N\}$, where $S_i = \bar{B}_i R_i^{-1} \bar{B}_i^T$.

We use an iterative algorithm⁶ to obtain P_i .

⁶ Jacob Engwerda. "Algorithms for computing Nash equilibria in deterministic LQ QQ G.

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024 24 / 49 University of California San Diego

Nash equilibrium strategy for DERs (cont.)

$$
u_i^* = -R_i^{-1} \bar{B}_i P_i \begin{bmatrix} \widetilde{x} \\ \widetilde{w} \end{bmatrix}
$$
 (14)

for $i = \{1, ..., N\}$.

The matrices P_i are the symmetric stabilizing solution of the coupled Algebraic Riccati equations:

$$
\left(\bar{A} - \sum_{j \neq i}^{N} S_{j} P_{j}\right)^{\top} P_{i} + P_{i} \left(\bar{A} - \sum_{j \neq i}^{N} S_{j} P_{j}\right) - P_{i} S_{i} P_{i} + Q_{i} = 0 \qquad (15)
$$

for $i = \{1, ..., N\}$, where $S_i = \bar{B}_i R_i^{-1} \bar{B}_i^{\top}$.

We use an iterative algorithm⁶ to obtain P_i .

⁶ Jacob Engwerda. "Algorithms for computing Nash equilibria in deterministic LQ games". In: Computational Management Science 4.2 (Apr. 2007), pp. 113–140. issn: 1619-6988. QQ

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024 24 / 49 University of California San Diego

\bullet We need state variables information to calculate control action u_i

- In our setup there are no state variable measurements (as they are internal states)
- We use Loop Transfer Recovery (LTR) to estimate the states (variant of the Kalman Filter)
- \bullet LTR is robust to parameter perturbations ΔA_i , ΔB_i , ΔC_i from the learned DER dynamics

- \bullet We need state variables information to calculate control action u_i
- In our setup there are no state variable measurements (as they are internal states)
- We use Loop Transfer Recovery (LTR) to estimate the states (variant of the Kalman Filter)
- \bullet LTR is robust to parameter perturbations ΔA_i , ΔB_i , ΔC_i from the learned DER dynamics

- \bullet We need state variables information to calculate control action u_i
- In our setup there are no state variable measurements (as they are internal states)
- We use Loop Transfer Recovery (LTR) to estimate the states (variant of the Kalman Filter)
- \bullet LTR is robust to parameter perturbations ΔA_i , ΔB_i , ΔC_i from the learned DER dynamics

- \bullet We need state variables information to calculate control action u_i
- In our setup there are no state variable measurements (as they are internal states)
- We use Loop Transfer Recovery (LTR) to estimate the states (variant of the Kalman Filter)
- LTR is robust to parameter perturbations ΔA_i , ΔB_i , ΔC_i from the learned DER dynamics

Control scheme

In summary, the state-feedback control and LTRs are placed in the MG as follows:

Figure: Control scheme for a microgrid (MG) to provide power regulation service in support to the upper-level grid.

4 **D F**

Simulations and Results

4 0 8 4

 298

Validation of learned dynamics and control scheme

Figure: Top panel: Microgrid (MG)'s power output with learned DER models and MG's power output with high-fdelity DER models. Bottom panel: MG's load during the regulation service.

€⊡

Case study

The four scenarios correspond to 10-kV MGs with diferent numbers of DERs:

- 1 1 PV system and 1 BESS
- 2 1 PV system and 2 BESS
- **3 PV systems and 3 BESS**
- ⁴ 4 PV systems and 6 BESS

Figure: MG in scenario 1

 \leftarrow \Box

Comparison of the proposed control scheme against droop and PI control using high-fdelity dynamics

Benchmark of the proposed control scheme against droop controller and PI controller

The cost savings of DER *i*: $\frac{Individual cost_{using drop/PI}}{Individual cost_{uproposed}}$

Table: Cost savings of each DER when using our proposed control scheme for all 4 scenarios using Sandia's high-fidelity inverter models

Benchmark of the proposed control scheme against droop controller and PI controller

The cost savings of DER *i*: $\frac{Individual cost_{using drop/Pl}}{Individual cost_{uproposed}}$

Table: Cost savings of each DER when using our proposed control scheme for all 4 scenarios using Sandia's high-fidelity inverter models

Benchmark in time-domain performance

Figure: Pros: Faster settling times, no oscillations, and zero steady-state error. Cons: Slightly higher overshoot. QQ \leftarrow \Box

