Non-cooperative Games to Control Learned Inverter Dynamics of Distributed Energy Resources

Paul Serna-Torre^{*a,b*}, Vishal Shenoy^{*c*}, Jorge I. Poveda^{*c*}, David Schoenwald^{*d*}, and Patricia Hidalgo-Gonzalez^{*a,b,c*}

^a Department of Mechanical and Aerospace Engineering, University of California, San Diego
 ^b Center for Energy Research, University of California, San Diego
 ^c Department of Electrical and Computer Engineering, University of California, San Diego
 ^d Sandia National Laboratories, New Mexico

Sept 4, 2024

Table of Contents

Introduction

2 Contributions

- Problem formulation
- 4 Control scheme design
- 5 Simulations and Results
- 6 Conclusions and Future Directions
- Supplemental information

Introduction

- Resiliency to extreme weather events¹
 - Single microgrid: provide access to power
 - Potential value of networked microgrids
- Support the transmission network
 - Wholesale electricity market and FERC 2222
 - Ancillary services (freq. reg., spinning reserves, capacity, etc.)

• Resiliency to extreme weather events¹

- Single microgrid: provide access to power
- Potential value of networked microgrids
- Support the transmission network
 - Wholesale electricity market and FERC 2222
 - Ancillary services (freq. reg., spinning reserves, capacity, etc.)

¹ Image source: http://www.snopes.com/		• 🗆
Hidalgo-Gonzalez presenting Serna-Torre et al., 2024	4 / 49	

- Resiliency to extreme weather events¹
 - Single microgrid: provide access to power
 - Potential value of networked microgrids
- Support the transmission network
 - Wholesale electricity market and FERC 2222
 - Ancillary services (freq. reg., spinning reserves, capacity, etc.)

- Resiliency to extreme weather events¹
 - Single microgrid: provide access to power
 - Potential value of networked microgrids
- Support the transmission network
 - Wholesale electricity market and FERC 2222
 - Ancillary services (freq. reg., spinning reserves, capacity, etc.)

¹Image source: http://www.snopes.com/

- Resiliency to extreme weather events¹
 - Single microgrid: provide access to power
 - Potential value of networked microgrids
- Support the transmission network
 - Wholesale electricity market and FERC 2222
 - Ancillary services (freq. reg., spinning reserves, capacity, etc.)

¹Image source: http://www.snopes.com/

Coordination of DERs in a microgrid

 DERs can work as a Virtual Power Plant (VPP) to provide services to support the upper-level grid.

Figure: A grid-connected microgrid with DERs

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024

5 / 49

University of California San Diego

Work using optimization techniques:

- Dall'Anese et al.² propose an online algorithm for a distribution grid to solve its ACOPF while satisfying an output power reference
- Behi et al.³ develop a bidding strategy for a VPP to maximize profits from selling load-following ancillary services, subject to customer preferences and hourly operational constraints

²Emiliano Dall'Anese et al. "Optimal Regulation of Virtual Power Plants". In: *IEEE Transactions on Power Systems* 33.2 (2018), pp. 1868–1881.

³Behnaz Behi et al. "A Robust Participation in the Load Following Ancillary Service and Energy Markets for a Virtual Power Plant in Western Australia". In: *Energies* 16.7 (2023). ISSN: 1996-1073. URL: https://www.mdpi.com/1996-1073/19/7/2054.2

Work using optimization techniques:

- Dall'Anese et al.² propose an online algorithm for a distribution grid to solve its ACOPF while satisfying an output power reference
- Behi et al.³ develop a bidding strategy for a VPP to maximize profits from selling load-following ancillary services, subject to customer preferences and hourly operational constraints

³Behnaz Behi et al. "A Robust Participation in the Load Following Ancillary Service and Energy Markets for a Virtual Power Plant in Western Australia". In: *Energies* 16.7 (2023). ISSN: 1996-1073. URL: https://www.mdpi.com/1996-1073/16/7/3054.

²Emiliano Dall'Anese et al. "Optimal Regulation of Virtual Power Plants". In: *IEEE Transactions on Power Systems* 33.2 (2018), pp. 1868–1881.

Benefits of optimization-based methods to control DERs:

- ✓ online implementation
- ✓ fast computation
- However, they may disregard:
 - $\times\,$ Selfish DERs, i.e., they seek to optimize their individual economic interests

Work using non-cooperative game theory:

- Mylvaganam et al.⁴ propose a control scheme to steer the state of a microgrid to nominal operating conditions by controlling the input impedance of storage units
- Zhang et al.⁵ develop a control scheme to coordinate DERs in an islanded MG to bring frequency deviations back to zero

⁴T. Mylvaganam and A. Astolfi. "Control of microgrids using a differential game theoretic framework". In: 2015 54th IEEE Conference on Decision and Control (CDC). 2015, pp. 5839–5844. DOI: 10.1109/CDC.2015.7403137.

⁵Jing Zhang et al. "Coordination control of multiple micro sources in islanded microgrid based on differential games theory". In: *International Journal of Electrical Power & Energy Systems* 97 (2018), pp. 11–16. ISSN: 0142-0615. DOI: https://doi.org/10.1016/j.jiepes.2017.10.028.

