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Oscillatory Networks 

 Many natural (even societal) networks have oscillatory dynamics 

 Sensors ubiquitous in actual networked systems 

 Collecting huge volume of data during normal conditions (small perturb.) 

 Phasor measurement unit (PMU) in power grids 

 Seismometers installed around the world 
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Electromechanical (EM) Oscillations 

 Can we infer the grid frequency response to any disturbance input 
using the ambient synchrophasor data? 
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https://www.youtube.com/watch?v=awvS4TtN77E 



A Data-Driven Approach 
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Filtered output: 
white noise! 

 In seismology, 
ambient noise fields successfully 
used to recover the propagation of 
earthquake waves [Sneider’04, 
Wapenaar’04, Sneider et al’07] 

 Analytical results established for 
homogeneous continuum medium 
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Power System Dynamic Analysis 

 Mode estimation of frequency and damping from the correlation of 
ambient frequency/angle/voltage data 
 Recursive estimation algorithms [Zhou et al’05] 
 Pencil matrix method [Borden et al’13] 
 Fast subspace-based algorithms [Ning et al’15] 

 Data-driven estimation of dynamic system model such as the 
dynamic state Jacobian matrix [Wang et al’16-17] 

 Green’s function connected to power systems [Backhaus et al’12] 

 Continuum modeling of 2-dimensional EM wave propagation with 
homogeneously placed gens/loads/lines [Parashar et al’04] 

Our focus: explore the analytical conditions/practical limitations of  

cross-correlation based modeling of (primary) freq. response 
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Dynamic System Modeling 

 Consider a system of n generators with the classical model 

( ): rotor angle (speed) deviation 

 ( ): angular momentum (damping coefficient) 

 :         local input of power imbalance 

 : power flow from generator i to j (for equivalent network) 

 Using the linearized power flow model 

(SE) 

 M and D are diagonal 

 K is the power flow Jacobian matrix (~symmetric) 
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Ambient Data Modeling 

 Goal: estimating (impulse) frequency response from any 𝑢𝑘 to 𝜔ℓ 

 Ambient conditions: normal operations with small perturbations 

(as1) The system (SE) is excited by zero-mean white noise input 

 Random variations of power system loads/resources 

 (Normalized) cross-correlation of ambient speed (frequency) data 
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A Classical Example 

h(t) 
𝑢(𝑡) 𝑦(𝑡) 

 System identification of SISO 

 If input 𝑢(𝑡) is white noise, then the transfer function 
ℎ 𝑡 𝑡∝ 𝐶𝑦𝑢 

 Even if 𝑢(𝑡) is non-white, can estimate it using 𝐶𝑢𝑢 𝑡 
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Model-based Analysis 

For simplicity, consider undamped oscillations with 

(SE’) 



 Extended to uniformly damped systems (homogeneity relaxed!) 

 Oscillation modes for (SE’) solved by generalized eigen. problem 

(as2) is positive definite (PD) and      is symmetric 
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Lemma: Under (as2), the eigenvectors in      are M-orthonormal; i.e., 

with  having eigenvalues of 



                 

  

            

Uncoupled Modes 

 Linear transformation of (SE’): and 

 Each mode (       ) associated with 

 Under zero initialization 

 Impulse frequency response 
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Equivalence Results 

(as3) Input noise variance proportional to inertia; i.e., 

 Homogeneously excited modes: identical and uncorrelated 

Prop: Under (as1)-(as3), frequency response can be recovered by 
cross-correlating and as 

Under (as3), only intra-
mode components exist! 
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Damped System Extension 

 Under uniform damping, M-orthonormal property still holds 

 Each mode (  ) is updated to 

with 

P. Huynh, Q. Chen, A. Elbanna, and H. Zhu, “Data-Driven Estimation of Frequency Response from 
Ambient Synchrophasor Measurements,” IEEE Trans. Power Systems, Nov. 2018. 
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WSCC 9-Bus Test Case 

 Synthetic ambient speed 
outputs generated with 
randomly perturbing generator 
inputs using: 

(i) linearized system model 

(ii) time-domain simulation 

 With line losses, matrix K 
slightly asymmetric 

WSCC 3-gen 9-bus case 
one-line diagram [PSAT] 
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Uniform Damping 

 Great match with non-symmetric K under line losses! 
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Non-uniform Damping 

 Less accurate estimation of scaling factor (mode coupling) 
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Higher-order Generator Model 

 Noticeable difference in the curve shape (correlated modes) 
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Real Data Tests 
 Frequency measurements for the Eastern Interconnection (EI) 

system under normal grid operations 

 Collected from 10:00-10:15 AM on 01/20/2017 by FNET devices 

 Compared to the actual response to the disturbance of 2008 
Florida blackout 
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Propagation Time 
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Node # Rec. Est. 
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Estimated Response 

 From Florida to Arkansas, Missouri, and North Dakota 
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Conclusions and ? 

 Identified a set of analytical conditions to allow the recovery of 
frequency response using ambient data cross-correlation 

 Uniformly damped system with uncoupled modes 

 Each mode equally excited by zero-mean perturbations 

 These conditions may hold in practice, however, limiting this 
approach because of the following open questions 

 Account for system nonlinearity 

 Towards high-dimensional space 

 How about real-time decision making? 
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Thank you! 

Hao Zhu 

haozhu@utexas.edu 

http://sites.utexas.edu/haozhu/ 
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