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024 32 / 49 University of California San Diego

Conclusions and Future Directions

4日下

 QQ

- Novel control scheme using non-cooperative games for the coordination of DERs to provide regulation services aware of constraints from inverter dynamics
- It considers, for the first time, learned inverter dynamics for DERs.
- The use of learned state-space models is promising

- Novel control scheme using non-cooperative games for the coordination of DERs to provide regulation services aware of constraints from inverter dynamics
- It considers, for the first time, learned inverter dynamics for DERs.
- The use of learned state-space models is promising

- Novel control scheme using non-cooperative games for the coordination of DERs to provide regulation services aware of constraints from inverter dynamics
- It considers, for the first time, learned inverter dynamics for DERs.

• The use of learned state-space models is promising

- Novel control scheme using non-cooperative games for the coordination of DERs to provide regulation services aware of constraints from inverter dynamics
- \bullet It considers, for the first time, learned inverter dynamics for DERs.
- The use of learned state-space models is promising

- Diverse set of inverter manufacturers and diferent operational points for inverters lead to heterogeneous and time-varying dynamics.
- Challenges: how to derive or represent aggregate dynamics, tractability issues, etc.
- Learning inverter dynamics is a promising field of research.
- How to guarantee stabilizing solutions for ancillary services from clusters of DERs considering communication delays in state estimation, or partial information.
- In a broader setup, where the transmission network is supported by the distribution network to provide frequency support, closed-loop stabilizing control becomes essential, and much more challenging.
- Stabilizing control techniques for large-scale time-varying systems becomes a necessity. Distributed and data-driven approaches are promising techniques to address this.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

- Diverse set of inverter manufacturers and diferent operational points for inverters lead to heterogeneous and time-varying dynamics.
- Challenges: how to derive or represent aggregate dynamics, tractability issues, etc.
- Learning inverter dynamics is a promising field of research.
- How to guarantee stabilizing solutions for ancillary services from clusters of DERs considering communication delays in state estimation, or partial information.
- In a broader setup, where the transmission network is supported by the distribution network to provide frequency support, closed-loop stabilizing control becomes essential, and much more challenging.
- Stabilizing control techniques for large-scale time-varying systems becomes a necessity. Distributed and data-driven approaches are promising techniques to address this.

 Ω

イロト イ押ト イヨト イヨト

- Diverse set of inverter manufacturers and diferent operational points for inverters lead to heterogeneous and time-varying dynamics.
- Challenges: how to derive or represent aggregate dynamics, tractability issues, etc.
- Learning inverter dynamics is a promising field of research.
- How to guarantee stabilizing solutions for ancillary services from clusters of DERs considering communication delays in state estimation, or partial information.
- In a broader setup, where the transmission network is supported by the distribution network to provide frequency support, closed-loop stabilizing control becomes essential, and much more challenging.
- Stabilizing control techniques for large-scale time-varying systems becomes a necessity. Distributed and data-driven approaches are promising techniques to address this.

 Ω

← ロ → → ← 何 →

- Diverse set of inverter manufacturers and diferent operational points for inverters lead to heterogeneous and time-varying dynamics.
- Challenges: how to derive or represent aggregate dynamics, tractability issues, etc.
- Learning inverter dynamics is a promising field of research.
- How to guarantee stabilizing solutions for ancillary services from clusters of DERs considering communication delays in state estimation, or partial information.
- In a broader setup, where the transmission network is supported by the distribution network to provide frequency support, closed-loop stabilizing control becomes essential, and much more challenging.
- Stabilizing control techniques for large-scale time-varying systems becomes a necessity. Distributed and data-driven approaches are promising techniques to address this.

 Ω

← ロ → → ← 何 →

- Diverse set of inverter manufacturers and diferent operational points for inverters lead to heterogeneous and time-varying dynamics.
- Challenges: how to derive or represent aggregate dynamics, tractability issues, etc.
- Learning inverter dynamics is a promising field of research.
- How to guarantee stabilizing solutions for ancillary services from clusters of DERs considering communication delays in state estimation, or partial information.
- In a broader setup, where the transmission network is supported by the distribution network to provide frequency support, closed-loop stabilizing control becomes essential, and much more challenging.
- Stabilizing control techniques for large-scale time-varying systems becomes a necessity. Distributed and data-driven approaches are promising techniques to address this.