Work using non-cooperative game theory:

- Mylvaganam et al.⁴ propose a control scheme to steer the state of a microgrid to nominal operating conditions by controlling the input impedance of storage units
- Zhang et al.⁵ develop a control scheme to coordinate DERs in an islanded MG to bring frequency deviations back to zero

⁵Jing Zhang et al. "Coordination control of multiple micro sources in islanded microgrid based on differential games theory". In: *International Journal of Electrical Power & Energy Systems* 97 (2018), pp. 11–16. ISSN: 0142-0615. DOI: https://doi.org/10.1016/j.ijepes.2017.10.028.

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024

8 / 49

⁴T. Mylvaganam and A. Astolfi. "Control of microgrids using a differential game theoretic framework". In: 2015 54th IEEE Conference on Decision and Control (CDC). 2015, pp. 5839–5844. DOI: 10.1109/CDC.2015.7403137.

Past work does not:

- consider nonlinear dynamics of inverters,
- use learned state-space models that represent the dynamics of inverters, and
- implement the resulting controllers in high-fidelity models of inverters.

Figure: Inverters in a microgrid.

10 / 49

Past work does not:

- consider nonlinear dynamics of inverters,
- use learned state-space models that represent the dynamics of inverters, and
- implement the resulting controllers in high-fidelity models of inverters.

Figure: Inverters in a microgrid.

Past work does not:

- consider nonlinear dynamics of inverters,
- use learned state-space models that represent the dynamics of inverters, and
- implement the resulting controllers in high-fidelity models of inverters.

Figure: Inverters in a microgrid.

Contributions

- We propose a non-cooperative game framework that incorporates inverter dynamics
- We learn a state-space representation of the inverter dynamics
- Our control scheme enables a microgrid to provide regulation services to support the upper-level grid
- We show the cost effectiveness and time-domain performance of our proposed control scheme compared with droop control and proportional-integral (PI) control.

• We propose a non-cooperative game framework that incorporates inverter dynamics

• We learn a state-space representation of the inverter dynamics

- Our control scheme enables a microgrid to provide regulation services to support the upper-level grid
- We show the cost effectiveness and time-domain performance of our proposed control scheme compared with droop control and proportional-integral (PI) control.

- We propose a non-cooperative game framework that incorporates inverter dynamics
- We learn a state-space representation of the inverter dynamics
- Our control scheme enables a microgrid to provide regulation services to support the upper-level grid
- We show the cost effectiveness and time-domain performance of our proposed control scheme compared with droop control and proportional-integral (PI) control.

- We propose a non-cooperative game framework that incorporates inverter dynamics
- We learn a state-space representation of the inverter dynamics
- Our control scheme enables a microgrid to provide regulation services to support the upper-level grid
- We show the cost effectiveness and time-domain performance of our proposed control scheme compared with droop control and proportional-integral (PI) control.

Problem formulation

Problem we want to solve

Figure: Need for controlling DERs in support to upper-level grid operation.

Control scheme design

Description of our control scheme (cont.)

 Figure: Control scheme considerations: (i) DERs are selfish, (ii) grid-following inverters,

 (iii) load perturbations, (iv) $p_{microgrid} \rightarrow p_{req}$

 Hidalgo-Gonzalez presenting Serna-Torre et al., 2024

 16 / 49

 University of California San Diego

Challenges:

- The state-space representation of each DER is needed
- Deriving exact system dynamics for each DER may come with difficulties:
 - Privacy concerns
 - Multiple control loops with high computational complexity
 - Scalability issues for high number of inverters

Challenges:

- The state-space representation of each DER is needed
- Deriving exact system dynamics for each DER may come with difficulties:
 - Privacy concerns
 - Multiple control loops with high computational complexity
 - Scalability issues for high number of inverters

Solution we propose:

Learned inverter dynamics

The dynamics of each inverter are modeled through System Identification (SI). This method identifies the transfer function of a dynamical system from observed input-output data.

Learned inverter dynamics

Figure: System Identification extracts dynamics for an inverter-interfaced DER

Using System Identification, the matrices A_i , B_i , C_i and D_i of the state-space representation of DER *i* is

$$\dot{x}_i = A_i x_i + B_i u_i$$
(1)

$$y_i = C_i x_i,$$
(2)

where $A_i \in \mathbb{R}^{d \times d}$, $B_i \in \mathbb{R}^{d \times 1}$, $C_i \in \mathbb{R}^{1 \times d}$

Cluster of DERs as a Virtual Power Plant (VPP)

The state-space representation of the VPP that groups "N" DERs is

$$\begin{bmatrix} \dot{x}_{1} \\ \vdots \\ \dot{x}_{N} \end{bmatrix} = \begin{bmatrix} A_{1} & & \\ & \ddots & \\ & & A_{N} \end{bmatrix} \begin{bmatrix} x_{1} \\ \vdots \\ x_{N} \end{bmatrix} + \begin{bmatrix} B_{1} & & \\ & \ddots & \\ & & B_{N} \end{bmatrix} \begin{bmatrix} u_{1} \\ \vdots \\ u_{N} \end{bmatrix}$$
(3)
$$y = \begin{bmatrix} C_{1} & \dots & C_{N} \end{bmatrix} \begin{bmatrix} x_{1} \\ \vdots \\ x_{N} \end{bmatrix},$$
(4)

In compact form,

$$\dot{x} = Ax + Bu \tag{5}$$

$$y = Cx, \tag{6}$$

- State of the VPP: $x = \begin{bmatrix} x_1 & \dots & x_N \end{bmatrix}^\top \in \mathbb{R}^{N \cdot d}$
- Control action of DER i: u_i
- Power output of the VPP: y

- Power reference of the regulation service: $p_{\mathsf{req}}(t) \in \mathbb{R}$,
- MG's power delivered to the upper grid $y(t) d(t) o p_{\mathsf{req}}(t)$,
- To comply with the regulation service, we use a compensator (i.e., achieving zero steady-state error) with state w, output v, matrices H, G and D.

