Overview of BEB Energy Analysis

USDOT Volpe Center Federal Fleet Support

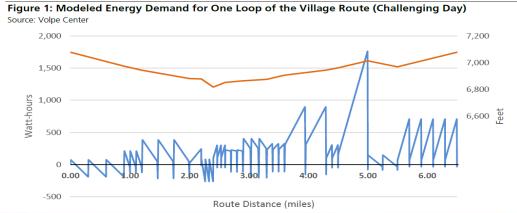
Electric Transit User Group (ETUG)

September 21, 2022

Contents

- Background
- BEB Considerations
- Process Overview
- BEB Assessment
 - Implementation Assistance
 - Safety Considerations
 - Risk Mitigation

Background


- Volpe has a legacy of successful support enabling National Park Service fleets' adoption of alternative fuel technologies
 - Propane-powered Island Explorer Bus System at Acadia (1999)
 - Original manufacturer stopped producing transit propane engines
 - Solution was a custom-built vehicle with propane conversion
 - Propane-powered Bus System at Zion
 - Volpe analyzed fleet recapitalization options, including initial consideration of electrification
 - Subsequent efforts, including an <u>electrification and charging analysis with</u> <u>NREL</u>,
 - Culminated in <u>Zion receiving \$33M from the USDOT Nationally Significant</u> <u>Lands and Tribal Program</u>.

Background Cont'd

- Compressed Natural Gas Bus System at the Grand Canyon South Rim
 - Volpe supported efforts to rehabilitate the aging fuel system and add redundancy to provide for continuous operations.
- Follow-on Volpe support included a phased electrification analysis that has become a model of our electrification process.
 - Initial high-level, mileage-based route assessment to assess potential viability
 - Energy modeling of suitable routes, relying on basic inputs

BEB & Electrification Considerations

- Energy management and optimization: critical, emerging best practices
 - Facilities and Vehicles require common, cohesive energy management planning
 - On-site solar / renewable power generation, energy storage, backup power requirements

Buses and EVSE maturing

- 2nd generation models available with solutions to address historic problem areas
 - DCFC, bidirectional, wireless and on-route charging solutions;
 - Charge management
- With any transition, position BEBs for success!
 - Overarching facility and fleet transition plan, think big picture
 - Make your facility EV Ready, even if you start small. Civil Construction is expensive.
 - Hardware options, energy demand implications and potential mitigation solutions
 - Strong relationships with the Utility & bus OEM are critical to success

Process Overview

- Site Mapping
- Local Conditions and Limitations
- Service Scheduling Information
- Mileage Based Range Assessment
- Energy Demand Modeling
- BEB Assessment
- Implementation & Mitigation

Site Mapping

- In order to accurately represent routes in order to model energy demand, the various transit routes and location of infrastructure including bus maintenance facilities, wash bays, and fueling facilities are documented.
 - Routes are plotted for distance and route information is gathered including bus stops, stop signs/lights, pedestrian crossings, railroad crossings, or other locations that may require the bus to stop.
 - Often a manual process using Google street view or reviewing video
 - GIS information from the park, or manually plotted lat/long and elevation information.

Local Conditions and Limitations

- Once infrastructure and routes are well understood, other local conditions or limiting factors are documented. These can include:
 - Limits on installation of new infrastructure, projects may presume EVSE, or chargers, are located at the maintenance facility and cannot be located on route.
 - Physical limits along the route, including height and width restrictions, turning movement limitations, challenging break-over or approach / departure angles.

Service Schedule Information

- The transit service schedule with departure and arrival times along with ridership information helps to understand the utilization of each individual bus throughout the service day.
 - Informs the total "capacity" of the transit system
 - Enables modifications to be made and subsequent impacts to capacity or bus mileage, etc. better understood
 - Alternate route(s), schedules, or vehicle types can be analyzed

Mileage-based range estimate

- Initial examination of fixed-routes based on mileage can help define where to focus further analysis
- Requires fleet operational data inputs (typical scheduling, route, and fleet data)
- Determine the "Maximum Potential Mileage" that a "first-out, last-in" vehicle would accumulate
- Compare with current bus options and their range estimates
 - Typically employ a "planning range" that is significantly below manufacturerclaimed range estimates (~66% of claimed)
 - Accounts for challenging terrain, poor driver behavior, high auxiliary loads, and battery degradation

Energy demand modeling

Inputs

Route and schedule information

- Distance, travel time, elevation change
- Number of trips per day
- Deadhead
- Intermediate stops (e.g., stop signs)