- Diverse set of inverter manufacturers and diferent operational points for inverters lead to heterogeneous and time-varying dynamics.
- Challenges: how to derive or represent aggregate dynamics, tractability issues, etc.
- Learning inverter dynamics is a promising field of research.
- How to guarantee stabilizing solutions for ancillary services from clusters of DERs considering communication delays in state estimation, or partial information.
- In a broader setup, where the transmission network is supported by the distribution network to provide frequency support, closed-loop stabilizing control becomes essential, and much more challenging.
- Stabilizing control techniques for large-scale time-varying systems becomes a necessity. Distributed and data-driven approaches are promising techniques to address this.

- Diverse set of inverter manufacturers and diferent operational points for inverters lead to heterogeneous and time-varying dynamics.
- Challenges: how to derive or represent aggregate dynamics, tractability issues, etc.
- Learning inverter dynamics is a promising field of research.
- How to guarantee stabilizing solutions for ancillary services from clusters of DERs considering communication delays in state estimation, or partial information.
- In a broader setup, where the transmission network is supported by the distribution network to provide frequency support, closed-loop stabilizing control becomes essential, and much more challenging.
- Stabilizing control techniques for large-scale time-varying systems becomes a necessity. Distributed and data-driven approaches are promising techniques to address this.

Thank you!

psernatorre@ucsd.edu (Paul Serna-Torre) phidalgogonzalez@ucsd.edu (Patricia Hidalgo-Gonzalez)

4 **D F**

Supplemental information

4日下

 298

Modeling of inverters

Figure: A grid-following inverter with compensators in dq-frame able to track P_{sref} , Q_{sref} ⁷.

⁷ Amirnaser Yaz[d](#page-67-0)an[i](#page-67-0) a[n](#page-85-0)d Reza Iravani. *Voltage-Sourced C[on](#page-69-0)[ve](#page-67-0)[rt](#page-68-0)[er](#page-85-0)[s](#page-66-0) in [P](#page-85-0)[o](#page-66-0)[w](#page-67-0)er [Sy](#page-0-0)[stem](#page-85-0)s*.

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024 38 / 49 University of California San Diego

Learned state-space representation of DERs

By System Identification, we obtain the following state-space models

Table: DERs learned state-space representations

As system parameters may vary in practice, we intentionally introduce perturbations to the LTR estimator of each DER across all scenarios.

Table: Parameter perturbations introduced to the LTR estimators

	PV system Parameter			BESS				
	ΔA	$\begin{bmatrix} -20 & 1000 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} -100 & 1000 \\ 1 & 0 \end{bmatrix}$						
	ΔB			$\begin{bmatrix} -0.1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} -0.1 \\ 0 \end{bmatrix}$				
	ΔC	[0.1]	0.11	[0.1]		0.11 ロ ▶ ∢ @ ▶ ∢ 至 ▶ ∢ 至 ▶ │ 重 │ ◆ 9 Q ⊙		
Hidalgo-Gonzalez presenting Serna-Torre et al., 2024	39/49				University of California San Diego			

Learned voltage source inverter dynamics

In System Identification $(SI)^8$, we provide input-output data set

$$
f(t) = [-y(t-1) ... - y(t-n) u(t-1) ... u(t-m)]^{\top}.
$$
 (16)

⁸L. Ljung. System Identification: Theory for the User. Prentice Hall information and system sciences series. Prentice Hall PTR, 1999. ISBN: 9[78](#page-69-0)0[13](#page-71-0)[6](#page-72-0)[5](#page-66-0)6[69](#page-73-0)5[3](#page-67-0)[.](#page-85-0) 290

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024 40 / 49 University of California San Diego

Learned voltage source inverter dynamics

In System Identification $(SI)^8$, we provide input-output data set

$$
f(t) = [-y(t-1) ... - y(t-n) u(t-1) ... u(t-m)]^{\top}.
$$
 (16)

A candidate dynamical model is proposed, e.g.,

$$
y(t) - a_1 y(t-1) + ... + a_n y(t-n) = b_1 u(t-1) + ... + b_m u(t-m),
$$

(17)

$$
\hat{y}(t|\alpha) = f(t)^{\top} \alpha
$$

where: $\alpha = [a_1 \dots a_n \ b_1 \dots b_n]$.