Using the deviation of the states, the resulting augmented dynamics for the VPP is:

$$\begin{bmatrix} \dot{\tilde{x}} \\ \dot{\tilde{w}} \end{bmatrix} = \bar{A} \begin{bmatrix} \tilde{x} \\ \tilde{w} \end{bmatrix} + \begin{bmatrix} \bar{B}_1 & \dots & \bar{B}_N \end{bmatrix} \tilde{u}$$
(7)
$$\begin{bmatrix} \tilde{y} \\ \tilde{v} \end{bmatrix} = \bar{C} \begin{bmatrix} \tilde{x} \\ \tilde{w} \end{bmatrix},$$
(8)

where
$$\bar{A} = \begin{bmatrix} A & 0 \\ -GC & H \end{bmatrix}$$
, $\bar{B}_i = \begin{bmatrix} 0 & \dots & B_i & \dots & 0 \end{bmatrix}^{\top}$, and $\bar{C} = \begin{bmatrix} C & 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$.

- Power reference of the regulation service: $p_{\mathsf{req}}(t) \in \mathbb{R},$
- MG's power delivered to the upper grid $y(t) d(t) o p_{\mathsf{req}}(t)$,
- To comply with the regulation service, we use a compensator (i.e., achieving zero steady-state error) with state w, output v, matrices H, G and D.

Using the deviation of the states, the resulting augmented dynamics for the VPP is:

$$\begin{bmatrix} \dot{\tilde{x}} \\ \dot{\tilde{w}} \end{bmatrix} = \bar{A} \begin{bmatrix} \tilde{x} \\ \tilde{w} \end{bmatrix} + \begin{bmatrix} \bar{B}_1 & \dots & \bar{B}_N \end{bmatrix} \tilde{u}$$
(7)
$$\begin{bmatrix} \tilde{y} \\ \tilde{v} \end{bmatrix} = \bar{C} \begin{bmatrix} \tilde{x} \\ \tilde{w} \end{bmatrix},$$
(8)

where
$$\bar{A} = \begin{bmatrix} A & 0 \\ -GC & H \end{bmatrix}$$
, $\bar{B}_i = \begin{bmatrix} 0 & \dots & B_i & \dots & 0 \end{bmatrix}^{\top}$, and $\bar{C} = \begin{bmatrix} C & 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$.

- Power reference of the regulation service: $p_{\mathsf{req}}(t) \in \mathbb{R}$,
- MG's power delivered to the upper grid $y(t) d(t)
 ightarrow p_{\mathsf{req}}(t),$
- To comply with the regulation service, we use a compensator (i.e., achieving zero steady-state error) with state w, output v, matrices H, G and D.

Using the deviation of the states, the resulting augmented dynamics for the VPP is:

$$\begin{bmatrix} \dot{\widetilde{x}} \\ \dot{\widetilde{w}} \end{bmatrix} = \overline{A} \begin{bmatrix} \widetilde{x} \\ \widetilde{w} \end{bmatrix} + \begin{bmatrix} \overline{B}_1 & \dots & \overline{B}_N \end{bmatrix} \widetilde{u}$$
(7)
$$\begin{bmatrix} \widetilde{y} \\ \widetilde{v} \end{bmatrix} = \overline{C} \begin{bmatrix} \widetilde{x} \\ \widetilde{w} \end{bmatrix},$$
(8)

where
$$\bar{A} = \begin{bmatrix} A & 0 \\ -GC & H \end{bmatrix}$$
, $\bar{B}_i = \begin{bmatrix} 0 & \dots & B_i & \dots & 0 \end{bmatrix}^{\top}$, and $\bar{C} = \begin{bmatrix} C & 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$.

- Power reference of the regulation service: $ho_{\mathsf{req}}(t) \in \mathbb{R},$
- MG's power delivered to the upper grid $y(t) d(t)
 ightarrow p_{\mathsf{req}}(t)$,
- To comply with the regulation service, we use a compensator (i.e., achieving zero steady-state error) with state w, output v, matrices H, G and D.

Using the deviation of the states, the resulting augmented dynamics for the VPP is:

$$\begin{bmatrix} \dot{\widetilde{x}} \\ \dot{\widetilde{w}} \end{bmatrix} = \bar{A} \begin{bmatrix} \widetilde{x} \\ \widetilde{w} \end{bmatrix} + \begin{bmatrix} \bar{B}_1 & \dots & \bar{B}_N \end{bmatrix} \widetilde{u}$$
(7)
$$\begin{bmatrix} \widetilde{y} \\ \widetilde{v} \end{bmatrix} = \bar{C} \begin{bmatrix} \widetilde{x} \\ \widetilde{w} \end{bmatrix},$$
(8)

where
$$\bar{A} = \begin{bmatrix} A & 0 \\ -GC & H \end{bmatrix}$$
, $\bar{B}_i = \begin{bmatrix} 0 & \dots & B_i & \dots & 0 \end{bmatrix}^{\top}$, and $\bar{C} = \begin{bmatrix} C & 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$.
Considerations:

- Power reference of the regulation service: $ho_{\mathsf{req}}(t) \in \mathbb{R},$
- MG's power delivered to the upper grid $y(t) d(t)
 ightarrow p_{\mathsf{req}}(t)$,
- To comply with the regulation service, we use a compensator (i.e., achieving zero steady-state error) with state w, output v, matrices H, G and D.