Model specifications

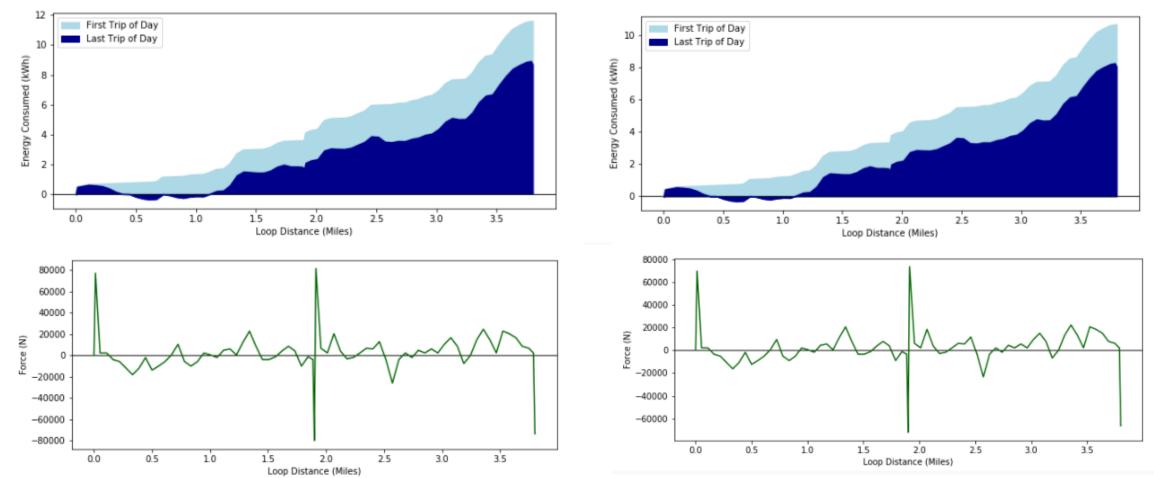
- Bus curb weight
- Number of passengers
- Acceleration/deceleration rate
- HVAC energy intensity
- Other technical inputs

Outputs

Trip summary

- Total distance and travel time
- State of Charge
- Trip energy (kWh)
- HVAC/auxiliary energy (kWh)
- Overall energy intensity (kWh/mi)
- Data Visualization
 - Force, Energy Use, Route Elevation plots/graphs

Options for scenario analysis


 Different route assumptions (e.g., loop variations, number of loops, depot locations)

Model outputs

35' Transit Bus, HAFE

30' Transit Bus, HAFE

12

Route Analysis - Energy Needs by Route

#	Route	Bus Type in Use	Max Daily Mileage*	Daily Energy Consumed (kWh)	Comparative BEB Options
I	Giant Forest	Bus	119	316	Extended Range (500 kWh+)
2	Moro Rock / Crescent Meadow	Bus (weekend) Shuttle (weekday)	104	287	Standard Range (450 kWh)
3	Wuksachi / Dorst / Lodgepole	Shuttle	290	456	<u>No Shuttle Available</u>
4	Wolverton	Bus	145	358	Standard Range (450 kWh)
	Gateway (to park)	Shuttle	124	139	Standard Range Shuttle (160 kWh)

High-level Assessment, Notes and Mitigation

Route	Notes or Mitigation		
I Giant Forest	Standard transit bus battery is adequate (~450-kWh), avoiding max battery option can save on purchase costs or future replacement, less weight to carry while empty.		
2 Moro Rock/Crescent Meadow	Both transit and shuttle bus options appear adequate for this route. No expected change in fleet size.		
3 Wuksachi / Dorst / Lodgepole	Not feasible with current technology available on shuttle bus platforms, with limited range options "up to" 150 or 160-miles. May require additional fleet vehicles or consider hybrid- or plug-in hybrid retrofits for E450/F450/F550 based chassis.		
4 Wolverton	Standard transit bus with 450-kWh battery is adequate, no mitigation. No expected change in fleet size.		
Gateway	None needed.		

Implementation and mitigation

Source: Volpe Center

- Charging analysis
 - Managed charging is key
- On-route DCFC if possible
 - Strategically located DCFC can "top up" range
- Hybrids or H2 FC for longrange applications
- Demand Reduction Strategies
 - Onsite power generation and/or energy storage
- Considerations
 - Resiliency plans for power outages
 - Fire protection or fire-fighting needs
 - System safety plans

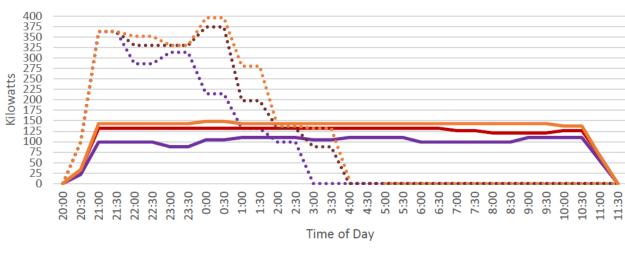


Figure 2: Energy Demand Comparison, Managed vs. Unmanaged Charging

Questions?

F. Scott Lian

General Engineer, USDOT Volpe Center Supporting the Joint Program Office & NEVI Program 617-494-2811 – <u>scott.lian@dot.gov</u>