⁸L. Ljung. System Identification: Theory for the User. Prentice Hall information and system sciences series. Prentice Hall PTR, 1999. ISBN: 9[78](#page-70-0)0[13](#page-72-0)[6](#page-72-0)[5](#page-66-0)6[69](#page-73-0)5[3](#page-67-0)[.](#page-85-0) QQ

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024 **40 / 49 January 1988** University of California San Diego
Learned voltage source inverter dynamics

In System Identification $(SI)^8$, we provide input-output data set

$$
f(t) = [-y(t-1) ... - y(t-n) u(t-1) ... u(t-m)]^{\top}.
$$
 (16)

A candidate dynamical model is proposed, e.g.,

$$
y(t) - a_1y(t-1) + ... + a_ny(t-n) = b_1u(t-1) + ... + b_mu(t-m),
$$

(17)

$$
\hat{y}(t|\alpha) = f(t)^{\top}\alpha
$$

where: $\alpha = [a_1 \dots a_n \ b_1 \dots b_n]$.

The idea is to find α by non-linear least squares methods

$$
\hat{\alpha} = \underset{\alpha}{\operatorname{argmin}} \frac{1}{N} \sum_{t=1}^{N} [y(t) - \hat{y}(t|\theta)]^2 \tag{19}
$$

⁸L. Ljung. System Identification: Theory for the User. Prentice Hall information and system sciences series. Prentice Hall PTR, 1999. ISBN: 9[78](#page-71-0)0[13](#page-73-0)[6](#page-72-0)[5](#page-66-0)6[69](#page-73-0)5[3](#page-67-0)[.](#page-85-0) 2990

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024 **40 / 49 January 1988** University of California San Diego

Considerations:

- Power reference of the regulation service: $p_{\text{rea}}(t) \in \mathbb{R}$,
- MG's power delivered to the upper grid $y(t) d(t) \rightarrow p_{\text{req}}(t)$,
- Equivalently, $y(t) \rightarrow r(t) = p_{\text{req}}(t) + d(t)$

Considerations:

- Power reference of the regulation service: $p_{\text{rea}}(t) \in \mathbb{R}$,
- MG's power delivered to the upper grid $y(t) d(t) \rightarrow p_{ren}(t)$,
- Equivalently, $y(t) \rightarrow r(t) = p_{\text{req}}(t) + d(t)$

To comply with the regulation service, we propose a compensator

$$
\dot{w} = Hw + Ge
$$
\n
$$
v = Dw,
$$
\n(20)

where $w(t)$, $v(t) \in \mathbb{R}$, and $e(t)$ represents the tracking error

$$
e(t) := r(t) - y(t) = r(t) - Cx(t).
$$
 (22)

Dynamics of the VPP and compensator

We group the dynamics of the VPP and compensator in the following augmented state-space representation:

$$
\begin{bmatrix} \dot{x} \\ \dot{w} \end{bmatrix} = \begin{bmatrix} A & 0 \\ -GC & H \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix} + \begin{bmatrix} \bar{B_1} & \dots & \bar{B_N} \end{bmatrix} u + \begin{bmatrix} 0 \\ G \end{bmatrix} r
$$
(23)

$$
\begin{bmatrix} y \\ v \end{bmatrix} = \begin{bmatrix} C & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix},
$$
(24)

- State of the VPP: $x \in \mathbb{R}^{N \cdot d}$
- State of the compensator: $w \in \mathbb{R}$
- Control action for the VPP: $u \in \mathbb{R}^N$
- Power reference: $r \in \mathbb{R}$
- Power output of the VPP: $y \in \mathbb{R}$
- \bullet Output of the compensator: $v \in \mathbb{R}$

Deviation form of the augmented system

One issue with the augmented system is the presence of **in**

$$
\begin{bmatrix} \dot{x} \\ \dot{w} \end{bmatrix} = \begin{bmatrix} A & 0 \\ -GC & H \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix} + \begin{bmatrix} \bar{B_1} & \dots & \bar{B_N} \end{bmatrix} u + \begin{bmatrix} 0 \\ G \end{bmatrix} \mathbf{r}
$$
(25)

$$
\begin{bmatrix} y \\ v \end{bmatrix} = \begin{bmatrix} C & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix},
$$
(26)

Deviation form of the augmented system

One issue with the augmented system is the presence of r in

$$
\begin{bmatrix} \dot{x} \\ \dot{w} \end{bmatrix} = \begin{bmatrix} A & 0 \\ -GC & H \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix} + \begin{bmatrix} \bar{B_1} & \dots & \bar{B_N} \end{bmatrix} u + \begin{bmatrix} 0 \\ G \end{bmatrix} \mathbf{r}
$$
(25)

$$
\begin{bmatrix} y \\ v \end{bmatrix} = \begin{bmatrix} C & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix},
$$
(26)

To remove r , we redefine the augmented system with deviation states⁹:

$$
\widetilde{x}(t) = x(t) - x_{ss} \tag{27}
$$
\n
$$
\widetilde{w}(t) = w(t) - w_{ss}, \tag{28}
$$

where x_{ss} and w_{ss} are the states achieved when the tracking error e becomes zero.