Using the deviation of the states, the resulting augmented dynamics for the VPP is:

$$\begin{bmatrix} \dot{\widetilde{x}} \\ \dot{\widetilde{w}} \end{bmatrix} = \bar{A} \begin{bmatrix} \widetilde{x} \\ \widetilde{w} \end{bmatrix} + \begin{bmatrix} \bar{B}_1 & \dots & \bar{B}_N \end{bmatrix} \widetilde{u}$$
(7)
$$\begin{bmatrix} \widetilde{y} \\ \widetilde{v} \end{bmatrix} = \bar{C} \begin{bmatrix} \widetilde{x} \\ \widetilde{w} \end{bmatrix},$$
(8)

where
$$\bar{A} = \begin{bmatrix} A & 0 \\ -GC & H \end{bmatrix}$$
, $\bar{B}_i = \begin{bmatrix} 0 & \dots & B_i & \dots & 0 \end{bmatrix}^{\top}$, and $\bar{C} = \begin{bmatrix} C & 0 \\ 0 & D \end{bmatrix}$.

Non-cooperative linear quadratic differential game for DER coordination

Each DER seeks to minimize its individual cost $J_i(\tilde{x}_0, \tilde{w}_0, \tilde{u})$ during the power regulation service. The cost is given by

$$J_{i}(\widetilde{x}_{0},\widetilde{w}_{0},\widetilde{u}) = \int_{t_{0}}^{\infty} \left\{ \begin{bmatrix} \widetilde{x} \\ \widetilde{w} \end{bmatrix}^{\top} Q_{i} \begin{bmatrix} \widetilde{x} \\ \widetilde{w} \end{bmatrix} + \widetilde{u}_{i}^{\top} R_{i} \widetilde{u}_{i} \right\} dt, \qquad (9)$$

• where $Q_i = Q_i^{\top} \ge 0$ and $R_i \ge 0$ Subject to:

$$\begin{bmatrix} \dot{\widetilde{x}} \\ \dot{\widetilde{w}} \end{bmatrix} = \bar{A} \begin{bmatrix} \widetilde{x} \\ \widetilde{w} \end{bmatrix} + \begin{bmatrix} \bar{B}_1 & \dots & \bar{B}_N \end{bmatrix} \widetilde{u}$$
(10)
$$\begin{bmatrix} \widetilde{y} \\ \widetilde{v} \end{bmatrix} = \bar{C} \begin{bmatrix} \widetilde{x} \\ \widetilde{w} \end{bmatrix},$$
(11)

Each DER employs a linear feedback strategy given by

$$\widetilde{u}_{i} = \begin{bmatrix} \mathbf{K}_{i} & \mathbf{F}_{i} \end{bmatrix} \begin{bmatrix} \widetilde{\mathbf{x}} \\ \widetilde{\mathbf{w}} \end{bmatrix}, \qquad (12)$$

We determine the set of admissible strategies $\{u_1, \ldots, u_N\}$ of the form (12) using the concept of Nash equilibrium

$$J_{i}(\tilde{x}_{0}, \tilde{w}_{0}, [\tilde{u}_{1}^{*}, ..., \tilde{u}_{i}^{*}, ..., \tilde{u}_{N}^{*}]) \leq J_{i}(\tilde{x}_{0}, \tilde{w}_{0}, [\tilde{u}_{1}^{*}, ..., \tilde{u}_{i}, ..., \tilde{u}_{N}^{*}]),$$
(13)
for $i = \{1, 2, ..., N\}.$

Nash equilibrium strategy for DERs (cont.)

$$u_i^* = -R_i^{-1}\bar{B}_i P_i \begin{bmatrix} \widetilde{x} \\ \widetilde{w} \end{bmatrix}$$
(14)

for $i = \{1, ..., N\}$.

The matrices *P_i* are the symmetric stabilizing solution of the coupled Algebraic Riccati equations:

$$\left(\bar{A} - \sum_{j \neq i}^{N} S_j P_j\right)^{\top} P_i + P_i \left(\bar{A} - \sum_{j \neq i}^{N} S_j P_j\right) - P_i S_i P_i + Q_i = 0$$
(15)

for $i = \{1, ..., N\}$, where $S_i = \overline{B}_i R_i^{-1} \overline{B}_i^\top$.

We use an iterative algorithm⁶ to obtain *P*_i.

Nash equilibrium strategy for DERs (cont.)

$$u_i^* = -R_i^{-1} \bar{B}_i \frac{P_i}{\widetilde{w}} \begin{bmatrix} \widetilde{x} \\ \widetilde{w} \end{bmatrix}$$
(14)

for $i = \{1, ..., N\}$.

The matrices P_i are the symmetric stabilizing solution of the coupled Algebraic Riccati equations:

$$\left(\bar{A} - \sum_{j \neq i}^{N} S_j P_j\right)^{\top} P_i + P_i \left(\bar{A} - \sum_{j \neq i}^{N} S_j P_j\right) - P_i S_i P_i + Q_i = 0$$
(15)

for $i = \{1, ..., N\}$, where $S_i = \bar{B}_i R_i^{-1} \bar{B}_i^{\top}$.

We use an iterative algorithm⁶ to obtain *P*_i.

Nash equilibrium strategy for DERs (cont.)

$$u_i^* = -R_i^{-1} \bar{B}_i \frac{P_i}{\widetilde{w}} \begin{bmatrix} \widetilde{x} \\ \widetilde{w} \end{bmatrix}$$
(14)

for $i = \{1, ..., N\}$.

The matrices P_i are the symmetric stabilizing solution of the coupled Algebraic Riccati equations:

$$\left(\bar{A} - \sum_{j \neq i}^{N} S_j P_j\right)^{\top} P_i + P_i \left(\bar{A} - \sum_{j \neq i}^{N} S_j P_j\right) - P_i S_i P_i + Q_i = 0$$
(15)

for $i = \{1, ..., N\}$, where $S_i = \bar{B}_i R_i^{-1} \bar{B}_i^{\top}$.

We use an iterative algorithm⁶ to obtain P_i .

⁶Jacob Engwerda. "Algorithms for computing Nash equilibria in deterministic LQ games". In: *Computational Management Science* 4.2 (Apr. 2007), pp. 113–140. ISSN: 1619-6988.

• We need state variables information to calculate control action u_i

- In our setup there are no state variable measurements (as they are internal states)
- We use Loop Transfer Recovery (LTR) to estimate the states (variant of the Kalman Filter)
- LTR is robust to parameter perturbations ΔA_i , ΔB_i , ΔC_i from the learned DER dynamics

- We need state variables information to calculate control action u_i
- In our setup there are no state variable measurements (as they are internal states)
- We use Loop Transfer Recovery (LTR) to estimate the states (variant of the Kalman Filter)
- LTR is robust to parameter perturbations ΔA_i , ΔB_i , ΔC_i from the learned DER dynamics

- We need state variables information to calculate control action u_i
- In our setup there are no state variable measurements (as they are internal states)
- We use Loop Transfer Recovery (LTR) to estimate the states (variant of the Kalman Filter)
- LTR is robust to parameter perturbations ΔA_i , ΔB_i , ΔC_i from the learned DER dynamics

- We need state variables information to calculate control action u_i
- In our setup there are no state variable measurements (as they are internal states)
- We use Loop Transfer Recovery (LTR) to estimate the states (variant of the Kalman Filter)
- LTR is robust to parameter perturbations ΔA_i , ΔB_i , ΔC_i from the learned DER dynamics

Control scheme

In summary, the state-feedback control and LTRs are placed in the MG as follows:

Figure: Control scheme for a microgrid (MG) to provide power regulation service in support to the upper-level grid.

Simulations and Results

Validation of learned dynamics and control scheme

Figure: Top panel: Microgrid (MG)'s power output with learned DER models and MG's power output with high-fidelity DER models. Bottom panel: MG's load during the regulation service.

Case study

The four scenarios correspond to 10-kV MGs with different numbers of DERs:

- 1 PV system and 1 BESS
- I PV system and 2 BESS
- 3 PV systems and 3 BESS
- 4 PV systems and 6 BESS

Figure: MG in scenario 1

29 / 49

Comparison of the proposed control scheme against droop and PI control using high-fidelity dynamics

Benchmark of the proposed control scheme against droop controller and PI controller

The cost savings of DER *i*: $\frac{\text{Individual cost}_{using droop/PI}}{\text{Individual cost}_{u_{proposed}}}$

Table: Cost savings of each DER when using our proposed control scheme for all 4 scenarios using Sandia's high-fidelity inverter models

				4						
Droop										
		4.1	4.3							
Droop										

Benchmark of the proposed control scheme against droop controller and PI controller

The cost savings of DER *i*: $\frac{\text{Individual cost}_{using droop/PI}}{\text{Individual cost}_{u_{proposed}}}$

Table: Cost savings of each DER when using our proposed control scheme for all 4 scenarios using Sandia's high-fidelity inverter models

Savings	DERs									
relative to:	1	2	3	4	5	6	7	8	9	10
Droop	28.3	34.2								
PI	1.3	1.5								
Droop	100	116	123							
PI	3.6	4.1	4.3							
Droop	209	185	204	189	196	171				
PI	9.3	8.3	9.1	8.5	8.8	7.7				
Droop	48.5	50.9	54.2	53.3	51.2	37.0	50.5	51.3	48.7	46.8
PI	7.3	7.6	8.1	8.0	7.7	5.7	7.6	7.7	7.3	7.1

31 / 49

Benchmark in time-domain performance

Figure: Pros: Faster settling times, no oscillations, and zero steady-state error. Cons: Slightly higher overshoot.