⁹ Frank L. Lewis, Draguna Vrabie, and Vassilis L. Syrmos. *Optimal Control*. John Wiley & Sons, Ltd, 2012. isbn: 9781118122631.

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024 43 / 49 University of California San Diego

Deviation form of the augmented system (cont.)

With the deviation states, the augmented system is:

$$
\begin{bmatrix}\n\dot{\tilde{x}} \\
\dot{\tilde{w}}\n\end{bmatrix} = \bar{A} \begin{bmatrix}\n\tilde{x} \\
\tilde{w}\n\end{bmatrix} + \begin{bmatrix}\n\bar{B}_1 & \dots & \bar{B}_N\n\end{bmatrix} \tilde{u}
$$
\n(29)\n
$$
\begin{bmatrix}\n\tilde{y} \\
\tilde{v}\n\end{bmatrix} = \bar{C} \begin{bmatrix}\n\tilde{x} \\
\tilde{w}\n\end{bmatrix},
$$
\n(30)

4 D F

where
$$
\overline{A} = \begin{bmatrix} A & 0 \\ -GC & H \end{bmatrix}
$$
, $\overline{B}_i = \begin{bmatrix} 0 & \dots & B_i & \dots & 0 \end{bmatrix}^\top$, and $\overline{C} = \begin{bmatrix} C & 0 \\ 0 & D \end{bmatrix}$.

Equivalence of tracker problem and regulator problem

A tracker problem for the augmented system is actually equivalent to a regulator problem for its corresponding deviation system^a.

^a Frank L. Lewis, Draguna Vrabie, and Vassilis L. Syrmos. Optimal Control. John Wiley & Sons, Ltd, 2012. ISBN: 9781118122631.

Validation of the control scheme

4日下

 QQ

- **•** First, we determine the controllers for each DER following the non-cooperative game approach. In this step, learned state-space representations of the DERs are used.
- Second, in each of the 4 scenarios we do two separate implementations:
	-
	-

- First, we determine the controllers for each DER following the non-cooperative game approach. In this step, learned state-space representations of the DERs are used.
- Second, in each of the 4 scenarios we do two separate implementations:
	- the controllers in the grid with learned state-space models.
	- the controllers in the grid with high-fidelity DER models (realistic case).

- First, we determine the controllers for each DER following the non-cooperative game approach. In this step, learned state-space representations of the DERs are used.
- Second, in each of the 4 scenarios we do two separate implementations:
	-
	-

Validation of control scheme

We compare objective functions and time-domain performance of: (i) grid with learned state-space models vs (ii) grid with high-fdelity DER models

Validation of control scheme (analysis of cost)

Figure: Optimal individual costs for each DER in case: (a) the microgrid (MG) with learned DER models and (b) the MG with high-fidelity DER models for all four scenarios.

 \leftarrow \Box

Validation of control scheme (analysis of time-domain performance

Figure: Top panel: Microgrid (MG)'s power output with learned DER models and MG's power output with high-fdelity DER models. Bottom panel: MG's load during the regulation service.

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024 48 / 49 University of California San Diego

 \leftarrow \Box

Benchmark in time-domain performance

With the proposed control scheme, the VPP has: (i) no oscillations, (ii) faster settling times, (iii) achieves almost zero steady-state error.

	DERs	Control	Overshoot $(\%)$	Settling time (s)	steady-state error $(\%)$	Damping (ζ)
	$\overline{2}$	Droop	-65.5	0.09	37.67	0.12
		PI	-56.02	0.69	1.2	0.12
		Proposed	-35.67	0.42	0.01	1
	3	Droop	-61.36	0.1	28.88	0.25
		PI	-17.74	0.61	0.24	0.13
		Proposed	-35.09	0.26	0	$\mathbf{1}$
	6	Droop	-37.37	0.07	28.96	0.06
		PI	21.61	0.63	0.69	0.10
		Proposed	-33.93	0.21	Ω	1
	10	Droop	-54	0.19	15.7	0.53
		PI	22.15	0.68	0.66	0.09
		Proposed	-34.6	0.23	0.02	$\mathbf{1}$

Table: MG's performance for three control schemes in all four scenarios