Conclusions and Future Directions

- Novel control scheme using non-cooperative games for the coordination of DERs to provide regulation services aware of constraints from inverter dynamics
- It considers, for the first time, learned inverter dynamics for DERs.
- The use of learned state-space models is promising

- Novel control scheme using non-cooperative games for the coordination of DERs to provide regulation services aware of constraints from inverter dynamics
- It considers, for the first time, learned inverter dynamics for DERs.
- The use of learned state-space models is promising

- Novel control scheme using non-cooperative games for the coordination of DERs to provide regulation services aware of constraints from inverter dynamics
- It considers, for the first time, learned inverter dynamics for DERs.
- The use of learned state-space models is promising

- Novel control scheme using non-cooperative games for the coordination of DERs to provide regulation services aware of constraints from inverter dynamics
- It considers, for the first time, learned inverter dynamics for DERs.
- The use of learned state-space models is promising

- Diverse set of inverter manufacturers and different operational points for inverters lead to heterogeneous and time-varying dynamics.
- Challenges: how to derive or represent aggregate dynamics, tractability issues, etc.
- Learning inverter dynamics is a promising field of research.
- How to guarantee stabilizing solutions for ancillary services from clusters of DERs considering communication delays in state estimation, or partial information.
- In a broader setup, where the transmission network is supported by the distribution network to provide frequency support, closed-loop stabilizing control becomes essential, and much more challenging.
- Stabilizing control techniques for large-scale time-varying systems becomes a necessity. Distributed and data-driven approaches are promising techniques to address this.

- A 12 N - A 12

Image: A matrix

- Diverse set of inverter manufacturers and different operational points for inverters lead to heterogeneous and time-varying dynamics.
- Challenges: how to derive or represent aggregate dynamics, tractability issues, etc.
- Learning inverter dynamics is a promising field of research.
- How to guarantee stabilizing solutions for ancillary services from clusters of DERs considering communication delays in state estimation, or partial information.
- In a broader setup, where the transmission network is supported by the distribution network to provide frequency support, closed-loop stabilizing control becomes essential, and much more challenging.
- Stabilizing control techniques for large-scale time-varying systems becomes a necessity. Distributed and data-driven approaches are promising techniques to address this.

- Diverse set of inverter manufacturers and different operational points for inverters lead to heterogeneous and time-varying dynamics.
- Challenges: how to derive or represent aggregate dynamics, tractability issues, etc.
- Learning inverter dynamics is a promising field of research.
- How to guarantee stabilizing solutions for ancillary services from clusters of DERs considering communication delays in state estimation, or partial information.
- In a broader setup, where the transmission network is supported by the distribution network to provide frequency support, closed-loop stabilizing control becomes essential, and much more challenging.
- Stabilizing control techniques for large-scale time-varying systems becomes a necessity. Distributed and data-driven approaches are promising techniques to address this.

- Diverse set of inverter manufacturers and different operational points for inverters lead to heterogeneous and time-varying dynamics.
- Challenges: how to derive or represent aggregate dynamics, tractability issues, etc.
- Learning inverter dynamics is a promising field of research.
- How to guarantee stabilizing solutions for ancillary services from clusters of DERs considering communication delays in state estimation, or partial information.
- In a broader setup, where the transmission network is supported by the distribution network to provide frequency support, closed-loop stabilizing control becomes essential, and much more challenging.
- Stabilizing control techniques for large-scale time-varying systems becomes a necessity. Distributed and data-driven approaches are promising techniques to address this.

- Diverse set of inverter manufacturers and different operational points for inverters lead to heterogeneous and time-varying dynamics.
- Challenges: how to derive or represent aggregate dynamics, tractability issues, etc.
- Learning inverter dynamics is a promising field of research.
- How to guarantee stabilizing solutions for ancillary services from clusters of DERs considering communication delays in state estimation, or partial information.
- In a broader setup, where the transmission network is supported by the distribution network to provide frequency support, closed-loop stabilizing control becomes essential, and much more challenging.
- Stabilizing control techniques for large-scale time-varying systems becomes a necessity. Distributed and data-driven approaches are promising techniques to address this.

- Diverse set of inverter manufacturers and different operational points for inverters lead to heterogeneous and time-varying dynamics.
- Challenges: how to derive or represent aggregate dynamics, tractability issues, etc.
- Learning inverter dynamics is a promising field of research.
- How to guarantee stabilizing solutions for ancillary services from clusters of DERs considering communication delays in state estimation, or partial information.
- In a broader setup, where the transmission network is supported by the distribution network to provide frequency support, closed-loop stabilizing control becomes essential, and much more challenging.
- Stabilizing control techniques for large-scale time-varying systems becomes a necessity. Distributed and data-driven approaches are promising techniques to address this.

- Diverse set of inverter manufacturers and different operational points for inverters lead to heterogeneous and time-varying dynamics.
- Challenges: how to derive or represent aggregate dynamics, tractability issues, etc.
- Learning inverter dynamics is a promising field of research.
- How to guarantee stabilizing solutions for ancillary services from clusters of DERs considering communication delays in state estimation, or partial information.
- In a broader setup, where the transmission network is supported by the distribution network to provide frequency support, closed-loop stabilizing control becomes essential, and much more challenging.
- Stabilizing control techniques for large-scale time-varying systems becomes a necessity. Distributed and data-driven approaches are promising techniques to address this.

Thank you!

psernatorre@ucsd.edu (Paul Serna-Torre) phidalgogonzalez@ucsd.edu (Patricia Hidalgo-Gonzalez)

Supplemental information

Modeling of inverters

Figure: A grid-following inverter with compensators in dq-frame able to track P_{sref} , Q_{sref}^{7} .

⁷Amirnaser Yazdani and Reza Iravani. Voltage-Sourced Converters in Power Systems, ~

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024

38 / 49

Learned state-space representation of DERs

By System Identification, we obtain the following state-space models

Parameter	PV	system	BESS				
A	[-263.094 1	$\begin{array}{c} -2.955\cdot 10^4 \\ 0 \end{array} \right]$	$\begin{bmatrix} -258.087\\1\end{bmatrix}$	$\left. \begin{matrix} -3.041\cdot 10^4 \\ 0 \end{matrix} \right]$			
В		$\begin{bmatrix} 1\\ 0\end{bmatrix}$	$\begin{bmatrix} 1\\ 0\end{bmatrix}$				
С	[1.589	$2.945 \cdot 10^4$]	[9.712	$3.039\cdot 10^4\big]$			

Table: DERs learned state-space representations

As system parameters may vary in practice, we intentionally introduce perturbations to the LTR estimator of each DER across all scenarios.

Table: Parameter perturbations introduced to the LTR estimators

	Parameter	PV system		BESS					
	ΔΑ	$\begin{bmatrix} -20 & 1 \\ 0 & \end{bmatrix}$.000 0] [·	$^{-100}_{1}$	1000 0				
	ΔВ	$\begin{bmatrix} -0.1\\ 0\end{bmatrix}$		$\begin{bmatrix} -0.1\\ 0 \end{bmatrix}$					
	ΔC	[0.1 0	0.1]	[0.1	0.1] 🗆 🕨	• 🗗 • 🔺 🗄	► < E >	3	୬୯୯
Hidalgo-Gonzalez presenting Serna-Torre e	et al., 2024	39 /	/ 49			University of	of California	San D	iego

Learned voltage source inverter dynamics

In System Identification $(SI)^8$, we provide input-output data set

$$f(t) = [-y(t-1) \dots - y(t-n) u(t-1) \dots u(t-m)]^{\top}.$$
 (16)

⁸L. Ljung. System Identification: Theory for the User. Prentice Hall information and system sciences series. Prentice Hall PTR, 1999. ISBN: 9780136566953.

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024

40 / 49

Learned voltage source inverter dynamics

In System Identification $(SI)^8$, we provide input-output data set

$$f(t) = [-y(t-1) \dots - y(t-n) u(t-1) \dots u(t-m)]^{\top}.$$
 (16)

A candidate dynamical model is proposed, e.g.,

$$y(t) - a_1 y(t-1) + \dots + a_n y(t-n) = b_1 u(t-1) + \dots + b_m u(t-m),$$
(17)
$$\hat{y}(t|\alpha) = f(t)^{\top} \alpha$$
(18)

where: $\alpha = [a_1 \dots a_n \ b_1 \dots \ b_n].$

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024

40 / 49
Learned voltage source inverter dynamics

In System Identification $(SI)^8$, we provide input-output data set

$$f(t) = [-y(t-1) \dots - y(t-n) u(t-1) \dots u(t-m)]^{\top}.$$
 (16)

A candidate dynamical model is proposed, e.g.,

$$y(t) - a_1 y(t-1) + \dots + a_n y(t-n) = b_1 u(t-1) + \dots + b_m u(t-m),$$
(17)

$$\hat{y}(t|\alpha) = f(t)^{\top} \alpha$$
 (18)

where: $\alpha = [a_1 \dots a_n \ b_1 \dots b_n]$. The idea is to find α by non-linear least squares methods

$$\hat{\alpha} = \underset{\alpha}{\operatorname{argmin}} \frac{1}{N} \sum_{t=1}^{N} [y(t) - \hat{y}(t|\theta)]^2$$
(19)

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024

40 / 49

Considerations:

- Power reference of the regulation service: $p_{\mathsf{req}}(t) \in \mathbb{R}$,
- MG's power delivered to the upper grid $y(t) d(t)
 ightarrow p_{
 m req}(t)$,
- Equivalently, $y(t)
 ightarrow r(t) = p_{\mathsf{req}}(t) + d(t)$

Considerations:

- Power reference of the regulation service: $p_{\mathsf{req}}(t) \in \mathbb{R},$
- MG's power delivered to the upper grid $y(t) d(t)
 ightarrow p_{\mathsf{req}}(t)$,
- Equivalently, $y(t)
 ightarrow r(t) =
 ho_{\mathsf{req}}(t) + d(t)$

To comply with the regulation service, we propose a compensator

$$\dot{w} = Hw + Ge$$
 (20)
 $v = Dw$, (21)

where w(t), $v(t) \in \mathbb{R}$, and e(t) represents the tracking error

$$e(t) := r(t) - y(t) = r(t) - Cx(t).$$
(22)

Dynamics of the VPP and compensator

We group the dynamics of the VPP and compensator in the following augmented state-space representation:

$$\begin{bmatrix} \dot{x} \\ \dot{w} \end{bmatrix} = \begin{bmatrix} A & 0 \\ -GC & H \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix} + \begin{bmatrix} \bar{B}_1 & \dots & \bar{B}_N \end{bmatrix} u + \begin{bmatrix} 0 \\ G \end{bmatrix} r$$
(23)
$$\begin{bmatrix} y \\ v \end{bmatrix} = \begin{bmatrix} C & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix},$$
(24)

- State of the VPP: $x \in \mathbb{R}^{N \cdot d}$
- State of the compensator: $w \in \mathbb{R}$
- Control action for the VPP: $u \in \mathbb{R}^N$
- Power reference: $r \in \mathbb{R}$
- Power output of the VPP: $y \in \mathbb{R}$
- Output of the compensator: $v \in \mathbb{R}$

Deviation form of the augmented system

One issue with the augmented system is the presence of **r** in

$$\begin{bmatrix} \dot{x} \\ \dot{w} \end{bmatrix} = \begin{bmatrix} A & 0 \\ -GC & H \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix} + \begin{bmatrix} \bar{B}_1 & \dots & \bar{B}_N \end{bmatrix} u + \begin{bmatrix} 0 \\ G \end{bmatrix} \mathbf{r}$$
(25)
$$\begin{bmatrix} y \\ v \end{bmatrix} = \begin{bmatrix} C & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix},$$
(26)

Deviation form of the augmented system

One issue with the augmented system is the presence of r in

$$\begin{bmatrix} \dot{x} \\ \dot{w} \end{bmatrix} = \begin{bmatrix} A & 0 \\ -GC & H \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix} + \begin{bmatrix} \bar{B}_1 & \dots & \bar{B}_N \end{bmatrix} u + \begin{bmatrix} 0 \\ G \end{bmatrix} \mathbf{r}$$
(25)
$$\begin{bmatrix} y \\ v \end{bmatrix} = \begin{bmatrix} C & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix},$$
(26)

To remove **r**, we redefine the augmented system with deviation states⁹:

$$\widetilde{x}(t) = x(t) - x_{\rm ss} \tag{27}$$

$$\widetilde{w}(t) = w(t) - w_{ss},$$
 (28)

where x_{ss} and w_{ss} are the states achieved when the tracking error e becomes zero.

⁹Frank L. Lewis, Draguna Vrabie, and Vassilis L. Syrmos. *Optimal Control*. John Wiley & Sons, Ltd, 2012. ISBN: 9781118122631.

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024

43 / 49

Deviation form of the augmented system (cont.)

With the deviation states, the augmented system is:

$$\begin{bmatrix} \dot{\widetilde{x}} \\ \dot{\widetilde{w}} \end{bmatrix} = \bar{A} \begin{bmatrix} \widetilde{x} \\ \widetilde{w} \end{bmatrix} + \begin{bmatrix} \bar{B}_1 & \dots & \bar{B}_N \end{bmatrix} \widetilde{u}$$
(29)
$$\begin{bmatrix} \widetilde{y} \\ \widetilde{v} \end{bmatrix} = \bar{C} \begin{bmatrix} \widetilde{x} \\ \widetilde{w} \end{bmatrix},$$
(30)

where
$$\bar{A} = \begin{bmatrix} A & 0 \\ -GC & H \end{bmatrix}$$
, $\bar{B}_i = \begin{bmatrix} 0 & \dots & B_i & \dots & 0 \end{bmatrix}^{\top}$, and $\bar{C} = \begin{bmatrix} C & 0 \\ 0 & D \end{bmatrix}$.

Equivalence of tracker problem and regulator problem

A tracker problem for the augmented system is actually equivalent to a regulator problem for its corresponding deviation system^a.

^aFrank L. Lewis, Draguna Vrabie, and Vassilis L. Syrmos. *Optimal Control.* John Wiley & Sons, Ltd, 2012. ISBN: 9781118122631.

Validation of the control scheme

- First, we determine the controllers for each DER following the non-cooperative game approach. In this step, learned state-space representations of the DERs are used.
- Second, in each of the 4 scenarios we do two separate implementations:
 - the controllers in the grid with learned state-space models.
 - the controllers in the grid with high-fidelity DER models (realistic case).

- First, we determine the controllers for each DER following the non-cooperative game approach. In this step, learned state-space representations of the DERs are used.
- Second, in each of the 4 scenarios we do two separate implementations:
 - the controllers in the grid with learned state-space models.
 - the controllers in the grid with high-fidelity DER models (realistic case).

- First, we determine the controllers for each DER following the non-cooperative game approach. In this step, learned state-space representations of the DERs are used.
- Second, in each of the 4 scenarios we do two separate implementations:
 - the controllers in the grid with learned state-space models.
 - the controllers in the grid with high-fidelity DER models (realistic case)

Validation of control scheme

We compare objective functions and time-domain performance of: (i) grid with learned state-space models vs (ii) grid with high-fidelity DER models

Validation of control scheme (analysis of cost)

Figure: Optimal individual costs for each DER in case: (a) the microgrid (MG) with learned DER models and (b) the MG with high-fidelity DER models for all four scenarios.

Validation of control scheme (analysis of time-domain performance

Figure: Top panel: Microgrid (MG)'s power output with learned DER models and MG's power output with high-fidelity DER models. Bottom panel: MG's load during the regulation service.

Hidalgo-Gonzalez presenting Serna-Torre et al., 2024

Benchmark in time-domain performance

With the proposed control scheme, the VPP has: (i) no oscillations, (ii) faster settling times, (iii) achieves almost zero steady-state error.

Table: MG's performance for three control schemes in all four scenarios

DERs	Control	Overshoot (%)	Settling time (s)	steady-state error (%)	Damping (ζ)
2	Droop	-65.5	0.09	37.67	0.12
	PI	-56.02	0.69	1.2	0.12
	Proposed	-35.67	0.42	0.01	1
3	Droop	-61.36	0.1	28.88	0.25
	PI	-17.74	0.61	0.24	0.13
	Proposed	-35.09	0.26	0	1
6	Droop	-37.37	0.07	28.96	0.06
	PI	21.61	0.63	0.69	0.10
	Proposed	-33.93	0.21	0	1
10	Droop	-54	0.19	15.7	0.53
	PI	22.15	0.68	0.66	0.09
	Proposed	-34.6	0.23	0.02	1